
PHYSICAL REVIEW A 102, 052422 (2020)

Fixed-point quantum circuits for quantum field theories
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Renormalization group ideas and effective operators are introduced to efficiently prepare ground states of
massive lattice field theories on digital quantum devices. This is accomplished with a systematic approximation
through localized unitaries that removes an exponentially costly barrier in the spatial volume of the quantum
simulation. With these methods, classically computed ground states in a spatial volume L, containing a few
Compton wavelengths, can be used to determine operators for preparing the ground state toward the thermody-
namic limit with a precision improving as e−mL on beyond-classical quantum registers. Due to the exponential
spatial decay of correlations in massive theories and the double exponential suppression of digitization artifacts
in the number of qubits representing the scalar field, the derived fixed-point quantum circuits are expected to be
relevant for simulations of quantum field theories throughout the evolution from small-scale near-term quantum
devices to large-scale fault-tolerant quantum computers.
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I. INTRODUCTION

Quantum field theories (QFTs) describing the properties
and dynamics of fundamental particles and quantum many-
body systems are anticipated to be addressed with analog
quantum simulation and digital quantum computation [1–6].
In addition to being essential to scientific applications in nu-
clear physics, high-energy physics and basic energy sciences,
the distributed quantum degrees of freedom of QFTs provide
a framework underlying the design of large-scale quantum
simulators and fault tolerant quantum computers. Numerical
evaluations of QFTs typically involve discretizing space-time
into a lattice of points on which matter fields are defined,
with gauge fields defined on the links between grid points.
Physical predictions can be derived from such calculations
by extrapolating to the limit of infinite spatial or space-time
volume and the continuum limit where the distance between
grid points vanishes. This can be accomplished by computing
in sufficiently large volumes with sufficiently fine discretiza-
tions, then extrapolating using known forms.

Preparing the ground state of a QFT Hamiltonian on
digital quantum computers is challenging and has been iden-
tified as a leading contribution in estimates of the quantum
resources required to simulate scattering in scalar field the-
ory [2,3,5,7]. When digitizing a scalar field at each lattice site
and employing nearest-neighbor or smeared nearest-neighbor
finite difference operators in conjugate momentum space,
induced systematic errors in observables depend polynomi-
ally on the field digitization spacing. However, the efficiency
of the quantum Fourier transform performed on each site
leads to a protection, encapsulated by the Nyquist-Shannon
sampling theorem, resulting in a suppression of digitization
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artifacts from polynomial to nonperturbative exponential con-
vergence [2,3,8–11].

Preparing an arbitrary real function with support across the
Hilbert space of a quantum register requires the number of
entangling gates to grow exponentially with the number of
qubits. In the special case of a Gaussian profile, where the
wave packet expands retaining its shape under time evolution,
Somma Inflation can be used to transform a Gaussian with
support localized in the Hilbert space to a Gaussian with
support distributed throughout the Hilbert space without an
exponential increase in the number of entangling gates [8].
While individual Gaussians are a start, the scalar field ground
state correlates Gaussians on each spatial site determined by
the gradient operator. Thus, introducing the spatial gradient
operator creates entanglement among spatial sites, signifi-
cantly increasing the number of entangling gates that are
required to prepare the ground state [11–14]. As previously
shown, the number of unitary operators (classified as single-
qubit rotations controlled on the state of h other qubits with
fixed maximum h) capable of fixed-precision ground state
preparation scales linearly with the spatial volume in massive
QFTs due to the exponential localization of classical corre-
lations and entanglement [14]. It was found that the rotation
angles (α angles) defining the unitary transformations become
exponentially suppressed as the operators they define become
increasingly nonlocal.

