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Enhancing the precision of a measurement requires maximizing the information that can be gained about
the quantity of interest from probing a system. For optical-based measurements, such an enhancement can be
achieved through two approaches, increasing the number of photons used to interrogate the system and using
quantum states of light to increase the amount of quantum Fisher information gained per photon. Here we
consider the use of quantum states of light with a large number of photons, namely the bright single-mode
squeezed state and the bright two-mode squeezed state, which take advantage of both of these approaches for
the problem of transmission estimation. We show that, in the limit of large squeezing, these states approach
the maximum possible quantum Fisher information per photon for transmission estimation that is achieved
with the Fock state and the vacuum two-mode squeezed state. Since the bright states we consider can be generated
at powers much higher than those of the quantum states that achieve the maximum quantum Fisher information
per photon, they can achieve a much higher absolute precision as quantified by the quantum Cramér-Rao bound.
We discuss the effects of losses external to the system on the precision of transmission estimation and identify
simple measurement techniques that can saturate the quantum Cramér-Rao bound for the bright squeezed states
even in the presence of such external losses.
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I. INTRODUCTION

There is currently a significant interest in taking advan-
tage of quantum resources for applications that range from
quantum-enhanced sensing [1–6] to quantum imaging [7–9]
to quantum simulations [10,11] to quantum communications
[12–16]. Among these applications, quantum-enhanced sens-
ing is the most likely to find its way into real-life devices in
the near future. In particular, optical-based quantum-enhanced
sensing, for which quantum states of light play a very promi-
nent role [17], has already led to significant enhancements
for gravitational-wave detection. The Advanced Laser Inter-
ferometer Gravitational-Wave Observatory (LIGO) now uses
a vacuum single-mode squeezed state injected into the unused
port of the interferometer to decrease the noise below the
standard quantum limit [18].

While most of the work on quantum-enhanced sensing with
light has focused on phase estimation [18–21], as is the case
with LIGO, the promise of quantum-enhanced devices and
measurements has recently led to an increased interest in the
estimation of other parameters, such as transmission through
an optical system [22–28]. In performing these studies, the
quantum Cramér-Rao bound (QCRB) [6,29–31], which sets
the limit to the precision that can be achieved in the estimation
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of a parameter, provides an absolute metric that can be used to
compare precision limits when probing the system of interest
with different states, either quantum or classical.

Here, we focus on the problem of transmission estima-
tion as it is at the heart of a number of applications. For
example, enhanced transmission estimation can tighten theo-
retical bounds for quantum-enhanced measurement schemes
[2,3,32], can enable precise calibration of photodiodes and
other optical systems, can set limits to key rates in quantum
communications [33,34], and can enhance sensors whose op-
eration is dependent on a change in transmission [4]. For this
problem, it has been shown that the Fock state [24] and the
vacuum two-mode squeezed state (vTMSS) [25] give the ulti-
mate limit in precision for a given number of probing photons
and that the vacuum single-mode squeezed state approaches
this limit for large transmissions [23]. However, these states
can only be generated with a low number of photons, which
limits their ability to surpass the classical state-of-the-art as
the precision increases with the number of probing photons.
Thus, classical states of light, which can easily be generated
with high powers, can achieve a higher absolute precision (or
lower QCRB) than the optimal quantum states.

In order to overcome the limitations of the optimal quan-
tum states, we propose the use of quantum states that can
be generated with a macroscopic number of photons, such as
the bright single-mode squeezed state (bSMSS) and the bright
two-mode squeezed state (bTMSS). We show that these states
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FIG. 1. Configuration for the estimation of the unknown trans-
mission T of a system. We use a beam splitter to model the
transmission through the system and consider the use of both single-
and two-mode states of light. One of the modes is used to probe the
system, while for the case of a two-mode state the second mode
serves as an auxiliary mode. We consider losses external to the
system for the probe with a transmission Tp before and a transmission
ηp after the system. The auxiliary mode is subject to a transmission
ηa before detection.

have a precision for a given number of probing photons that
is much higher than the one for a classical coherent state and
approaches that of the Fock state and vTMSS in the limit of
large squeezing. Thus, these states can lead to an enhance-
ment due to both their large number of photons and their
quantum properties, giving an overall lower QCRB. While
the QCRB provides the limit for precision in the estimation
of a parameter, the problem of finding a measurement that
saturates it is not a trivial one and is not always possible.
We show that optimized intensity measurements saturate the
QCRB for both the bSMSS and the bTMSS. Furthermore,
we show that these schemes still saturate the QCRB even
in the presence of losses external to the system under study.
These results provide a way to surpass the classical state-of-
the-art for real-life practical applications where there is a limit
to the maximum power that can be used to probe a system.

II. QUANTUM CRAMÉR-RAO BOUNDS

The problem we consider, shown schematically in Fig. 1,
is the use of either a single-mode or a two-mode state of light
to estimate the unknown transmission T of a system. In the
proposed configuration, one of the modes is used to directly
probe the system. When the state consists of two modes, the
second mode is used as an auxiliary mode that can serve as
a reference. After interacting with the system, measurements
on the mode(s) are performed to estimate the transmission. We
take the number of photons used to probe the system, i.e., the
mean number of photons in the probe mode right before the
system (〈n̂p〉r), as the resource for the parameter estimation
problem. We therefore compare the transmission estimation
QCRB for different states with the same number of photons
probing the system. To consider more realistic operational
conditions, we study the effects of loss external to the system
both before the system, to allow an extension to mixed states,
and after the system, to account for detection inefficiencies, as
well as losses on the auxiliary mode.

