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Quantum repeaters have been proposed as a way of extending the reach of quantum communication. First-
generation approaches use entanglement swapping to connect entangled links along a long-distance channel.
Recently, there have been proposals for first-generation quantum repeaters for continuous variables. In this
paper, we present an improved continuous-variable (CV) repeater scheme using optimal Gaussian entanglement
swapping. Our scheme uses the noiseless linear amplifier for entanglement distillation. We show that with the
simplest configuration of the noiseless linear amplifier and under the assumption of good quantum memories
and perfect sources and detectors, our scheme beats the direct transmission upper limit for shorter distances and
can offer advantages over previous CV repeater schemes.
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I. INTRODUCTION

The development of technologies according to the princi-
ples of quantum mechanics allows many promising real-world
applications. Under the umbrella term of quantum communi-
cation [1], these applications range from secure communica-
tion [2–4] and quantum state transfer [5] to enhanced quantum
sensing [6–8] and computation [9,10]. However, utilizing
these technologies over long distances remains challenging
due to fiber loss or free-space attenuation. In classical commu-
nication, this problem is solved by having repeaters stationed
at various points along the channel to amplify the signal.
This solution, that has enabled classical communication to
proceed, may not be employed for quantum communication as
redundant copies of quantum information cannot be made due
to the no-cloning theorem [11]. A more sophisticated solution
is necessary if these issues are to be overcome and we are able
to utilize the advantages of quantum communication over long
distances.

One proposed solution has come in the form of a quantum
repeater [12]. The first quantum repeater protocol from the
late 1990s used multiple rounds of entanglement swapping
[13] in order to connect entangled pairs, and share entangle-
ment between ends of a long-distance channel. Entanglement
purification [14] was also required to correct against build-
ing operation errors. Since this first proposal, there has been
significant theoretical advancement on repeater protocols and
experimental progress with repeater elements [15–17].

Currently, the majority of repeater proposals are for
discrete-variable (DV) encodings of quantum information
[15–17], where information is encoded in a finite-dimensional
basis, such as the polarization of single photons. As an al-
ternative, there are also continuous-variable (CV) encodings
of quantum information, where information is encoded in
the quadrature amplitudes. Not only do continuous-variable
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encodings of quantum information offer (in principle) easier
state generation, manipulation, and detection [18], they also
offer the possibility of compatibility with existing infrastruc-
ture [19].

In the past few years, there have been three different pro-
posals for the first generation of continuous-variable quantum
repeaters [20–22]. In this paper, we present an improvement
upon one of these previous CV quantum repeaters, the pro-
tocol presented in Ref. [20]. Like Refs. [20,22], our repeater
uses the single quantum scissor (QS) to distill CV entangled
states. Unlike Ref. [22], which uses nondeterministic non-
Gaussian entanglement swapping, our CV quantum repeater
uses Gaussian entanglement swapping with post-selection.
Our scheme utilizes a different Gaussian entanglement swap-
ping setup than Ref. [20], thus, we are able to report an
improvement in the attainable key rates. The CV repeater
scheme presented in this paper surpasses a fundamental upper
limit on quantum communication via direct transmission (the
so-called PLOB bound) [23] for a total distance of 322 km.

We emphasize that the results in this paper do not model
the effects of imperfect quantum memories, sources, or de-
tectors. While it can be expected that incorporating these
effects into our results would inevitably decrease the key
rates, the preliminary results reported here represent a useful
step towards distributing CV entanglement and implementing
continuous-variable quantum key distribution (CVQKD) over
long distances. This paper is arranged in the following way:
In Sec. II we explain the structure of our CV repeater and in
Sec. III we will present results. Finally, in Sec. IV we provide
some future directions based on our findings and conclude.

II. CV QUANTUM REPEATER

First-generation quantum repeaters are based on three core
elements: entanglement distribution, entanglement swapping,
and entanglement purification (or distillation) protocols (see
Ref. [15] for a review). In the following section, we will give
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an overview of how each of these elements will be imple-
mented in our repeater.

A. Entanglement distribution

Beginning with entanglement distribution, the entangled
resource states used in our protocol are the Gaussian two-
mode squeezed vacuum (TMSV) state:

|χ〉ab =
√

1 − χ2
∑

χn|n〉a|n〉b, (1)

where 0 < χ < 1 is the two-mode squeezing parameter. Dis-
tribution of these states (1) is performed asymmetrically [see
Fig. 1(a)] with entangled states being generated at each node
of the quantum repeater and then one mode of the entan-
gled state is passed through a lossy channel through to the
neighboring node. One mode of each of these entangled states
would be decohered by loss from transmission through the
channel while the other mode remains untouched in the same
node.