In this work, the properties of the ground states of
noninteracting scalar field theories and the symmetries of
the corresponding quantum circuits are exploited to derive
spatially localized effective operators for initializing large
instances of ground-state wave functions, defining analytic
“fixed points” of the localizable quantum circuits. The system-
atic errors associated with these effective operators are shown
to be exponentially suppressed with the field digitization. In
analogy with effective operators used in effective field theo-
ries induced or renormalized by removing degrees of freedom,
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these effective operators are determined by integrating (trac-
ing) over contributions from fields on lattice sites that are not
involved in the controlled operations used to entangle the state
on a given lattice site. The unitary transformations associated
with these effective operators rapidly evolve toward fixed
points as the number of sites integrated out becomes large.
The implication is that systems of size commensurate with
the correlation length, and which can be solved with classical
computing resources, can be used to determine the controlled
unitary rotation operations capable of preparing larger ground
states on quantum computers than possible classically. This is
also true for interacting scalar field theories.

II. SCALAR FIELD GROUND STATE

Working in the basis of eigenstates of the field operator
φ̂ [2,3], the position-space, digitized wave function of a non-
interacting massive lattice scalar field ground state mapped
onto a quantum register, |�〉 is

|�〉 =
∑

φ

ψ (φ)|φ〉, ψ (φ) ∝ e− 1
2 φT Kφ , (1)

where the sum over φ extends over the values of the field at
each site for every spatial site. This state can be prepared from
the fiducial state operationally with a nonunitary operator �̂

�̂ = e− 1
2 φ̂

T
Kφ̂, |�〉 ∝ �̂H⊗N |0〉⊗N , (2)

where H is the Hadamard gate. The wave function is sampled
at regular intervals, δφ , between field truncations ±φmax on
each site of an N-site lattice with nQ qubits per site [2,3,11].
Being constructed from the field operators φ̂x|φx〉 = φx|φx〉
at the site x, �̂ can be considered to be a finite dimensional
operator with wave function amplitudes along the diagonal
corresponding to those of the digitized infinite dimensional
Hilbert space of continuous fields. An alternate identification
of �̂ satisfying the preparation requirement of Eq. (2) is the
density matrix of the digitized ground state. Both perspectives
will be useful in the identification of effective operators for
the fixed-point circuit elements.

The symmetric matrix of sitewise correlations K is ex-
ponentially localized to the diagonal with the form e−mr/r,
the two-site mutual information falls, up to power law com-
ponents, as e−2mr with separation, and the negativity is
localized at the ultraviolet length scale of the finite-difference
momentum operator used to calculate K [14–16]. In ex-
plicit connection between the quantum circuitry necessary to
prepare wave functions and their intrinsic correlations, we
showed that the circuit operations to prepare the ground state
of a massive scalar field can be localized [14]. This local-
ization is controlled by the structure of K. Specifically, we
showed that if the K matrix of correlations for a periodic lat-
tice is truncated to be a band-diagonal matrix with vanishing
K0i for i > d , then quantum circuit elements can be made to
depend only on the state of neighboring sites to a maximum
distance d [14]. This feature of the circuit prevails in spite of
the nonzero mutual information extending beyond this radius.
For clarity, in what follows the K truncation will be taken to
be d = 1 unless otherwise noted and thus represent the largest
contributions in the correlation hierarchy.

FIG. 1. Quantum circuit for preparing an arbitrary real wave
function organized as quantum registers of nQ qubits (dark hori-
zontal lines) at each indexed field site φ j . (right) The fundamental
controlled rotation operator Ry(θ ) = e−iθσy acting on qubit 
 and
controlled on h previous qubits. The open-closed controls indicate
a set of operators with unique angles θ
,k controlled on each of the
possible 2h binary strings, k, with the most significant bit (MSB) at
the top and the least significant bit (LSB) at the bottom.

In a massive noninteracting theory, a field redefinition can
be performed to remove explicit mass dependence from the
qubit representation, and a tuning of the field truncation, φmax,
can be performed to minimize digitization artifacts. In the
case of an interacting theory, the coupling can broaden or
narrow the field distribution, requiring a retuning of the field
truncation. If the renormalized mass of the theory vanishes,
the matrix K is no longer exponentially suppressed, and the
analysis and circuit design in this work lose utility.