To model the system we use a beam splitter (BS), which
is the most often used model for linear transmission [35]. As
a model for transmission, one input port of the BS couples
in the probe mode while the other port, which is assumed
to be unaccessible, couples in the vacuum. At the output,

one port corresponds to the transmitted portion of the probe
mode while the other port corresponds to the portion of the
probe mode that is lost to the environment and is undetectable.
The unitary operation performed by the BS is given by the
operator [35]

B̂ = ecos−1(
√

T )(â†
pâν−âpâ†

ν ), (1)

where âp (âν ) is the annihilation operator of the probe (vac-
uum) mode and T is the intensity transmission of the system.
Without loss of generality, the amplitude transmission is taken
to be real as the parameter of interest is the intensity transmis-
sion and not the phase. The same BS model is used to take
into account losses external to the system.

In estimating a parameter such as transmission, the
Cramér-Rao bound [29–31], given by the inverse of the Fisher
information F (T ),

〈�2T 〉 � 1

F (T )
(2)

provides a lower bound for the estimation uncertainty of the
parameter of interest (〈�2T 〉). In defining Eq. (2), there is a
bound given by the inverse of the classical Fisher informa-
tion, FC (T ), which is a metric for distinguishability of the
distribution of measurement results for different values of the
parameter. Thus, the so-called classical Cramér-Rao bound
is dependent on the measurement apparatus and is based on
measurement results. The classical Cramér-Rao bound can
be generalized by optimizing over all possible measurements
to maximize the classical Fisher information. This approach
leads to the so-called quantum Fisher information (QFI),
FQ(T ), which is a metric for distinguishability of the den-
sity matrix of the state after interacting with the system for
different values of the parameter. Therefore, in accordance
with Eq. (2), the QCRB states that the lowest variance in the
estimation of a parameter for a given state and system is given
by the inverse of the QFI.

It is also possible to calculate an upper bound for the QFI
that can serve to identify the optimal quantum states and thus
provide an “ultimate” bound for the estimation of transmis-
sion. Following the method introduced by Escher et al. [36],
we assume that the portion of the probing mode that leaves the
BS through the output port that is coupled to the environment
can be measured, and therefore no information, encoded in
the number of photons, is lost. While nonphysical, this as-
sumption sets an upper limit for realistic QFIs. Measuring the
number of photons leaving both output ports of the BS, we
find that the maximum QFI, Fmax(T ), for any state is given by

FC (T ) � FQ(T ) � Fmax(T ) = 〈n̂p〉r

T − T 2
, (3)

which is equal to the result found in Ref. [23]. When FQ =
Fmax the probing state acquires the maximum QFI of any
state, and when FC = FQ the implemented measurement strat-
egy is able to extract the maximum information about the
parameter of interest and represents the optimal measurement
strategy. Thus, when all three quantities are equal, the ultimate
precision limit in the estimation of T is achieved for a given
number of probing photons, 〈n̂p〉r .

Since transmission estimation scales as the inverse of the
number of probing photons, we can define an estimation
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function, �(T ) = 〈�2T 〉〈n̂p〉r , as the inverse of the QFI per
photon or, equivalently, the QCRB multiplied by the number
of probing photons. This makes it possible to discuss the
precision that can be obtained when probing a system with
a certain state independent of the number of photons used
to probe it, while still discussing the QCRB that takes into
account the number of probing photons. Below, we show that
bright squeezed states have estimation functions that approach
the one of the vTMSS and the Fock state in the limit of large
squeezing.

A. Estimation function for pure states

It has been previously shown that both the Fock state [24]
and the vTMSS [25] can saturate the maximum limit for the
QFI, Fmax(T ), and as a result are the optimal quantum states
for transmission estimation for a given number of photons.
Their estimation functions are given by

�vTMSS = �Fock = �min = T − T 2. (4)

For the Fock state, this result can be understood given that
probing with exactly N photons and measuring N − Ne pho-
tons at the output implies that exactly Ne photons were lost to
the environment. While Ne is different for each realization, the
information lost to the environment can be recovered from the
transmission due to perfect knowledge of the number of inci-
dent photons and the relation between the two output ports of
the BS from energy conservation. For the vTMSS, the fact that
photons in the two modes are always present in pairs makes it
such that any photon lost in the probe mode will have its pair
photon still present in the auxiliary mode. As such, the number
of photons lost to the environment is the same as the photon
number difference between the probe and auxiliary modes. In
fact, this property has been previously proposed and used for
the absolute calibration of the quantum efficiency of photon
counting detectors, photodiodes, and CCD cameras [37–49].
There has been some recent experimental work with heralded
single photons [26] that was able to saturate the ultimate
bound given by Eq. (4) but only over a limited transmission
range. Other recent experiments using the vTMSS [27,28]
have shown a quantum enhancement; however, they were
not able to saturate the ultimate bound due to experimental
imperfections. Overall, these results illustrate the viability of
using such quantum states of light to enhance transmission
measurements.

While the Fock state and the vTMSS have the lowest possi-
ble estimation function, currently they can only be generated
with a low mean photon number [50,51]. Thus, in practice,
even coherent states can reach a lower QCRB due to the
fact that they can be generated with a very large number of
photons that can be used to probe the system. To overcome
this limitation of the Fock state and the vTMSS, we consider
the use of bright squeezed states, both the bTMSS and the
bSMSS, which can be generated with a significantly higher
mean number of photons by seeding the parametric process
used to generate them.

We first consider the bTMSS for the case in which the
two modes are seeded with coherent states with complex
amplitude α for the probe and β for the auxiliary mode. We
calculate its QFI using the method outlined by Šafránek et al.