B. Entanglement distillation

In our CV repeater, entanglement distribution in the re-
peater links is followed immediately by distillation on the
entangled mode that has passed through the lossy chan-
nel. Entanglement distillation is a necessary component in
first-generation repeaters, needed to combat the decoherence
effects from channel loss and entanglement swapping op-
erations. In the scheme of Refs. [20,22] and in this work,
the noiseless linear amplifier (NLA) [25] is used to distill
the entangled states. When implemented with linear optics,
the simplest NLA comprises of a single modified QS device
[25]. The single QS implementation of the NLA has been
demonstrated experimentally [26,27], and more specifically
entanglement distillation on TMSV states decohered by loss
has been demonstrated with a similar device [28].

C. Entanglement swapping

Following entanglement distribution and distillation, our
CV repeater will use Gaussian entanglement swapping [29] in
order to connect the entangled repeater links. We employ the
optimal Gaussian entanglement swapping protocol described
in Ref. [24]. This involves sending classical signals to both
ends of the channel and conducting displacements on both
modes [see Fig. 1(c)]. This is unlike other protocols (including
CV teleportation) where classical communication and dis-
placements are only performed on one mode. In this way,
two pure Gaussian entangled states can be swapped and the
resulting entangled state remains pure. In general, for any two
Gaussian states, entanglement swapping in this way is optimal
[24].

The use of the optimal Gaussian entanglement swapping
scheme of Ref. [24] represents the main difference between
this work and the work in Ref. [20] which used CV telepor-
tation. In this work we also consider the use of post-selection
based on the results of the dual HD in the swapping scheme.
Qualitatively, this means that based on the results of the
dual HD some results will be rejected and some will be
accepted, thus entanglement swapping in our repeater is not

FIG. 1. Components of the CV quantum repeater. (a) Entan-
glement distribution in the CV quantum repeater. One mode of a
TMSV state is sent through a lossy channel to a neighboring re-
peater node. The other mode of the entangled state remains in the
same node. (b) The CV repeater uses the NLA to distill entangled
TMSV states. The simplest linear optics construction of the NLA
is pictured here consisting of a single quantum scissor (QS). The
input is combined with an ancilla photon which has passed through
a beam splitter of tunable ratio ξ , this is related to the gain of the
NLA via g = √

(1 − ξ )/ξ . The combined modes are detected and
success is heralded when a single photon is detected at one output and
none at the other. (c) Gaussian entanglement swapping protocol from
Ref. [24]. Modes of two independent TMSV states are combined
and input into a dual homodyne detection (dual HD). The results of
the detection are sent in both directions to both output modes where
displacements are performed accordingly.

deterministic. Post-selection in our scheme is necessary be-
cause the truncation due to the single quantum scissor
deteriorates the raw key and adds non-Gaussianity. This effect
is more pronounced for large measurement outcomes and
thus we use post-selection to filter the measurement results,
accepting results that are close to 0.

052425-2



QUANTUM REPEATER FOR CONTINUOUS-VARIABLE … PHYSICAL REVIEW A 102, 052425 (2020)

FIG. 2. Simplest implementation of an improved first-generation CV repeater. The entangled resource states used are TMSV states [given
by (1)]. Entanglement distillation is performed by a QS. Once successful distillation has been heralded, the distilled state is stored in a quantum
memory (QM) where it will wait for the neighboring quantum scissor to succeed. Gaussian entanglement swapping is conducted by a dual HD
of the two modes at the repeater node, if the outcome of the dual HD is within the accepted post-selection range around zero, this is followed
by classical communication of the results of the detection being sent to Alice and Bob and both modes are then displaced accordingly (D̂).
This configuration is asymmetric as the two inputs to the dual HD are not the same. This setup requires one source to be placed with Alice and
a quantum scissor to be placed at the repeater node.

III. RESULTS

A. Single-node repeater

The simplest implementation of our improved CV repeater
protocol combing all the aforementioned elements is shown in
Fig. 2. It is formed using a single repeater node in the center of
the channel with NLAs implemented in their simplest configu-
ration (consisting of a single quantum scissor). Entanglement
distribution is performed by sending one mode of a TMSV
state (1) through the channel between the single repeater node
and ends of the channel. The mode of the entangled state that
had passed through the lossy channel is then distilled using
the single quantum scissor.