III. QUANTUM CIRCUITRY

By defining the structure of a quantum circuit, an implicit
definition is made of the symmetries and wave function fea-
tures that are naturally created upon implementation. Ideally,
designed quantum circuits have structures that parallel those
of the theory being simulated. This allows, for example, de-
caying correlation functions to manifest as a hierarchy of
operators with distance in the qubit register. In the following,
the circuit presented in Ref. [14] is first reviewed. Having
established physical properties of the field embedded in this
structure, the discussion will then extend to determining fixed-
point circuit parameters for ground state preparations larger
than could be explicitly represented on classical devices.

Operators used in the localizable circuits can be defined by
three numbers: two indices and an angle, as shown at the right
of Fig. 1. The angle defines the rotation operator about the
y axis that acts on the target qubit. The two indices 
 and k,
define the target qubit index and the binary-interpreted integer
value of the controls. Thus, declaring an angle of the form θ
,k

is equivalent to declaring a rotation operator along with its
location and control values on previous qubits. The θ circuit
shown in Fig. 1 contains each of the 2
 controlled operators
with differing values of k acting on each qubit, ordered by 


from smallest to largest. Operators with equal 
 and differing
k commute.

Linear combinations of these θ angles produce α angles
with magnitudes exponentially suppressed in the spatial extent
of the associated circuit element. In this sense, the α-angle
operators are localized according to the classical two-point
correlation function, and thus the exponentially decaying
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FIG. 2. Sitewise expansion of angles θ
,k , appearing in rotation
operators represented as blue squares, into angles α
h,k appearing in
rotation operators represented by purple squares. Diagonal continu-
ation dots represent the inclusion of controlled operators with every
intermediate number of controls.

K [14]. These angles are denoted as αx,r

h,k . The lower(upper)

indices describe the associated controlled rotation at the level
of qubits(sites). There is a many-to-one relationship between
the qubit and site indices, respectively. For the qubit indices,

 and k remain as defined for the θ angles. The additional
index h is the “height” of the operator or number of controls.
For the θ circuit, all operators are defined to have h = 
.
This equivalence between the operator height and its distance
from the top of the qubit register is lifted for the α circuit
in order to allow systematic localization of the operators and
the relation becomes kmax = 2h − 1. For the site indices, x is
the site number at which the rotation acts and r is the site
distance spanned by the operator. These indices are connected
by x = �
/nQ� and r = �h/nQ�, where �y� denotes the floor
of y.

The sitewise α transformations are defined by expanding
a θ operator extending over multiple sites defined by angles
�θ x

 into rotations over a truncated number of sites with h =

{
 − (x − 1)nQ, . . . , 
 − nQ, 
} respectively being at physical
distances r = {1, . . . , x}. This process is shown diagrammat-
ically in Fig. 2. At the left is a site-rotation controlled on
the field at the r previous sites. It is desirable to isolate the
sensitivity to controls at small spatial distance if the target
wave function has localized correlations. This is shown di-
agrammatically with the green circuit at the right of Fig. 2
where site rotations controlled at short distances are extracted
from those controlled at long distances. A locality truncation
removes circuit elements beginning at the right end of this
circuit. In the second line of this diagram, the purple circuit
has grouped operators acting on a particular qubit. Due to
noncommutativity of rotations and controls, these angles are
distinct from those of the previous expansion. It is the angles
of the latter, purple circuit αx,r


h,k that are naturally related to
the θ
,k on the left through simple linear combinations and
averaging [14]. The α angles for such decompositions with K
truncated at d = 1 are equivalent to the θ angles at distances
1, and vanishing for operators of greater spatial extent

αx,r

h,k =

{
θ x

,k r = 1

0 r > 1
. (3)

This supports the statement that the α angles are controlled
by the K matrix, exponentially suppressed in spatial locality
controlled by the mass of the lightest particle.