[52] and show in Appendix A that it is given by

F bTMSS
Q = 〈n̂p〉vac

T − T 2
+ 〈n̂p〉bright

T − T 2 + T 2sech(2s)
, (5)

where 〈n̂p〉vac = sinh2(s) is the number of spontaneously
generated photons and 〈n̂p〉bright = |α|2 cosh2(s) +
|β|2 sinh2(s) − |α||β| cos(�) sinh(2s) is the number of
stimulated photons in the probe mode. The s parameter
[53,54] characterizes the rate of photon pair generation,
� takes into account the phases of the squeezing process
and input seed coherent states, and |α|2 (|β|2) is the mean
number of seed photons for the probe (auxiliary) mode.
Throughout the paper, we use the approach introduced by
Yuen [55] of applying the squeezing unitary on the input seed
coherent states. Such an approach more closely resembles the
experimental approach of using coherent states to seed the
parametric process that generates the bright squeezed states.

In the bright seed limit in which the stimulated term domi-
nates the QFI we can drop the first term on the right-hand side
of Eq. (5), such that the bTMSS estimation function takes the
form

�bTMSS = T − T 2[1 − sech(2s)]. (6)

In this limit, the number of probing photons is given by
〈n̂p〉r

∼= 〈n̂p〉bright, as we can ignore the contribution of the
spontaneously generated photons. As can be seen from
Eq. (6), as s increases �bTMSS → �min, which means that for
the same number of photons the bTMSS tends towards the
ultimate limit given by the Fock state, as shown in Fig. 2(a).
With experimentally realizable levels of squeezing, with s ≈ 2
[56], the bTMSS does not reach the same estimation function
as the Fock state and the vTMSS, though the difference be-
tween the estimation functions is small, as seen in Fig. 2(c).
The bTMSS, however, can be generated with powers sig-
nificantly higher than those of either the Fock state or the
vTMSS, with ∼1 mW of power for the probing beam [54].
This translates to a photon flux of ∼1015 photons/s at 800 nm,
a level Fock states [57] and even bright vTMSSs [50,51]
cannot reach. Thus, if we take into account the maximum
number of probing photons that can be generated in practice,
the bTMSS has a QCRB many orders of magnitude smaller
than that of either the Fock state or the vTMSS.

Next, we consider the bSMSS, for which all the photons
generated by the source are used to probe the system. We
again use the technique from Šafránek et al. [52] and follow a
procedure analogous to the one shown in Appendix A to show
that the estimation function takes the form

�bSMSS = T − T 2(1 − e−2s) (7)

when the system is probed with an amplitude-squeezed
bSMSS. This equation matches the results from Ref. [23],
which treats the general case of a single-mode Gaussian state.

As can be seen in Fig. 2, the bSMSS has an estimation
function lower than that of the bTMSS. Thus, in theory the
bSMSS would be a better option for transmission estimation,
as it makes better use of quantum resources. In practice,
however, the presence of an auxiliary mode makes it possible
to perform differential measurements that can cancel classi-
cal technical noise that would otherwise limit or completely
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FIG. 2. Estimation function as a function of transmission for
(a) the bTMSS and (b) the bSMSS for different values of s: 0 (blue
dotted line), 0.5 (red short-dashed line), 1.0 (yellow dot-dashed line),
1.5 (purple long-dashed line), and 2.0 (green solid line). As can be
seen, the bSMSS estimation function is always lower than the one for
the bTMSS for the same value of s. (c) Comparison of the estimation
functions for the coherent state (blue dotted line), the bTMSS (red
short-dashed line), the bSMSS (green long-dashed line), and the
Fock state and the vTMSS (purple solid line) for an s value of 2
for the bright squeezed states. Note that the estimation function for
the vTMSS is independent of s. The bright squeezed state estimation
functions are close to the ultimate limit established by the Fock state
and the vTMSS and much lower than the one for the coherent state.

inhibit any quantum enhancement. Therefore, careful consid-
erations of the experimental limitations need to be made when
deciding between the use of a bSMSS or a bTMSS.

In the limit in which the squeezing parameter s tends to
zero, the estimation functions for the bTMSS and the bSMSS
become the same as the one for the coherent state, as would
be expected, that is,

�bTMSS

�bSMSS

}
⇒

s→0
�Coh = T . (8)

Thus, the estimation function for the coherent state scales
linearly with transmission in the same way as the intensity
variance of this shot-noise limited state.

As can be seen in Fig. 2, both the bTMSS and the bSMSS
are able to obtain a very significant quantum enhancement for
the same number of probing photons for large transmission in
the limit of large squeezing. As the transmission of the system
decreases, the estimation function of all quantum states tend
to the one of the coherent state. This is to be expected, as any
state tends to a coherent state in the presence of losses due to
the vacuum that couples in through one of the input ports of
the BS. Thus, in the limit of low transmission, the noise will
be dominated by the vacuum noise.

B. QCRB for mixed states

For realistic operational conditions, it is difficult to gen-
erate a pure optical quantum state, propagate it without loss
to the system, and then perfectly detect it. It is therefore
important to consider the impact of these imperfections. Here,
we consider the case in which it is possible to generate a
pure state and any mixedness of the state results from a loss
mechanism that can be modeled as a BS.

To take into account such sources of losses external to the
system of interest, the probe mode is transmitted through a
BS before and after the system with intensity transmissions
Tp and ηp, respectively, while the auxiliary mode is transmit-
ted through a BS with intensity transmission ηa, as shown
in Fig. 1. In the presence of these external losses, we still
consider the resources to be given by the number of photons
incident on the system of interest, such that 〈n̂p〉r = Tp〈n̂p〉0,
where 〈n̂p〉0 is the number of probe photons generated by
the source. The losses after the system for the probe and the
total losses for the auxiliary mode make it possible to take
into account additional optical losses as well as the effect of
an imperfect detector, both of which will lead to the loss of
information.