While the quantum scissor operation is nondeterminis-
tic, both entangled states are independent at this point in
the protocol, therefore, both quantum scissors can operate
independently and simultaneously. When a quantum scissor
heralds successful operation, we assume high-quality quan-
tum memories are available to store the distilled entanglement
until the other quantum scissor is successful. After both en-
tangled states have been distilled, they are then swapped by
mixing the two modes at the repeater node and conducting a
dual homodyne detection. For the results to be accepted, the
measurement outcome of the dual HD results must fall within
a certain radius around zero (see Appendix A for details). If
this is successful, the results of this detection are then sent
to Alice and Bob and a displacement is performed on each
mode based on the results of the detection which completes
the entanglement swapping operation.

Initially, we consider the maximum entanglement that can
be distributed via our repeater by evaluating the entanglement
of formation (EOF) [30–32] between the end stations when
post-selection of the HD results lying very close to zero are
accepted. This result is given in Fig. 3 where we show the
entanglement of formation between end stations of our CV
repeater using TMSV sources of fixed squeezing χ = 0.3. We
compare this to the EOF of an unphysical, infinitely squeezed
TMSV state distributed through the same loss. Each solid
line in Fig. 3 shows the highest EOF achievable for various
maximum NLA gains. At shorter distances, EOF maximizes
for lower gains. It can be seen on Fig. 3 that there is a
turning point on each solid line. This turning point marks
the distance beyond which maximum EOF is achieved by the
maximum allowable NLA gain. For maximum gains of 5 or
higher, the EOF surpasses the direct transmission EOF at a

distance of 70 km. While the red line for g � 4 does produce
an improvement over the direct transmission EOF, this occurs
for a total channel distance of 75 km. Additionally, for NLA
gains of g � 3 we do not observe an improvement beyond
the direct transmission EOF. Note that in Fig. 3 and through-
out this paper we have considered optical fiber with loss of
0.2 dB/km.

As a second figure of merit, which importantly incorpo-
rates the probability of success, we consider the secret key rate
achievable by the CV quantum repeater. We use the secret key
rate as it ensures the results are comparable with previous CV
repeater proposals [21,33]. The secret key rate of the scheme
shown in Fig. 2 is able to surpass the absolute maximum secret
key rate for direct transmission (shown by the dashed, gray

FIG. 3. Entanglement of formation of the CV repeater. The solid,
colored lines show the entanglement of formation between ends of
the channel using the single-node CV repeater with TMSV state
sources of squeezing χ = 0.3. Each line shows the optimal EOF
attainable when the NLA gain has been restricted to some maxi-
mum value (each line has been labeled with this maximum gain).
The dashed, dark gray line is the entanglement of formation of an
unphysical, infinitely squeezed TMSV state [Eq. (1) with χ → 1]
transmitted through an optical fiber channel of the same distance.
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FIG. 4. Secret key rate of the single-node repeater shown in
Fig. 2 using single quantum scissors. The blue line shows the key
rate for a heterodyne-based QKD protocol and post-selection cutoff
at γmax = 0.4. The red line shows the same result except with a
homodyne-based QKD protocol and a larger post-selection cutoff
of γmax = 0.5. The dashed, dark gray line is the key rate (using a
homodyne-based CVQKD protocol) for direct transmission through
the channel using optimized, finite squeezing (χ < 1). Reconcilia-
tion efficiency for the homodyne, heterodyne, and direct transmission
lines has been set to 95%. The dashed, light gray line is a fundamen-
tal upper bound on the maximum secret key rate that is achievable
using direct transmission without a quantum repeater (PLOB bound)
[23].

line on Fig. 4 and referred to as the PLOB bound [23]). The
secret key rate presented in Fig. 4 is defined as

Secret key rate = K × Rrep, (2)

where K is the raw key rate calculated from the covariance
matrix of the output state (see details in Appendix A), and
Rrep is the rate of successful operation of the entire repeater
which depends on the success probability of the QS and post-
selection. The rate Rrep for successful operation of the CV
repeater for 2n links is calculated via

Rrep = 1

Zn(PNLA)
×

n−1∏
i=0

1

Zi(PPSi )
, (3)

where PPSi is the probability of successful post-selection in the
various entanglement swapping rounds when 2i swaps need
to occur successfully for the repeater protocol to proceed.
Here, i = n − 1 corresponds to the first round of entanglement
swapping with 2n−1 swaps, and i = 0 corresponds to the final
swap. The function Zn(P) is the average number of steps to
generate successful outcomes in 2n probabilistic operations,
each with success probability P [34]:

Zn(P) =
2n∑

j=1

(
2n

j

)
(−1) j+1

1 − (1 − P) j . (4)

For the single-node results in Fig. 4, the repeater rate (3) is
simply

Rrep = 1

Z1(PNLA)
× 1

Z0(PPS0).
(5)

