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Tomography of time-bin quantum states using time-resolved detection
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We present a method for measuring quantum states encoded in the temporal modes of photons. The basis for
the multilevel quantum states is defined by the use of modes propagating in a dispersive medium, which is a fiber
in this case. The propagation and time-resolved single-photon detection allow us to define a positive-operator
valued measure (POVM). The POVM depends on the amount of dispersion and the characteristics of a detector.
This framework is numerically tested by performing quantum state tomography on a large number of states for a
set of realistic experimental settings. Finally, the average fidelity between the expected and reconstructed states
is computed for qubits, qutrits, and entangled qubits.
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I. INTRODUCTION

Quantum communication protocols can be implemented
using photonic states. A generic scheme is based on trans-
mission of a single photon through a channel to a receiver.
Information can be encoded, for example, in polarization [1],
spatial [2,3], or spectral modes [4]. The channel proper-
ties and the receiver characteristics determine the optimal
protocol assuring the best performance. Free space [5–7]
and fiber-based [8] quantum communication links have been
demonstrated. Each of them has its advantages and disadvan-
tages. Both suffer from several effects limiting their maximal
distance and throughput. A typical fiber introduces uncontrol-
lable polarization transformation, which must be taken into
account [9] when a qubit is encoded in polarization. Fiber
links are also subjected to dispersion and loss, which, when
combined with imperfect detectors, limits the transmission
maximal range [10]. On the other hand, one can take ad-
vantage of the propagation effects in the fiber to extend the
distance of quantum communication protocols [11], when
time-resolved single-photon detection is available.

It is also possible to encode information in the temporal
domain by using interferometric techniques. The first proposal
involving time-bin encoding was introduced by Franson in the
context of the violation of Bell inequalities [12]. Then, this
idea was successfully applied to quantum key distribution pro-
tocols [13–15], quantum information processing [16,17], and
more recently in quantum teleportation [18]. Experimental
realization of time bins requires one unbalanced interferom-
eter to prepare time-bin states and another interferometer or
a nonlinear interaction for measurement. The advantages are
the noise robustness during propagation of photons and a sim-
plified experimental setup to realize quantum communication
protocol.

*These authors contributed equally to this work.
†kolenderski@fizyka.umk.pl

We adapt a framework where the Hilbert space of a mul-
tilevel system, a qudit, can be established based on a discrete
number of separated temporal modes of a single photon, time
bins [12]. The unitary evolution that the photon experiences
during propagation in a dispersive medium can be interpreted
as an evolution of a qudit state within the Schrödinger picture.
On the other hand, the Heisenberg representation allows us to
define measurement operators which change in time. This is
analogous to spatial encoding in the transverse momentum of
a photon [19], where the photon propagates through a system
of multiple slits that defines its state. The photon is then
measured using the spatially resolved single-photon detection
technique, which defines a positive-operator valued measure
(POVM). In this paper, we first introduce the framework for
qubits and generalize it for qudits. Next, the method’s ro-
bustness is tested numerically by analyzing the quantum state
tomography results for qubits, qutrits, and entangled qubits.

II. TEMPORAL ENCODING

A. Qubit

Let us assume a physical situation where a single-photon
state is described by a wave function that is the sum of a pair
of separated temporal modes

ψ (t ) = α0u(t + τ/2) + α1u(t − τ/2), (1)

where α0 and α1 are complex numbers satisfying the normal-
ization condition, |α0|2 + |α1|2 = 1, and

u(t ) = e− t2

2σ2√√
π

√
σ

. (2)

This is depicted in Fig. 1. Let us now define the following
vectors:

|0〉 =
∫ ∞

−∞
dt u(t + τ/2) |t〉 , (3)

|1〉 =
∫ ∞

−∞
dt u(t − τ/2) |t〉 , (4)
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FIG. 1. A single qubit is defined as a photon which is delocalized
in two wave packets separated in time interval [−τ/2, τ/2].

where |t〉 represents the state of a photon localized within a
time instant t . The overlap of the two state vectors reads

〈0|1〉 = e
−τ2

4σ2 , (5)

which means that they are not perfectly orthogonal but can
be made approximately so by a proper choice of the ratio
of the modes’ separation, τ , to their widths σ . A realistic
assumption is 〈0|1〉 = 3 × 10−7 for τ/σ = 7.7. Therefore, we
can consider {|0〉 , |1〉} as an orthogonal basis. This allows us
to define a logic qubit state as

|ψin〉 = α0 |0〉 + α1 |1〉 . (6)