We show in Appendix B that once we take these loss
mechanisms into account, the estimation functions take the
following forms:

�Coh = T

ηp
, (9)

�bTMSS = T

ηp
− T 2TpHa[1 − sech(2s)], (10)

�bSMSS = T

ηp
− T 2Tp(1 − e−2s), (11)

�Fock = T

ηp
− T 2Tp, (12)

where Ha is given by

Ha = (2ηa − 1)[1 + 2 sinh2(s)]

1 + 2ηa sinh2(s)
. (13)

Note that the effects of losses for the auxiliary mode are all
contained in Ha, such that when the auxiliary mode is per-
fectly detected, ηa = 1, Ha = 1. At 50% loss of the auxiliary
mode, Ha = 0 and the bTMSS estimation function is the same
as the coherent state estimation function. As the loss increases
above 50%, Ha becomes negative and the second term on the
right-hand side of Eq. (10) changes sign, which leads to an
estimation function larger than the one for a coherent state.
Thus, low loss of the auxiliary mode is needed in order to
obtain a quantum enhancement with the bTMSS. As can be
seen from these equations, while the bTMSS estimation func-
tion has the same relation to losses of the probing beam as the
single-mode states, it is further degraded by losses of the aux-
iliary mode through Ha. This, for example, makes the bTMSS
more susceptible to detection efficiencies than the bSMSS.

The linear term on the right-hand side of the estimation
functions for the states considered is the same for all of them
and is the only term affected by probe losses after the system.
As can be seen from Eq. (9), this term is the classical limit
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FIG. 3. Effect of losses before the system on the estimation func-
tion for the Fock state (solid lines), bSMSS (long-dashed lines), and
bTMSS (short-dashed lines) with ηa = ηp = 0.98. We consider Tp of
1 (black lines), 0.90 (yellow lines), and 0.80 (blue lines). A squeezing
parameter of s = 2 is used for the squeezed states.

for estimating transmission. When photons are lost after the
system the QFI they carry is also lost, which leads to an
increased variance in the transmission estimation. As can be
seen from the equations above, the quadratic term depends on
the intensity noise or intensity correlations of the overall state
that is considered.

To study the effect of using a mixed state to probe the
system, in Fig. 3 we compare the estimation functions for the
Fock state, the bSMSS, and the bTMSS for different losses on
the probe before interacting with the system, Tp. We consider
the case in which the only loss after probing the system and
for the auxiliary mode is due to the quantum efficiency of the
photodiodes, which is taken to be the same for both of them.
The effect of losses before the system on the estimation
function is more significant for higher transmissions of the
system, T , due to the larger quantum enhancement that can be
achieved in this limit. This is a result of the quadratic term,
which gives the quantum enhancement, decreasing linearly
with presystem transmission, Tp. This can be understood by
considering that the intensity variance of the quantum states
tends towards a Poissonian distribution, same as the statistics
of a coherent state, as losses increase. Thus, as the transmis-
sion before the sample tends to zero, the state tends towards a
coherent state and the quadratic term tends to zero.

III. MEASUREMENTS THAT SATURATE THE QCRB

While the QCRB provides a fundamental limit to the sen-
sitivity that can be achieved for a given quantum state, it
does not provide a means to identify a measurement that
can saturate it. Finding such measurements is nontrivial and,
in general, may not be physically implementable. Here we
show that for the bright squeezed states there exists a physical
measurement that saturates the QCRB, one that can be easily
implemented with current technology.

We show that the Fock state, the amplitude-squeezed
bSMSS, and the coherent state QCRBs can all be saturated
by an intensity measurement, consistent with previous results
for photon counting with Fock states [24]. This measurement
strategy, shown in the top diagram of Fig. 4, consists of a
photodiode (or photon counting detector for Fock states) used
to measure the number of photons in the probe mode. As
shown in Appendix C, when both the system and the external
losses are taken into account, the variance in intensity (photon

Optimal Intensity Difference Measurement

Intensity Measurement

Probe

Probe

Auxiliary

FIG. 4. Measurements that saturate the QCRB for the coherent,
bSMSS, and Fock state (top) and the bTMSS (bottom). The top
diagram corresponds to an intensity measurement while the bottom
one corresponds to the optimal intensity difference measurement.
The optimal intensity difference measurement has electronic gain,
g � 0, on the auxiliary mode detection as a parameter to maximize
the cancellation of the probe mode fluctuations after subtraction of
the two modes. If the auxiliary mode is not correlated to the probe
mode, the optimal intensity difference measurement simplifies to the
intensity measurement.

number) with such a measurement strategy takes the form

〈�2n̂p〉= (T Tpηp)2〈�2n̂p〉0 + T Tpηp(1 − T Tpηp)〈n̂p〉0, (14)

where 〈�2n̂p〉0 and 〈n̂p〉0 are the variance and the mean num-
ber of photons at the output of the source, respectively. As
expected, as the total transmission decreases, the states tend
towards a coherent state for which the variance is equal to
the mean. The uncertainty in transmission estimation for the
intensity measurement can then be obtained through error
propagation to be

〈�2T 〉 = T

ηp〈n̂p〉r

− T 2Tp

〈n̂p〉r

(
1 − 〈�2n̂p〉0

〈n̂p〉0

)
, (15)

where

〈�2n̂p〉0

〈n̂p〉0

=
⎧⎨
⎩

1, coherent state,
e−2s, bSMSS,
0, Fock state,

(16)

is the Fano factor for each state. As can be seen by these
results, intensity measurements can saturate the transmission
estimation QCRB for coherent states, the bSMSS, and Fock
states even in the presence of losses external to the system of
interest.