In Appendix A, we give details on how we calculate the en-
tangled output state. Using this entangled state, we calculated
key rates for two entanglement-based CV-QKD protocols, one
where Alice and Bob both perform heterodyne detection [35]
and the other where they both perform homodyne detection
[36] to their own entangled modes to obtain raw key. These
are shown on Fig. 4 by the blue and red lines, respectively.
The key rate shown is for reverse reconciliation, where Bob is
the reference for reconciliation which is favorable in high-loss
regimes. Optimization of the normalized rate has been per-
formed at each point over both gain of the QS’s and strength
of the TMSV state sources. Note that success probability of
the QS decreases as gain is increased. Optimal performance is
achieved for squeezing of 0.31 < χopt < 0.36.

In Fig. 4, the key rates for the homodyne-based CVQKD
protocol outperform the heterodyne protocol at all distances.
This is because positive key can be achieved using the
homodyne-based CVQKD protocol for larger post-selection
cutoff regions. Larger cutoff regions correspond to a bigger
post-selection success probability and thus increase the over-
all key rate. For the results in Fig. 4, the heterodyne protocol
uses a post-selection cutoff of γmax = 0.4 which was found
to be roughly optimal. However, the homodyne result uses a
larger cutoff of γmax = 0.5 and produces a higher key rate.

Figure 4 shows that the the PLOB bound is beaten for
a total channel distance of 322 km. The repeater is able to
surpass the direct transmission key rate at 305 km. This repre-
sents significant improvement upon single-node operation of
the CV repeater in Ref. [20] which uses CV teleportation and
beats the PLOB bound for distances above 500 km [33]. We
emphasize these distances are total channel distances, mean-
ing the point at which the protocol beats direct transmission,
305 km, corresponds to 152.5 km of optic fiber between Alice
and the node (and between Bob and the node).

B. Multinode repeater with nested swapping

In order to use this CV quantum repeater over long dis-
tances, more nodes along the channel are required as well
as more entanglement swapping operations to connect the
entangled links. To illustrate how this would proceed, see
Fig. 5 with four links of the repeater connected via three
repeater nodes. The protocol in Fig. 5 is just two copies of
the asymmetric entanglement swapping protocol in Fig. 2
connected via another Gaussian entanglement swapping with
post-selection.

For even longer distances and more repeater nodes, nest-
ing proceeds in this way, where the output of two identical
and independent copies of the protocol in Fig. 5 would be
connected within another entanglement swapping operation.
It is important to note that our repeater does not use nested
entanglement distillation, meaning distillation occurs after en-
tanglement distribution and not at any time after. Structuring
the repeater in this way has an extremely favorable effect on
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FIG. 5. Four links of the CV quantum repeater using one level of nested swapping. By comparison with Fig. 2, it can be seen that two
independent implementations of the two-link (single-node) CV repeater are connected via nesting within another Gaussian entanglement
swapping protocol [Fig. 1(c)]. Quantum memories are required to hold the distilled entangled states until all quantum scissors are successful,
then deterministic, nested entanglement swapping can proceed.

the repeater rates, as it lowers the number of probabilistic
operations occurring within the protocol.

Again, we initially study the entanglement that may be
distributed in this way. Like Fig. 3, the results in Fig. 6 show
the entanglement that may be distributed between end stations
of the CV repeater when results lying very close to 0 are
accepted. While we showed the effect of increasing gain on
EOF in the results in Fig. 3, for a fair multinode comparison
we restrict all NLA gains to the same maximum value in
Fig. 6; as an example, we use g � 6. As expected, increasing
the maximum NLA gain results in a larger distance that en-
tanglement may be distributed. However, even with NLA gain
restricted to g � 6, Fig. 6 shows how our CV repeater may
be used to distribute entanglement hundreds of kilometers
beyond what is achievable using direct transmission with an
unphysical, infinitely squeezed source.

FIG. 6. Entanglement of formation of the CV quantum repeater
for operation with two and more links. All solid blue lines show the
EOF between end stations of the CV repeater for various numbers of
repeater links (labeled). Like Fig. 3, these results are achieved when
post-selection of homodyne results lying close to 0 are accepted. The
CV repeater uses an optimized NLA gain limited to g � 6 and TMSV
sources of squeezing χ = 0.3. The dashed, dark gray line is the EOF
of an infinitely squeezed TMSV state distributed through an optical
fiber channel of the same total distance.