The nature of these quantum circuits used to prepare the
digitized ground state is such that adding qubits to increase
the density of states between the upper and lower values of
the field at each site changes the number and values of the
angles associated with the unitary operations. The additional
field samples with each added qubit are interleaved with those
at the previous field digitization, leading to a direct connection
between the last qubit in each site and the high conjugate
momentum modes. With increasing nQ, θ angles associated
with the last qubit in each site tend towards a constant value
of π/4, the angle for which additional samples are simply
copies of their lower-digitization-scale predecessors. This is
a natural phenomena associated with the wave function being
smooth or defined by an upper-bounded Fourier space. In
the circuit language, if nQ is taken to be large, the θ jnQ−1,k

angles tend to π/4 for all integer j ∈ {1, . . . , N} and k ∈
{0, . . . , 2 jnQ−1 − 1}. In the translation to localizable α angles
shown in Fig. 2, these long-distance controlled θ operators
tend towards a single-qubit α operator Ry(π/4) on the last
qubit (the same effect as acting with the Hadamard gate for
state |0〉). The α angles thus demonstrate a localization not
only in spatial distance from exponentially decaying spatial
correlation functions, but also within the sites due to the hier-
archy of conjugate momentum modes. In contrast, operators
acting on early qubits in the digitization (associated with the
low conjugate momentum modes) yield rotation angles that
tend to a fixed, nonconstant distribution as a function of the
field values on controlled sites above. Given the expectation
that small values of nQ � 5 will be sufficient for foreseeable
calculations of the massive scalar field on quantum hardware,
the following will be focused on fixed nQ, where angles defin-
ing local operators evolve to fixed points as the number of
spatial sites in the lattice becomes large. Thus, for preparing
lattices containing many correlation lengths, the number of
unique local operators becomes independent of the lattice
volume.

IV. FIXED-POINT CIRCUIT

For the particular case of the θ circuit (see Fig. 1) where
the state is prepared with asymmetric operations, the rotations
on each site are dependent on the site register above the site
on which the rotation acts. The associated θ angles can be
calculated from the ratio of sums of squared amplitudes in
the wave function, marginalizing over the field on lower sites.
By considering partitions of the wave function at levels corre-
sponding to the binary hierarchy of the qubits in the register,
the θ angles can be directly calculated, shown in Ref. [13], as

θ x

,k = arctan

√√√√ ∑2b−1
j=0 〈ψn|�̂2,eff

x |ψn〉∑2b−1
j=0 〈ψd |�̂2,eff

x |ψd〉
. (4)

The states in the numerator and denominator are

|ψn〉 = |φ(κφx−1 ), φ(2b+1κφx + 2b + j)〉,
|ψd〉 = |φ(κφx−1 ), φ(2b+1κφx + j)〉, (5)
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where φ(κφx ) ≡ φ(x; κφx ) denotes the field value at digitiza-
tion address κφx at site x

φ(κφx ) = φmax − δφκφx . (6)

The site index and inner-site qubit index are

x =
⌊




nQ

⌋
, b = (nQ − 1) − 
 mod nQ , (7)

where the latter describes the location of the rotation within
the site x by the number of qubits back it acts from the
last qubit in the site. This is equal to the number of qubits
within the site, but below the rotation, that need be addition-
ally marginalized from the calculation. The index k has been
interpreted in binary and grouped for its localization at each
site of the scalar field

k = {κφ0 , κφ1 , . . . , κφx−1}2 . (8)

The sitewise κφn index takes values in the range {0, . . . , 2nQ −
1}.1The effective operator, �̂2,eff

x , relevant for calculating θ at
site x is a marginalization of �̂2 over the field values of all
sites beneath the rotation location x,

�̂2,eff
x = Trφ>

[�̂2],

φ> = {φx+1, φx+2, . . . , φN−1}. (10)

Note that the reduced �̂2,eff
x operator marginalizes in the prob-

abilities, not the amplitudes. This is a manifestation of the
use of y axis rotations in the circuit construction, producing
trigonometric functions of the rotation angles in the wave-
function amplitudes. Sums over squares of these amplitudes
then sequentially remove qubits from the end of the register.
In terms of the qubit reduced density matrix, the angles are
defined by ratios of the diagonal matrix elements

θ
,k = arctan

√
〈2k + 1|ρ̂
|2k + 1〉

〈2k|ρ̂
|2k〉 , (11)

with ρ̂
 the ground state reduced density matrix of the first

 + 1 qubits

ρ̂
 = Trq>
[ρ̂] . (12)

By marginalizing at the qubit level [rather than at the site
level as done in Eq. (4)], the sums in the numerator and de-
nominator over the 2b values of the field at higher digitization
frequency in the site x are handled in the trace reduction of the
density matrix. For the current application of initializing the
ground state, the operator definition in Eq. (2) is more efficient
for the construction of local effective operators.