We next consider the case of the two-mode state, the
bTMSS. We show that for this state the transmission estima-
tion QCRB can be saturated by optimized intensity difference
measurements, n̂g

− = n̂p − gn̂a, shown in the bottom diagram
of Fig. 4. For this measurement strategy an electronic gain,
g � 0, is used after the auxiliary mode photodiode to mini-
mize the measured noise by optimizing the cancellation of the
probe mode power fluctuations. While in principle it would
be possible to instead optically attenuate the auxiliary mode,
as it effectively scales the measured fluctuations of the aux-
iliary mode, it would further reduce the correlations between
the probe and auxiliary modes. Optical loss would randomly
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remove photons from the auxiliary mode, some of which
could be correlated to photons in the probe mode. On the
other hand, adjusting the gain electronically does not lead
to additional loss of correlations; however, it still makes it
possible to scale, up or down, the measured auxiliary mode
fluctuations to minimize the intensity difference noise. As we
show, the optimized intensity difference can always saturate
the bound for the case in which the source used to generate the
bTMSS is seeded only with the probe beam (α 	= 0, β = 0).
For the case in which both modes are seeded (α 	= 0, β 	= 0),
the bound is only saturated for a phase of the parametric
process that minimizes the variance of the optimized intensity
difference measurement, that is, cos(�) = −1.

Following the same procedure as the one used in
Appendix C, we shown that once the system and external
losses are taken into account, the intensity difference measure-
ment can be written as

〈�2n̂g
−〉 = 〈�2n̂p〉 + g2〈�2n̂a〉 − 2gCov(n̂p, n̂a) (17)

= (T Tpηp)2
〈
�2n̂p

〉
0 + T Tpηp(1 − T Tpηp)〈n̂p〉0

+ g2
[
η2

a〈�2n̂a〉0 + ηa(1 − ηa)〈n̂a〉0

]
− 2gT Tpηpηa(〈n̂pn̂a〉0 − 〈n̂p〉0〈n̂a〉0), (18)

where Cov(n̂p, n̂a) is the covariance between the photon num-
bers in the probe and auxiliary modes and the subscript 0
indicates the generated state. Equation (18) is minimized
when the electronic gain is set to

gopt = T Tpηp
〈n̂pn̂a〉0 − 〈n̂p〉0〈n̂a〉0

ηa〈�2n̂a〉0 + (1 − ηa)〈n̂a〉0
. (19)

The mean and the variance of the optimized intensity differ-
ence measurement are then given by

〈n̂gopt

− 〉 = T Tpηp〈n̂p〉0 − goptηa〈n̂a〉0, (20)

〈�2n̂
gopt

− 〉 = (T Tpηp)2〈�2n̂p〉0

+ T Tpηp(1 − T Tpηp)〈n̂p〉0

− (T Tpηp)2 (〈n̂pn̂a〉0 − 〈n̂p〉0〈n̂a〉0)2

ηa〈�2n̂a〉0 + (1 − ηa)〈n̂a〉0
. (21)

Error propagation can then be used to find the uncertainty
in transmission estimation with the optimized intensity differ-
ence measurement, which is given by

〈�2T 〉 = 〈�2n̂
gopt

− 〉∣∣ ∂ T ηp〈n̂p〉r
∂T

∣∣2

= T

ηp〈n̂p〉r

− T 2Tp

〈n̂p〉r

Ha[1 − sech(2s)]. (22)

Comparing Eq. (22) with Eq. (10), it can be seen that the opti-
mized intensity difference measurement saturates the bTMSS
QCRB even in the presence of losses external to the system of
interest. In the derivation of Eq. (22), we take into account that
the partial derivative of T ηp〈n̂p〉r with respect to T is the same
as the partial derivative of 〈n̂gopt

− 〉. This is due to the auxiliary
mode not probing the system and the optimal gain being a
parameter that is set to minimize the noise around a given

transmission level and does not change when performing a
measurement.

IV. CONCLUSION

In conclusion, we have shown that bright quantum states
of light, such as the bTMSS and the bSMSS, have a QFI per
photon that approaches the ultimate bound for transmission
estimation, given by the Fock state and the vTMSS, in the
limit of high squeezing. As a result, given currently available
squeezing levels of s = 2, for a system with T = 99% it
would take only ∼4.6 (∼2.8) times as many photons for a
bTMSS (bSMSS) to obtain the same absolute precision as
the Fock state while it would take 100 times more photons
for a coherent state. Given that the bright quantum states we
consider can be generated with a mean number of photons
significantly higher that either the Fock state or the vTMSS,
they have a QCRB that can be many orders of magnitude
lower while still offering a significant quantum advantage over
a coherent state.

Additionally, we presented the effects of losses external to
the system under study for both the probe and the auxiliary
modes. External losses in the probe mode reduce the degree
of quantum enhancement for all the states discussed. As ex-
pected, the estimation functions of all states tend towards the
one of a coherent state as external losses previous to the sys-
tem increase given that the probing state approaches a coher-
ent state in this limit. For the bTMSS, losses in the auxiliary
mode also degrade the degree of quantum enhancement, with
losses over 50% causing the bTMSS estimation function to be
higher than the one for the coherent state due to the additional
loss of correlation between the probe and auxiliary modes.