We then consider how CV repeater performance scales
with distance in the use of CVQKD. In Fig. 7, we give an
upper bound on the secret key rate of our CV quantum re-
peater and show how it changes with more repeater nodes.
Determining the actual output state of the multinode CV re-
peater is intractable because it involves integrating over all
dual homodyne outcomes γ . However, an upper bound on the
raw secret key rate K can be calculated from the ideal (γ = 0)
case, multiplied by the realistic rate of successful operation of
the entire repeater Rrep, determined numerically. In the case
of two links, where the upper bound and the exact numerical
result can be compared, we find the two results are close
(see Appendix B 2). Given the favorable performance of our
repeater with the homodyne-based CVQKD protocol in Fig. 4,
we present results in Fig. 7 focusing only on performance
with the homodyne-based protocol. The repeater rate Rrep was
obtained via (3) with post-selection probabilities calculated
numerically and the post-selection cutoff is fixed at all in-
stances to γmax = 0.5 (see details in Appendix B). For smaller

FIG. 7. Upper bound on key rates of the CV quantum repeater.
The solid, blue lines represent different numbers of repeater nodes
(repeater links) used along the channel, each line is labeled with the
number of links. Post-selection cutoff has been set to γmax = 0.5.
The CV repeater rates shown are for a homodyne-based CVQKD
protocol and assume a reconciliation efficiency of 95%. The dashed,
light gray line is the PLOB bound [23].
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post-selection cutoffs, the output state yields a higher raw
key rate due to higher correlations, however, it comes at the
expense of a lower probability of successful post-selection. In
Appendix B 1, we also provide a lower bound on the secret
key rate of the CV quantum repeater.

IV. CONCLUSION

In summary, we have presented here a scheme for a CV
repeater. We emphasize our approach here is different to that
of Ref. [20] as we focus on distribution of CV entangle-
ment, rather than preparing an improved channel. We have
shown here that even with reasonably small NLA gains g � 6,
our repeater can distribute entanglement hundreds of kilome-
ters beyond what is achievable with an unphysical, infinitely
squeezed TMSV state via direct transmission. Additionally,
we have shown that when these distributed entangled states
are used for CVQKD, we are able to improve upon the rates
achieved from a previous CV repeater in the literature [20].
In our view, this improvement is attributed to the use of the
optimal Gaussian entanglement swapping protocol described
in Ref. [24] in conjunction with post-selection. Despite the
entanglement swapping being nondeterministic due to the use
of post-selection, we have found here that we can indeed
achieve an improvement.

While our CVQKD analysis incorporates nonideal recon-
ciliation efficiency, it is idealized in all other senses. A remain-
ing question to be answered would be how the performance
of our CV repeater is affected by experimental inefficien-
cies including inefficient single-photon sources in the NLAs,
inefficient homodyne detection, and imperfect quantum mem-
ories. Specifically with inefficient single-photon sources, prior
work has shown that this inefficiency causes a gain satura-
tion effect, thus limiting the actual achievable gain of the
NLA [26,27] with maximum reported gains of g2 = 11 ± 1
[28]. For distances larger than 130 km, the gain for optimal
operation of our CV repeater is greater than this maximum
reported gain. Further improvements in photon production
and detection efficiency will be needed to obtain these higher
gains, however, we note that single-photon source efficiency
is constantly improving. It is possible that operation of this
repeater may be further optimized by use of a different dis-
tillation protocol. Consideration of how this scheme performs
with different distillation protocols is left for future work.
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APPENDIX A: SINGLE-NODE REPEATER

In this Appendix, we outline how to calculate the entangled
output state of the single-node repeater protocol (Fig. 2 in
the main text). Initial entanglement distribution begins with
generating two independent two-mode Gaussian squeezed

vacuum states of the form

|χ〉AC =
√

1 − χ2
∞∑

n=0

χn|n〉A|n〉C . (A1)

The sources are placed with Alice and the repeater node, with
one mode of each entangled state distributed to the repeater
node and Bob, respectively. This is modeled by a pure-loss
channel of transmission η. This transforms mode C as

ÛBS[|n〉C |0〉D] =
n∑

p=0

√(
n

p

)
ηp/2(1 − η)(n−p)/2|p〉C |n − p〉D,

(A2)

where mode D is an environment mode. The state becomes

|χ〉AC →
√

1 − χ2
∞∑

n=0

n∑
p=0

χn|n〉A

×
√(

n

p

)
ηp/2(1 − η)(n−p)/2|p〉C |n − p〉D. (A3)

Entanglement distillation proceeds by acting an NLA on mode
C with gain g. The action of the NLA with a single quantum
scissor can be described by the following operation [20]:

T̂1 = �̂1gn̂, (A4)

where the truncation operator �̂1 is defined as

�̂1 = 1√
g2 + 1

(|0〉〈0| + |1〉〈1|). (A5)

After this operation, the |2〉 and higher-order photon terms in
mode C are truncated and the state becomes

|ψ〉ACD =
√

1 − χ2

g2 + 1

( ∞∑
n=0

χn(1 − η)n/2|0〉C |n〉A|n〉D

+ g
√

η

∞∑
n=1

χn√n(1−η)(n−1)/2|1〉C |n〉A|n − 1〉D

)
.