The number of θ angles required to prepare the ground
state associated with �̂ has super-polynomial scaling in the
number of lattice sites on the full quantum register. How-
ever, the α angles, which can be derived from �̂2,eff

x , grow

1As an example, for nQ = 2, x = 2, and k = 6,

k = 6 = 0110 = {1, 2}2 , (9)

such that κφ0 = 1 and κφ1 = 2. Thus the control of k = 6 is asso-
ciated with the scalar field on sites 0 and 1 of φ0 = φmax − δφ and
φ1 = φmax − 2δφ .

in number superpolynomially with respect to the lattice sites
within a few Compton wavelengths—parametrically smaller
than that of �̂. It is this reduction that enables a classical
computation to inform state preparation on beyond-classical
quantum registers to a fixed precision.

If the qubit registers in the lower region of the circuit are
taken to be continuous fields without field truncation,

�̂2,eff
x →

∫
φ>

�̂2 ∝ e−φ̂
T
�Kx+1φ̂�+K2

01
det Kx̄−1

det Kx̄
φ̂2

x , (13)

where Kn is the first n × n sub-block in K and x̄ = N −
(x + 1) is the number of sites below site x (the number of
sites in φ>). Note that for the calculation of θ angles with
K truncation at d = 1, the field values above φ̂x−1 may be
ignored as they cancel in the ratio in Eq. (4). In this scenario,
the effective operator reduces to a local operator

�̂2,eff
x ∝ e−K00φ̂

2
x−1−2K01φ̂x−1φ̂x e−(K00−K2

01
det Kx̄−1

det Kx̄
)φ̂2

x . (14)

This operator captures the effective K matrix of correla-
tions relevant for the unitaries acting at site x, integrating
out degrees of freedom in a manner resembling the renor-
malization group. With d > 1, the effective operator remains
exponentially localized with the structure of K. The ratio of
determinants tends to a constant at large lattice sizes (N →
∞), and can be expressed for continuous x̄ fields as

det Kx̄−1

det Kx̄
= 2

K00 + η
(
1 + 2

−1+(K00−η)−x̄ (K00+η)x̄

) ,

(15)

−−−→
x̄→∞

2

K00
(
1 +

√
1 − 4K2

01

K2
00

) , (16)

with η =
√

K2
00 − 4K2

01. At large volumes, these two elements
of the correlation matrix are

K∞
00 = 2

√
4 + m2

π
E

(
4

4 + m2

)
, (17)

K∞
01 =

√
4 + m2

3π

×
[

m2K

(
4

4 + m2

)
− (2+m2)E

(
4

4 + m2

)]
, (18)

where K and E are the complete elliptic integrals of the first
and second kind, respectively. Having analytic forms of the
asymptotic K matrix elements and determinant ratio is a con-
venient but unnecessary feature of the noninteracting scalar
field. They are computationally inexpensive and can be easily
calculated for large volumes.

The determination of fixed-point circuit elements has oc-
curred in the limit of infinite volume, infinite field truncation
φmax, and continuous quantum registers on marginalized lat-
tice sites of the field. Leading corrections to the above
expressions due to the finite extent of the lattice scale as
O(e−mN ) up to polynomial factors scaling approximately as
1/

√
N . To quantify the systematic uncertainties associated

with assumed continuous quantum registers, consider the dis-
tribution upon marginalization of the field at a single lattice
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FIG. 3. Evolution of an angle associated with a localized operator at the center of the lattice,
α(x = � N