Furthermore, we have shown that intensity measurements
and optimal intensity difference measurements saturate the
QCRB for the bSMSS and the bTMSS, respectively, even
in the presence of external losses. Such measurements can
easily be implemented with current technology and thus offer
a path for preforming transmission estimation at the QCRB.
Given the range of applications for which transmission mea-
surements are needed, the results presented pave the way
to surpass the classical state-of-the-art for real-life practical
applications where there is a limit to the maximum power that
can be used to probe a system.
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APPENDIX A: QFI FOR PURE SQUEEZED STATES

Following the technique outlined in Šafránek et al. [52],
Gaussian states can be fully described by their displacement
vector, 
d , and their covariance matrix, σ , which can be written

052603-6



TRANSMISSION ESTIMATION AT THE CRAMÉR-RAO … PHYSICAL REVIEW A 102, 052603 (2020)

in complex form as


d = Tr[ρ 
̂A ], (A1)

σi, j = Tr[ρ{�Âi,�Â†
j}] (A2)

= 2Tr[ρ(ÂiÂ
†
j + Â†

j Âi )] − 2did j, (A3)

where 
̂A = (â1, â2, . . . , ân, â†
1, â†

2, . . . , â†
n)T, �Âi =

Âi − 〈Âi〉, n is the number of modes, âi (â†
i ) is the

annihilation (creation) operator for the ith mode, {·, ·} is
the anticommutation relation, and ρ is the density matrix.
Here, we limit the discussion to the case of two modes, the
probe mode, 1 → p, and the auxiliary mode, 2 → a. We work
in the Heisenberg picture and take advantage of the following
relations:

Ŝ†
p,aâpŜp,a = âp cosh(s) − â†

aeiθ sinh(s), (A4)

Ŝ†
p,aâaŜp,a = âa cosh(s) − â†

peiθ sinh(s), (A5)

B̂†âpB̂ =
√

T âp + √
1 − T âν, (A6)

D̂†
p(α)âpD̂p(α) = âp + α, (A7)

D̂†
a(β )âaD̂a(β ) = âa + β, (A8)

where Ŝp,a is the two-mode squeezing operator acting on
the seed probe and auxiliary modes and D̂p (D̂a) is the dis-
placement operator for the probe (auxiliary) mode. For these
calculations we use the notation introduced by Yuen for gen-
erating a bTMSS, Ŝp,aD̂p(α)D̂a(β )|0, 0〉, which matches the
most common techniques of generating these states experi-
mentally with a parametric amplifier.

With the use of the above relations, we find that for the
TMSS the complex form of the covariance matrix takes the
form

σ = 2

⎛
⎜⎜⎜⎝

Cov(âp, â†
p) Cov(âp, â†

a) Cov(âp, âp) Cov(âp, âa)

Cov(âa, â†
p) Cov(âa, â†

a) Cov(âa, âp) Cov(âa, âa)

Cov(â†
p, â†

p) Cov(â†
p, â†

a) Cov(â†
p, âp) Cov(â†

p, âa)

Cov(â†
a, â†

p) Cov(â†
a, â†

a) Cov(â†
a, âp) Cov(â†

a, âa)

⎞
⎟⎟⎟⎠ (A9)

=

⎛
⎜⎜⎜⎜⎝

T cosh(2s) + 1 − T 0 0 −√
T eiθ sinh(2s)

0 cosh(2s) −√
T eiθ sinh(2s) 0

0 −√
T e-iθ sinh(2s) T cosh(2s) + 1 − T 0

−√
T e-iθ sinh(2s) 0 0 cosh(2s)

⎞
⎟⎟⎟⎟⎠, (A10)

where T is the transmission of the system, s is the amplitude of the squeezing parameter for the TMSS, and θ defines the phase
of the squeezing parameter. The diagonal terms are given by twice the covariance of the annihilation and creation operators
of the probe mode and the auxiliary mode, that is, 〈â†

i âi + âiâ
†
i 〉 − 2〈â†

i 〉〈âi〉. The nonzero off-diagonal terms are the cross
terms of the covariance of the annihilation or creation operators of each mode, 2〈âpâa〉 − 2〈âp〉〈âa〉 for the upper-right half or
2〈â†

pâ†
a〉 − 2〈â†

p〉〈â†
a〉 for the lower-left half.

Similarly, the displacement vector can be shown to take the form


d =

⎛
⎜⎜⎝

√
T [α cosh(s) − β∗eiθ sinh(s)]
β cosh(s) − α∗eiθ sinh(s)√

T [α∗ cosh(s) − βe-iθ sinh(s)]
β∗ cosh(s) − αe-iθ sinh(s)

⎞
⎟⎟⎠, (A11)

where α (β) is the complex field amplitude of the coherent state seeding of the probe (auxiliary) mode. As can be seen, 
d is
given by the mean values of the creation and annihilation operators for each mode. The coherent state seed probe (auxiliary) has
a mean photon number |α|2 (|β|2) and a phase arg(α) [arg(β )].

The QFI for a two-mode Gaussian state can then be calculated from the covariance matrix and the displacement vector
according to

FQ(T ) = 1

2(|| − 1)

{
||Tr[(-1̇)2]

+
√

|I + 2|Tr
[
((I + 2)-1̇)2

] + 4
(
λ2

1 − λ2
2

)( λ̇2
2

λ4
2 − 1

− λ̇2
1

λ4
1 − 1

)}
+ 2 
̇d†σ -1 
̇d, (A12)

where | · | is the determinant, I is the 4 × 4 identity matrix,  = kσ is the symplectic form of the covariance matrix, k =
diag(1, 1,−1,−1), ̇ is the elementwise derivative with respect to T , and λi are the symplectic eigenvalues of . For each
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symplectic eigenvalue λi there exists another eigenvalue −λi, which is why Eq. (A12) only uses two eigenvalues. For our case,
the positive symplectic eigenvalues for the TMSS can be calculated to be

λ1 = 1, (A13)

λ2 = T + (1 − T ) cosh(2s). (A14)

Since λ1 = 1, the derivative term λ̇2
1 / (λ4

1 − 1) is set to zero and in general a correction factor would need to be added. However,
the correction factor is zero in our case.