This is the definition that will be generalized in the next
section. To define the measurements on a logic qubit, let
us first consider a wave packet, uL(t ), propagated through a
fiber characterized by its length L and a dispersion param-
eter β. This can be modeled as an action of a propagator,
S (t, t ′, L) [10], on the initial state, u(t ′), in the following way:

uL(t ) =
∫ ∞

−∞
dt ′ S (t, t ′, L)u(t ′). (7)

For the propagator related to a dispersive fiber (see Ref. [10]
for details), this results in

uL(t ) = e
it2

4βL−2iσ2

4
√

π

√
σ + 2iβL

σ

. (8)

With this result, we can apply the Born rule to compute the
probability density of detecting a photon at time t after the
propagation:

p(t ) = |α0uL(t + τ/2) + α1uL(t − τ/2)|2. (9)

We observe that the last equation can be rewritten as

p(t ) = Tr(M̂(t ) |ψin〉 〈ψin|), (10)

assuming the measurement operator is given by

M̂(t ) = μ(t ) |ψM (t )〉 〈ψM (t )| (11)

with

μ(t ) = σ√
π

√
4β2L2 + σ 4

(
e
− σ2 (t+τ/2)2

4β2L2+σ4 + e
− σ2 (t−τ/2)2

4β2L2+σ4
)
, (12)

which is interpreted as the weight of the normalized state
defined as

|ψM (t )〉 = 1√
μ(t )

(
uL(t + τ/2)
uL(t − τ/2)

)
. (13)

Note that the operator, M(t ), depends only on the fiber param-
eters L and β and does not depend on the initial state |ψin〉. It
can also be easily shown that it obeys the following relation,

∫ ∞

−∞
M̂(t )dt =

(
1 e−τ 2/4σ 2

e−τ 2/4σ 2
1

)
≈ 1, (14)

which makes it a proper POVM with the approximation that
the off-diagonal terms are negligible. The same assumptions
make the basis states orthogonal.

The POVM set can be visualized using the Bloch sphere
to represent states |ψM (t )〉 as points and the measurement
weights, μ(t ), by assigning color to the respective points using
a temperature scaling. An example, for a typical telecom fiber
(SMF28e+), can be seen in the first row in Fig. 2. The fiber
and wave-packet parameters are the following: β = −1.15 ×
10−26 s2

m , σ = 0.65 ps, and τ = 5 ps throughout the paper. The
points corresponding to the measurement time instants form
a spiral on the Bloch sphere. The plot shows a discrete set
of time instants for which the POVM probability, μ(t ), is
greater than 5%. The spiral is more squashed for longer fibers,
as seen by comparing the pictured POVM for fiber lengths
L = 200 and L = 500 m. Note that under each Bloch sphere
we simulated the outcome of photon arrival time detection for
different values of the length of the link L and detector jitter
σD [defined in Eq. (15)] for input state |ψin〉 = 1√

2
(|0〉 + |1〉).

This is a simulation of an example measurement result for
quantum state reconstruction, which will be analyzed later.

In practice, single-photon detection systems feature timing
jitter, which is an uncertainty in the measured arrival time of
the particle. A timing uncertainty of the detection process can
be modeled by convoluting the real probability distribution,
p(t ) given in Eq. (9), with a Gaussian distribution defined by

qD(t ) =
exp

( − t2

2σ 2
D

)
√

2πσ 2
D

, (15)

where σD is the timing jitter. This parameter in the case of
superconducting nanowire single-photon detectors (SNSPDs)
is of the order of 25 ps [20,21] and for state-of-the-art ones can
reach 1 ps [22]. The POVM, when taking imperfect detectors
into account, can then be written as

M̂D(t ) =
∫ ∞

−∞
M̂(t ′) ∗ qD(t − t ′)dt ′. (16)

The measurement operator M̂D(t ) can be decomposed in terms
of mixed states as opposed to M̂(t ), which is defined using
pure states; see Eq. (11). This is illustrated in Fig. 2, where
the second and third columns show the impact of the detector
imperfection. Even a very small jitter increases the entropy
of the POVM significantly. Note that for 4 ps the spiral is
degenerated to a line. This effect, however, can be partially
compensated for by adding more dispersion (increasing the
length of the fiber) as can be seen by comparing the POVMs
in the last column. In general, a larger detector timing jitter
makes the measurement points collapse on the Bloch sphere,
reducing the purity of the POVM elements. A longer fiber, on
the other hand, results in a spiral with a greater radius, but
the measurement points are localized nearer the equator. This
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FIG. 2. Visualization of a POVM set on the Bloch sphere in the ideal scenario (first column) and in the cases of the detector jitter
of 1 ps (second column) and 4 ps (third column). Under each Bloch sphere, we put the probability density, p(t ), given by Eq. (9) after
propagation through a fiber link by an example input state |ψin〉 = 1√

2
(|0〉 + |1〉). The probability density for the orthogonal state to |ψin〉

shows complementary fringes (maxima are replaced by minima and vice versa). In the case of large detector timing jitter, the fringes are not
visible. In the rows, we put different values of the fiber length. The color in the temperature mapping represents the probability density of the
measurement, μ(t ) of the respective POVM element, where the most probable is colored with red [the highest μ(t )].

means that, for very long fibers, one would be able to estimate
only the phase of the state.