2 �, r = 1, 
 = nQ(� N
2 � + 1) − 1, h = 2nQ − 1, k = 0), with lattice size N . The scalar field is defined by m = 0.3, truncated

in correlations at K01, and truncated for digitization with maximum field value φmax = 3.5. Blue points are the results of calculations
approximating sites in the second half of the lattice to be continuous fields (δφ → 0) without field truncation (φmax → ∞). Green points are
the results of calculations within a digitized and truncated qubit representation. Closed circles indicate the K matrix scales with system size
[K (N )], while open circles indicate that the infinite-volume K matrix elements are used (K∞). The solid black lines show the N dependence
of the continuum calculations with infinite-volume K matrix elements, while the blue dashed line is the fixed-point angle (α∞) calculated for
continuum sites in the lower half lattice in the limit of infinite volume.

site,

B1(φ
) =
∑
φc

e−(K00φ
2
c +2K01φ
φc ) . (19)

Utilizing Poisson resummation to relate the φ symmetrized
Dirac comb, producing digitized field samples, to a sum over
its Fourier modes, deviations are found to be exponentially
suppressed with the field digitization,

B∞
1 (φ
) =

√
π

K00δ
2
φ

e
K2

01φ2



K00

×
[
1+2

∑
n>0

e
− n2π2

K00δ2
φ cos

(
nπ

(
1 + 2K01φ


K00δφ

))]
, (20)

where the term in brackets can written as an elliptic theta
function. For fields digitized onto qubits with δφ = 2φmax

2nQ −1 ,

the deviations from the continuum scale as O(e−22nQ ), double
exponentially in the number of qubits.

This rapid convergence is another manifestation of the
Nyquist-Shannon sampling theorem, the effects of which can
be seen in Fig. 3, where the convergence of a rotation angle
in the center of the lattice is shown. The green points have
been calculated through representation of the 2NnQ dimen-
sional digitized wave function for systems of up to 20 qubits.
The blue points have had the effective operator replaced by
the continuum and untruncated (in φmax) effective operator
of Eq. (14). As such, the N dependence of the blue closed
points comes from the determinant ratio in Eq. (15) and the
N dependence of the K matrix itself. If the infinite volume
values of K, as shown in Eqs. (17) and (18), are used, the open
points and black lines are recovered, demonstrating a rapid
convergence to the continuum angles. The continuum values,
α∞, are shown as blue dashed lines which are calculated by

defining the effective operator with Eqs. (16), (17), and (18).
On the left panel of Fig. 3, a coarse qubit digitization

of nQ = 2 is used on each site. The angle calculated in the
continuum without field truncation agrees with that calcu-
lated in the digitized space to ∼1%. Thus substituting the
fixed-point α angles for the digitized circuit provides suf-
ficiently precise determinations of rotation angles necessary
for initializing the ground state on even small instances of
near-term quantum devices (where this precision matches that
expected on hardware). Due to the double exponential con-
vergence in the number of qubits used to digitize the field,
increasing nQ to three qubits (right panel of Fig. 3) shows
good agreement between the angles defining the continuum
and digitized circuits. Differences of angles in small volumes,
where wave functions can be represented classically, are found
to be ∼0.001%. While increasing nQ requires additional cir-
cuit operations to prepare the ground state (see Fig. 2), the
number of gates, O(N22nQ ), grows more slowly than the abil-
ity to improve them. The double exponential convergence
in digitization artifacts implies that increasing nQ, and thus
the fidelity of the wave function, parametrically improves the
fidelity-to-gate ratio when using fixed-point circuits to initial-
ize the scalar field ground state.

As the distance truncation, d , of K is raised, the effective
operator relevant for calculating the θ angles at a particular
site becomes less local. The modification to the reduced K
matrix in the effective operator is generally

�̂2,eff ∝ e−φT
�(A−BC−1BT )φ� , (21)

with

K =
(

A B
BT C

)
, [A] = (x + 1)(x + 1). (22)

It can be seen that the correction to the site-site correlations in
the effective operator, BC−1BT , is nonzero only in the lower
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subblock of dimension d controlled by the largest nonzero K0d

retained in K. This is consistent with the physical intuition
that the off-diagonal elements of K control the site distance
of communication throughout the lattice. This localization to
the lower subblock is also connected to the localization of the
effective operator(s) necessary to calculate θ angles defining
the fixed-point circuit.