Using Eq. (A12) we show the QFI takes the form

F TMSS
Q = sinh2(s)

T − T 2
+ |α|2 cosh2(s) + |β|2 sinh2(s) − |α||β| cos(�) sinh(2s)

T − T 2 + T 2sech(2s)
(A15)

= 〈n̂p〉vac

T − T 2
+ 〈n̂p〉bright

T − T 2 + T 2sech(2s)
, (A16)

where � = θ − arg(α) − arg(β ) is the phase of the para-
metric process and sets which quadratures are squeezed or
antisqueezed. Thus, the phase of the QFI only depends on
a single phase that is a linear combination of the squeez-
ing phase and the phases of the input seeds, if both modes
are seeded. As can be seen, the QFI is maximized for the
double-seeded case when cos(�) = −1, which corresponds
to the phase that minimizes the intensity difference noise. The
vacuum contribution in the QFI results from the first three
terms in Eq. (A12), while the bright contribution in the QFI
results from the fourth term, which deals with displacement.

In the main text we consider the limit in which the stimu-
lated or bright term, 〈n̂p〉bright, dominates over the spontaneous
one, 〈n̂p〉vac. This happens when

〈n̂p〉bright � [1 − T + T sech(2s)]

1 − T
〈n̂p〉vac (A17)

� 〈n̂p〉vac + T sech(2s)

1 − T
〈n̂p〉vac. (A18)

For T < 50%, the first term on the right-hand side of
Eq. (A18) dominates and the bright limit is reached when
there are more photons generated from seeding than spon-
taneously generated. For T > 90% the second term can be
an order of magnitude higher than the first, and as T →
100%, this term dominates and sets the bright limit. For large
squeezing, taking into account that 〈n̂p〉vac = sinh2(s), we
have that

lim
s→∞ sech(2s) sinh2(s) → 1

2 , (A19)

a nonzero finite value such that the bright limit for transmis-
sions near 1 can be approximated as

〈n̂p〉bright � 1

2

( T

1 − T

)
. (A20)

This shows that the higher the transmission is, the more seed
probe photons are needed for the bright term to dominate.

The same approach for calculating the QFI can be used
for the SMSS if we consider the auxiliary mode to be an
uncorrelated coherent state. The lack of correlation between
the states will make it such that the coherent state drops out
of the calculations and does not contribute to the QFI. In this

case the covariance matrix and the displacement vector are as
follows:

σ =

⎛
⎜⎜⎝

T cosh(2s) + 1 − T 0 −Teiθ sinh(2s) 0
0 1 0 0

−Te-iθ sinh(2s) 0 T cosh(2s) + 1 − T 0
0 0 0 1

⎞
⎟⎟⎠,

(A21)


d =

⎛
⎜⎜⎝

√
T [α cosh(s) − α∗eiθ sinh(s)]

β√
T [α∗ cosh(s) − αe-iθ sinh(s)]

β∗

⎞
⎟⎟⎠. (A22)

If we again specialize to the contribution from the bright
portion, the QFI for the bSMSS can be shown to take the form

FQ(T ) = 2 
̇d†σ−1 
̇d (A23)

= |α|2 T + (1 − T )[cosh(2s) − cos(�) sinh(2s)]

T {1 − 2T (1 − T )[1 − cosh(2s)]} ,

(A24)

where � = θ + 2 arg(α). When the bSMSS is amplitude
squeezed, cos(�) = 1, the QFI is maximized and simplifies
to

FQ(T ) = 〈np〉r

T − T 2(1 − e−2s)
, (A25)

with 〈np〉r = |α|2e−2s.
For both bright squeezed states, setting the squeezing pa-

rameter to zero returns the coherent state QFI. For the case
of the bTMSS with input seeds for both the probe mode and
the auxiliary mode, the auxiliary coherent state does not con-
tribute to the QFI, as was the case for the above calculations
for the bSMSS, and the resulting QFI corresponds to the one
of having a single coherent state probing the system.

APPENDIX B: EFFECTS OF LOSSES EXTERNAL
TO THE SYSTEM ON THE QFI

Given that Gaussian states remain Gaussian after any lin-
ear loss mechanism, the same approach as the one used
to calculate the QFI in Appendix A can be use to take
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into account external losses for the cases of the TMSS and the SMSS. After taking into account the external losses on the probe
and auxiliary modes, the TMSS covariance matrix takes the form

σ =

⎛
⎜⎜⎝

TpT ηp cosh(2s) + 1 − TpT ηp 0 0 −√
TpT ηpηaeiθ sinh(2s)

0 ηa cosh(2s) + 1 − ηa −√
TpT ηpηaeiθ sinh(2s) 0

0 −√
TpT ηpηae−iθ sinh(2s) TpT ηp cosh(2s) + 1 − TpT ηp 0

−√
TpT ηpηae−iθ sinh(2s) 0 0 ηa cosh(2s) + 1 − ηa

⎞
⎟⎟⎠,

(B1)

while the displacement vector becomes


d =

⎛
⎜⎜⎜⎝

√
TpT ηp[α cosh(s) − β∗eiθ sinh(s)]√

ηa[β cosh(s) − α∗eiθ sinh(s)]√
TpT ηp[α∗ cosh(s) − βe−iθ sinh(s)]√

ηa[β∗ cosh(s) − αe−iθ sinh(s)]

⎞
⎟⎟⎟⎠. (B2)

The transmission of the additional beam splitters used to
model losses are multiplicative and as a result do not alter the
functional form of the covariance matrix and the displacement
vector beyond the effect on the auxiliary mode, since there
was no loss originally in that mode.