A dispersive medium, a fiber in the particular realization
described above, and time-resolved single-photon measure-
ment technique define an informationally complete POVM,
as presented in Eq. (11) and illustrated in Fig. 2. In practical

realization, one must decide on a number of time instants to
be taken into account, which will result in the same number
of measurements. The difference between this method and a
classic projective measurement approach is that here we do
not have to change measurement basis to get full informa-
tion for tomography. Our approach is analogous to a classic
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setting, where detectors monitor six output ports of measure-
ment apparatus designed such that each port corresponds to
one of the four linear and two circular polarizations [23].

B. Qudit

The framework introduced for qubits can be easily gener-
alized to qudits. We define a qudit as a photon delocalized in d
wave packets separated by a time interval τ . A wave function
for a qudit can be defined, in analogy to Eq. (1), as

ψ (t ) =
d−1∑
n=0

αnu

(
t − nτ + d − 1

2
τ

)
, (17)

where αn are complex numbers satisfying the normalization
condition,

∑d
n=0 |αn|2 = 1, and u(t ) is given by the Eq. (2).

The basis vectors are defined by the following formula,

|n〉 =
∫ ∞

−∞
dt u

(
t − nτ + d − 1

2
τ

)
|t〉 , (18)

where n = 0, . . . , d − 1. The overlap of two arbitrary states
reads

〈n|k〉 = e− τ2 (k−n)2

16σ2 . (19)

In turn, the measurement operator as defined by Eq. (11) can
be generalized by using the weight

μ(t ) = σ√
π

√
C

(
e− σ2 (t+ d−1

2 τ )2

C + · · · + e− σ2 (t− d−1
2 τ )2

C

)
(20)

and measurement vector

|ψM (t )〉 = 1√
μ(t )

⎛
⎜⎜⎜⎜⎜⎜⎝

uL(t + d−1
2 τ )

uL(t + d−3
2 τ )

...

uL(t − d−3
2 τ )

uL(t − d−1
2 τ )

⎞
⎟⎟⎟⎟⎟⎟⎠

. (21)

It can be shown that the completeness of the measurement
operators also holds,

∫ ∞
−∞ M̂(t )dt ≈ 1, with the assumption

of the approximate orthogonality of the basis states. Next, the
detector jitter can be taken into account in the same way as
before; cf. Eq. (16). As for qubits, but only for the case with no
detector jitter, the POVM can be represented on the Bloch ball
by using the Majorana representation [24,25]. An example for
a qutrit is shown in Fig. 3 and discussed in the next section.

III. QUANTUM STATE TOMOGRAPHY

We postulate that a large number of identical copies of a
given state is generated. The state is then reconstructed based
on the statistics of the temporal detections; see the example
of p(t ) in Fig. 2. In an experiment, it is challenging to obtain
a perfect informationally complete set of measurement opera-
tors. Therefore, we need to evaluate the efficiency of realistic
measurement operators.

We assume that we are able to describe the imperfections
of the experimental apparatus and therefore we apply the for-
mula for the detection probability which contains the detector
jitter. The measurement operators, which were discussed in
the previous section, constitute an approximate POVM and

FIG. 3. Illustration of pairs of measurements points on the Bloch
sphere for qutrits in the ideal scenario. In the rows, we put different
values of length of the fiber. The highest probabilities of our detector
registering a photon are marked as red and the lowest probabilities in
violet.

can be used as a source of information for quantum state
tomography. Mathematically, we follow the Born rule to de-
scribe the detection probabilities. Expected photon counts are
then computed, assuming that we use 103 identical photons.
Since our POVM as given by Eq. (16) is defined in the time
domain, we select a discrete subset of 26 measurement opera-
tors (25 in the case of entangled photons).

In reality, measurement results are burdened with errors
and noise. We consider the Poisson noise, which is a typical
form of uncertainty associated with the measurement of pho-
tons [26]. Since our model is based on photon counting, the
Poisson noise appears to be adequate. Thus, we numerically
generate a set of experimental data by imposing the Poisson
noise on the expected photon counts. For any input state,
this approach allows us to simulate a realistic experimental
situation.