V. REFLECTIONS

In this work, fixed-point quantum circuits have been in-
troduced for the preparation of the noninteracting scalar field
ground state on digital quantum hardware. Determining the
circuit elements necessary to initialize large instances of the
quantum field requires classical computational resources scal-
ing only with the spatial distance of correlations. For the
massive scalar field, these correlations decay exponentially
with distance, leading to the ability to determine fixed-point
circuits for preparing the ground state on quantum devices for
larger lattices than could be stored classically. This technique
is also applicable to interacting scalar field theory.

In this work, the continuum limit (decreasing lattice spac-
ing) has not been considered. Taking this limit is required to
make predictions for physical observables with a complete
quantification of uncertainties. As the lattice spacing is re-
duced, the number of lattice sites within a correlation volume
increases. This scaling is power law with the lattice spacing.
The fixed-point analysis that we have presented remains valid,
but with an increased number of required α angles.

In leveraging the entanglement structure of the represented
quantum state for computational advantage, the fixed-point
circuitry is reminiscent of the powerful techniques of tensor
networks [17–20]. A notable distinction is that entanglement
information of a fixed-point circuit is not stored locally in
a bond dimension, rather it is stored nonlocally at natural
distances set by the classical correlation length scale. Though
daunting with tensor network approaches [21–23], it is ex-
pected that the resulting volume independence of calculating
the fixed-point circuitry will persist beyond one spatial dimen-
sion, as long as correlations are localized in each direction. It
is plausible that a hybrid framework leveraging tensor network
methods may provide an effective way to access the α angles
using classical computing.

In contrast to adiabatic state preparation techniques, there
is no dynamic evolution or convergence process required of
a quantum device for an initialization using fixed-point cir-
cuitry. This methodology is likely to be limited for massless
fields, where the exponential localization of the K matrix
is lost, and impractical when light masses or small lattice
spacing causes the correlation volume to exceed classical

computing capabilities. In particular, the systematic uncer-
tainty introduced into the quantum simulation by the finite
classical volume of spatial extent L will scale as ∼e−mL, un-
less nonperturbatively modified by discretization effects, for
example, Refs. [24,25].

While it is conceived that the ground state of an interacting
theory can be initialized beginning from the noninteracting
ground state adiabatically, there is no barrier to applying
these fixed-point methods to interacting ground states as well.
This provides an alternative state preparation mechanism that
avoids additional circuit depth scaling with unpredictable
spectral gaps throughout the dynamical adiabatic process.
While such applications evade analytic solution, both pertur-
bative corrections to the circuit elements and nonperturbative
analyses can be performed. The perturbative approach lever-
ages the analytic control demonstrated here in defining the
noninteracting state preparation circuit, though further ex-
ploration is necessary to understand the corrections when
interactions are strong. Alternatively, it is viable to inform
fixed-point circuits for interacting ground states nonpertur-
batively. Infinite volume limits of circuit elements can be
reliably extrapolated from finite volume calculations captur-
ing only the exponentially localized correlation length scale.
With currently available classical supercomputing resources,
α angles can be determined for a range of lattice spacings,
masses and couplings, that will enable ground state prepa-
ration on future quantum computers—a necessary though
insufficient ingredient for quantum advantage. Already in the
NISQ era, with 50–100 qubits, this formulation will be useful
in benchmarking simulations of field theories.

Fixed-point quantum circuits are expected to be rele-
vant for initializing the ground states of fields defined by
locally-interacting massive particles with exponentially de-
caying correlation functions or area-law entanglement. It is
further anticipated that confining gauge theories will admit
fixed-point quantum circuits, suggesting how classical calcu-
lations of the QCD vacuum could inform state preparation on
beyond-classical quantum devices.
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