The symplectic eigenvalues, however, do change due to the
additional losses and take the following forms:

λ1 = (TpT ηp − ηa) sinh2(s) + {1 − ηa + TpT ηp(2ηa − 1)

+ [ηa + TpT ηp(1 − 2ηa)] cosh(2s)

+ (TpT ηp − ηa)2 sinh4(s)}1/2, (B3)

λ2 = (TpT ηp − ηa) sinh2(s) − {1 − ηa + TpT ηp(2ηa − 1)

+ [ηa + TpT ηp(1 − 2ηa)] cosh(2s)

+ (TpT ηp − ηa)2 sinh4(s)}1/2. (B4)

As can be seen, the eigenvalues have additional terms due to
the losses in the auxiliary mode. In the limit in which there are
no losses on the auxiliary mode, the eigenvalues would be the
same as for the pure state with T → T (Tpηp).

The same approach can be used for the two Gaussian
single-mode states we consider, the SMSS and the coherent
state. In the presence of losses, the SMSS will have a covari-
ance matrix and a displacement vector similar to the ones in
Appendix A but with T → TpT ηp. The QFI for the coherent
state can once again be obtained from the QFI for the bTMSS
or the bSMSS by taking s → 0. Alternatively, it is possible
to calculate the QFI for the coherent state directly, in which
case only the fourth term on the right-hand side of Eq. (A12)
is nonzero. In this case the displacement vector would change
to take the additional losses into account while its covariance
matrix would always be of the form diag(1, 1, 1, 1).

For the Fock state a different approach needs to be taken as
it is not a Gaussian state. In this case, we can derive the lossy
QCRB from its density matrix, which takes the form

ρ
lossy
Fock =

n∑
k=0

n!

k!(n − k)!
(TpT ηp)k (1−TpT ηp)n−k|k〉〈k|, (B5)

where n is the number of photons generated. The QFI can be
calculated through the use of the following equation [31]:

F Fock
Q = 2

n∑
k,k′=0

∣∣∣〈k| ∂ρ
lossy
Fock

∂T |k′〉
∣∣∣2

ρk + ρk′
, (B6)

where ρk = 〈k|ρ lossy
Fock |k〉.

APPENDIX C: OPTIMAL MEASUREMENT
FOR A SINGLE MODE

As mentioned in the main text, intensity measurements,
or photon counting for the Fock state, can saturate the
QCRB for the considered single-mode states. The variance
for an intensity measurement is given, after writing in normal
ordering, by

〈�2n̂〉 = 〈â†â†ââ + â†â〉 − 〈â†â〉2. (C1)

Once losses, modeled as a BS, are taken into account, the
intensity variance takes the form

〈�2n̂〉 = 〈B̂†â†â†ââ + â†âB̂〉 − 〈B̂†â†âB̂〉2 (C2)

= T 2〈�2n̂〉0 + T (1 − T )〈n̂〉0, (C3)

where 〈�2n̂〉0 and 〈n̂〉0 are the variance and the mean be-
fore losses, respectively. As expected, as the transmission
decreases the intensity variance tends towards the variance of
a coherent state, 〈�2n̂〉coherent = 〈n̂〉.

For multiple sources of loss, the intensity variance takes
the form

〈�2n̂〉 = T 2
2 〈�2n̂〉T1 + T2(1 − T2)〈n̂〉T1

(C4)

= T 2
2

[
T 2

1

〈
�2n̂

〉
0 + T1(1 − T1)〈n̂〉0

]
+ T2(1 − T2)T1〈n̂〉0 (C5)

= (T2T1)2〈�2n̂〉0 + T2T1(1 − T2T1)〈n̂〉0, (C6)

where T1 is the initial transmission followed by a transmission
of T2. As expected, the variance takes the same form as the
one for as a single BS with transmission T = T1T2 as the
transmissions are multiplicative in this case.

To convert the variance in the intensity measurement to
a variance in transmission measurement, we use the error
propagation equation

〈�2T 〉 = 〈�2n̂p〉∣∣ ∂〈n̂p〉
∂T

∣∣2 , (C7)
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with an intensity variance with external losses before and after
the system of

〈�2n̂p〉 = (TpT ηp)2〈�2n̂p〉0 + TpT ηp(1 − TpT ηp)〈n̂p〉0 (C8)

and a mean photon number of

〈n̂p〉 = TpT ηp〈n̂p〉0. (C9)

Thus, the variance in the estimation of the transmission from
an intensity measurement takes the form

〈�2T 〉 = (TpT ηp)2〈�2n̂p〉0 + TpT ηp(1 − TpT ηp)〈n̂p〉0

|Tpηp〈n̂p〉0|2
,

(C10)

which can be rewritten as

〈n̂p〉r〈�2T 〉= T

ηp
− T 2Tp

(
1 − 〈�2n̂p〉0

〈n̂p〉0

)
. (C11)

As can be seen from Eq. (C11), for any single-mode state
intensity measurements result in a transmission estimation
enhancement with respect to a coherent state that depends on
the Fano factor of the probing state.

It is important to note that intensity measurements will
not saturate the QCRB for transmission estimation for any
arbitrary single-mode state. For example, the vacuum single-
mode squeezed state has a Fano factor that is twice that of a
thermal state, but in the limit of high transmissions its QCRB
approaches the ultimate limit.
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