(A6)

The probability of success of this individual NLA can be
found via the norm of the unnormalized state (A6) which is

PNLA = (1 − χ2)[χ2(ηg2 + η − 1) + 1]

(g2 + 1)[(η − 1)χ2 + 1]2 . (A7)

The final step in this single-node repeater protocol is the
entanglement swapping operation. We use a second copy of
the state (A6), with modes F and B distributed between the
repeater node and Bob, respectively, given by

|ψ〉BFE =
√

1 − χ2

g2 + 1

( ∞∑
m=0

χm(1 − η)m/2|0〉B|m〉F |m〉E

+ g
√

η

∞∑
m=1

χm√
m(1−η)(m−1)/2|1〉B|m〉F |m−1〉E

)
,

(A8)
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where mode E is an environment mode. With these two entan-
gled states (A6) and (A8), modes F and C are combined at the
repeater node and a dual homodyne detection is performed. To
model this dual homodyne detection, we project modes F and
C onto the eigenstate [37,38]

|γ 〉FC = 1√
π

∞∑
n=0

D̂C (γ )|n〉C |n〉F , (A9)

where γ corresponds to the measurement outcome of the dual
homodyne detection. The state after swapping can be found

via

|ψswap〉ABDE = 〈γ |FC[|ψ〉ACD ⊗ |ψ〉BFE ]. (A10)

From Eq. (A10) after corrective displacements on modes A
and B, we find the following unnormalized entangled state
shared between Alice and Bob (including environment modes
D and E ) and conditioned on the measurement outcome of γ :

|ψout〉ABDE = 1√
π

1 − χ2

g2 + 1
e−|γ |2/2D̂A(λaγ )D̂B(λbγ )

×
[ ∞∑

n=0

∞∑
m=0

χn(1 − η)n/2χm(1 − η)m/2 (−γ )m

√
m!

|n〉D|n〉A|0〉B|m〉E

+ g
√

η

∞∑
n=0

∞∑
m=1

χn(1 − η)n/2χm√
m(1 − η)(m−1)/2 (−γ )m

√
m!

|n〉D|n〉A|1〉B|m − 1〉E

+ g
√

η

∞∑
n=1

∞∑
m=0

χn√n(1 − η)(n−1)/2χm(1 − η)m/2γ ∗ (−γ )m

√
m!

|n − 1〉D|n〉A|0〉B|m〉E

+ g
√

η

∞∑
n=1

∞∑
m=1

χn√n(1 − η)(n−1)/2χm(1 − η)m/2√m
(−γ )m−1

√
(m − 1)!

|n − 1〉D|n〉A|0〉B|m〉E

+ g2η

∞∑
n=1

∞∑
m=1

χn√n(1 − η)(n−1)/2χm√
m(1 − η)(m−1)/2γ ∗ (−γ )m

√
m!

|n − 1〉D|n〉A|1〉B|m − 1〉E

+ g2η

∞∑
n=1

∞∑
m=1

χn√n(1 − η)(n−1)/2χm√
m(1 − η)(m−1)/2√m

(−γ )m−1

√
(m − 1)!

|n − 1〉D|n〉A|1〉B|m − 1〉E

]
, (A11)

where λa and λb correspond to the classical gains applied to
scale the displacements on modes A and B, respectively. The
density matrix of the output state shared between Alice and
Bob can be found via

ρ̂AB(γ ) = TrDE[|ψout〉ABDE 〈ψout|ABDE ]. (A12)

To find the probability of successful post-selection PPS, we
use the following:

PPS =
∫ 2π

0

∫ γmax

0 Trρ̂AB(γ )|γ | dφγ d|γ |∫ 2π

0

∫ ∞
0 Trρ̂AB(γ )|γ | dφγ d|γ |

. (A13)

From the entangled output state (A12) shared between Alice
and Bob, we are now in a position to calculate the secret key
rate assuming collective attacks given by [39]

K = βIAB − IE , (A14)

where IAB is the mutual information shared between Alice
and Bob, IE is the Holevo bound representing the maxi-
mum amount of quantum information accessed by Eve, and
0 � β � 1 is the reconciliation efficiency. We calculate the
key rate from the covariance matrix of the entangled output
state shared between Alice and Bob. The covariance matrix
elements were obtained using (A11) and (A12) and averaged

over the accepted post-selection region. To be more specific,
we accept results γ of the dual HD which fall in a circular
region centered on the origin to some maximum radius γmax.
Averaging was performed via numerical integration of each
covariance matrix element. A two-mode Gaussian state has
covariance matrix in standard form

V =
[

a1 cZ

cZ b1

]
. (A15)

Even though the output entangled state is slightly non-
Gaussian due to the the QS operation and thus cannot be
fully characterized by its covariance matrix, it is valid to use
Gaussian key rate calculations as it overestimates Eve’s infor-
mation [40–42]. We calculate the mutual information shared
between Alice and Bob IAB for an entanglement-based proto-
col where Alice and Bob both conduct heterodyne detection
on their entangled modes by [35,39]

Ihet
AB = log2

(
1 + a

1 + a − c2

1+b

)
(A16)
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and for an entanglement-based protocol where Alice and Bob
conduct homodyne detection [36,39]

Ihom
AB = 1

2
log2

(
a

a − c2

b

)
. (A17)

We illustrate here how we calculate Eve’s information given
Bob as the reference for reconciliation which is the case for
reverse reconciliation, giving IE = IBE and representing the
mutual information between Bob and Eve (for direct reconcil-
iation where Alice is the reference we would have IE = IAE ).
Eve’s information IBE can be calculated via

IBE = S(E ) − S(E |B), (A18)

where S(E ) is the von Neumann entropy of Eve’s state before
measurement and S(E |B) is the von Neumann entropy of
Eve’s state conditioned on Bob’s measurement outcome. S(E )
can be found by using the fact that Eve purifies Alice and
Bob’s system, giving S(E ) = S(AB) which is defined as

S(AB) = G

(
ν1 − 1

2

)
+ G

(
ν2 − 1

2

)
, (A19)

where ν1 and ν2 are the symplectic eigenvalues of the covari-
ance matrix V and

G(x) = (1 + x) log2 (1 + x) − x log2 x. (A20)

The symplectic eigenvalues ν1 and ν2 can be found via

ν1,2 =
√

� ± √
�2 − 4 det V

2
, (A21)

where � = a2 + b2 − 2c2. The von Neumann entropy of the
conditional state S(E |B) is a function of the symplectic eigen-
value of the conditional covariance matrix ν3 = a − c2

1+b :

S(E |B) = G

(
ν3 − 1

2

)
. (A22)

APPENDIX B: MULTINODE REPEATER

To go beyond the simplest case of two links we proceed
by using two copies of the state (A12) which have been
distributed along four initial segments of the channel:

ρ̂ABMN (γ1, γ2) = ρ̂AB(γ1) ⊗ ρ̂MN (γ2), (B1)

where both ρ̂AB(γ1) and ρ̂MN (γ2) correspond to the output
state (A12) conditioned on measurement outcomes γ1 and γ2

from dual HDs at nodes 1 and 3, respectively (see Fig. 5).
Modes B and M are mixed at the central node and a dual HD is
conducted on both modes, giving the total conditional output
state:

ρ̂AN (γ1, γ2, γ3) = TrBM[ρ̂ABMN (γ1, γ2) ⊗ |γ3〉BM BM〈γ3|].
(B2)

Finally, the output modes A and N are displaced by the mea-
surement outcome γ3 scaled by classical gains λa on mode A
and λn on mode N :

ρ̂out (γ1, γ2, γ3) = D̂N (λnγ3)D̂A(λaγ3)ρ̂AN (γ1, γ2, γ3)

× D̂†
N (λnγ3)D̂†

A(λaγ3). (B3)

We have outlined here the process for calculating the output
state of four links of the CV quantum repeater; the output state
of eight and higher links proceeds in the same way.

1. Lower bound

Evaluating performance of our CV repeater via the method
outlined in the previous section is not tractable for the multin-
ode repeater. This is because results obtained need to be
integrated over each dual HD measurement outcome. While
for two links, results can be obtained via numerical integra-
tion (and are given in Fig. 4), for four and higher links we
will model performance of our CV repeater by averaging the
output density matrix after each entanglement swapping step.
That is, instead of (B1), the density matrices are first averaged
over the accepted post-selection region:

ρ̂AB →
∫ 2π

0

∫ γmax

0
ρ̂AB(γ )|γ | dφγ d|γ |. (B4)

As previously described, in the four-link repeater scheme, two
copies of the state are used:

ρ̂ABMN = ρ̂AB ⊗ ρ̂MN . (B5)

The two averaged output states are then combined and
swapped:

ρ̂AN (γ3) = TrBM[ρ̂ABMN ⊗ |γ3〉BM BM〈γ3|]. (B6)

This is followed by a displacement on modes A and N :

ρ̂out (γ3) = D̂N (λnγ3)D̂A(λaγ3)ρ̂AN (γ3)D̂†
N (λnγ3)D̂†

A(λaγ3).
(B7)

The success probability of the final entanglement swap at the
central node is given by

PPS =
∫ 2π

0

∫ γmax

0 Trρ̂AN (γ3)|γ3| dφγ3 d|γ3|∫ 2π

0

∫ ∞
0 Trρ̂AN (γ3)|γ3| dφγ3 d|γ3|

. (B8)

Calculation of the covariance matrix proceeds by using the
output state (B7) and numerically integrating to average over
the accepted post-selection region.

By averaging the density matrices before input into sub-
sequent entanglement swapping, the calculations become
tractable. However, as γ is a classical parameter, this aver-
aging will unavoidably lead to an overestimation in the noise
present in the output state. Therefore, we present the results
gained from this method as a lower bound to the key rates
achievable by our CV quantum repeater. While this method
may be used to estimate the probability of success of the
nested entanglement swapping operations (B8) and thus can
be used to estimate Rrep, the raw key rate K calculated from
the covariance matrix of the output state (B7) will suffer from
the overestimation of noise.

For four links of the CV repeater, the repeater rate (3) is
given by

Rrep = 1

Z2(PNLA)
× 1

Z1(PPS1)
× 1

Z0(PPS0)
, (B9)

where PPS1 is the probability of successful post-selection in
the 2 base level entanglement swaps, and PPS0 is the proba-
bility of success of post-selection in the single higher level
entanglement swap.
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FIG. 8. Comparison between upper bound on the secret key rate
using an ideal covariance matrix and that using numerically inte-
grated output state (A12). The dark blue line corresponds to the
two-link upper bound shown in Fig. 7, while the red line corresponds
to the two-link secret key rate shown in Fig. 4.

2. Upper bound

An upper bound on the raw secret key rate K can be
determined from the ideal output state of the CV repeater
protocol. That is, the output state achieved conditioned on the
measurement outcome of γ = 0, which results in no displace-
ment. In this ideal case, the covariance matrices for the output
states of the 2, 4, 8, and 16 link schemes are analytically
solvable. We use the raw key rate K calculated from the ideal
(γ = 0) case, multiplied by the realistic rate of successful
operation of the entire repeater Rrep. This rate depends on the
success probability of the NLA [Eq. (A7)], and the probabil-
ities of success of post-selection calculated via the method
explained in the previous section [Eqs. (A13) and (B8)]. It
is through this method that the results in Fig. 7 were obtained.
We can compare the upper bound to the secret key rate of
the post-selected output state in the two-link case and this is
shown in Fig. 8. As can be seen in Fig. 8, the upper bound
and numerically integrated key rates are quite close. This is
because the covariance matrices of the ideal output state and
the post-selected output state for γmax = 0.5 are close.

FIG. 9. Lower and upper bounds on key rates of the CV quantum
repeater. The upper solid blue line corresponds to the upper bound
shown in Fig. 7. The lower solid purple line corresponds to the lower
bound calculated via the method in Appendix B 1.

Finally, we can use our upper bound to give the region
of estimated performance of our CV quantum repeater and
this is shown in Fig. 9. As previously noted, the upper bound
uses the fixed post-selection cutoff of γmax = 0.5 at all swap-
ping levels. However, the post-selection cutoff of the lower
bound varies at each level. This is because calculating the
lower bound requires small post-selection cutoffs for initial
swaps (i.e., γ close to 0) since we swap average density
matrices [Eq. (B4)]. Rough optimization of the overall key
rates including raw key rate and repeater rate yields the fol-
lowing post-selection cutoffs. For the results in Fig. 9, the
two-link lower bound uses a cutoff of γmax = 0.5. The four-
link lower bound uses post-selection cutoff of γmax = 0.2 at
the base level and γmax = 0.45 at the upper level entangle-
ment swap. Lastly, the eight-link lower bound uses cutoffs
γmax = 0.06, 0.15, 0.4 at the base, mid, and highest level en-
tanglement swaps, respectively. Note that the region between
upper and lower bounds increases for longer distances due to
the compounding effect of noise from averaging after multiple
entanglement swapping rounds as well as the reduction in
lower bound repeater rate due to the smaller post-selection
cutoffs.
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