Then, we employ two very widely used quantum state
tomography techniques: the maximum likelihood estimation
(MLE) [27,28] and the least squares (LS) method [29], which
are often compared in terms of their efficiency, e.g., Ref. [30].
For the convenience of numerical analyses, we adopt from
Ref. [31] the factorization of the unknown density matrix,
which provides Hermiticity, positivity, and normalization:

ρ = W †W

Tr{W †W } , (22)
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TABLE I. Average fidelity with standard deviation for quantum
tomography of qubits computed numerically for different values of
experimental parameters. The results were obtained over a sample
of 9261 qubits. The experimental results were simulated with the
Poisson noise. The same set of data was used for both LS and MLE
quantum tomography techniques.

L\σD 0 ps 1 ps 4 ps

200 m LS 0.9995(12) 0.9982(18) 0.61(18)
MLE 0.998(2) 0.987(11) 0.58(18)

500 m LS 0.996(4) 0.9962(34) 0.9951(45)
MLE 0.9921(31) 0.9897(42) 0.91(4)

where W denotes a complex left triangular matrix. This de-
composition ensures that the estimated matrix is physical
and belongs to the quantum state set. The quality of the
reconstructed state is quantified by computing the quantum
fidelity [32], which is defined for two mixed states ρ, σ by

F (ρ, σ ) := (Tr
√√

ρ σ
√

ρ )2. (23)

It is easy to verify that 0 � F (ρ, σ ) � 1 and F (ρ, σ ) =
1 if and only if ρ = σ . Furthermore, it is symmetric, i.e.,
F (ρ, σ ) = F (σ, ρ), which does not stem straightforwardly
from the definition. That formula can be simplified if one
considers only pure states, i.e., F (ρ, σ ) = | 〈ψρ |ψσ 〉 |2 for
ρ = |ψρ〉 〈ψρ | and σ = |ψσ 〉 〈ψσ |.

We use quantum state fidelity F (ρin, ρout ) to evaluate the
quality of our tomography framework. Since the value of the
fidelity depends on the initial density matrix ρin, we intro-
duce the average fidelity, Fav , as the figure of merit. It is
defined as the mean value computed over all possible input
states, ρin. It allows us to determine the average performance
of our quantum tomography scheme. In practice, we can-
not find analytically the average fidelity over the entire state
set, so we select a representative sample of quantum states
for numerical analysis. The sample is selected based on a
parametric-dependent structure of the density matrix where
each parameter goes over the full range. Then, each input
state from this discrete set is sent through the fiber, next we
simulate measurement results distorted by the Poisson noise,
and finally we can reconstruct the density matrix.

A. Qubit

For a qubit, the triangular matrix, W , parametrizing the
density operator, ρ, given by Eq. (22) takes the following
form:

W =
(

w1 0
w3 + i w4 w2

)
, (24)

where w1,w2,w3,w4 ∈ R. Thus, the problem of reconstruct-
ing the initial density matrix can be formulated in terms of
determining the values of w1,w2,w3,w4.

Numerical simulation has been conducted to test the
effectiveness of our measurement operators for quantum to-
mography in different experimental setups. The main results
are gathered in Table I. One can observe that for σD = 0 (mea-
surements without jitter) both quantum tomography methods

result in an average fidelity very close to 1. For both values
of the fiber length, the figures are very close (we consider the
difference negligible). This outcome confirms that in the ideal
scenario (no jitter) any quantum state can be reconstructed
flawlessly and the Poisson noise does not reduce the average
fidelity. Both MLE and LS methods lead, on average, to the
relevant quantum state.

If we analyze the results in the rows of Table I, one can
easily notice that for the fiber length of 200 m the average
fidelity decreases as the detector jitter increases. It is a conse-
quence of the detector jitter, leading to a greater uncertainty.
However, when the detector jitter equals 1 ps, both quantum
tomography methods can still reconstruct the initial state with
high accuracy.

The most interesting conclusion can be drawn if we com-
pare the results in the columns. One can see that when the
detector jitter is fixed at 4 ps, we obtain significantly higher
average fidelity for the longer fiber. In the case of L = 200 m,
the state reconstruction appears highly inaccurate since we
have low average fidelity. However, it can be improved if we
extend the length of the fiber to 500 m. This means that the
two parameters, the length of a fiber and the detector jitter,
have opposing impacts on the average fidelity. One can reduce
the errors due to the detector jitter by using a longer fiber.
Numerical results are in agreement with Fig. 2, where the
measurement points are depicted on the Bloch ball. For the
fixed jitter, the operators M̂D(t ), which constitute the POVM,
are less mixed if the fiber is longer.

B. Qutrit

The basis states for a qutrit are defined as in Eq. (18)
and the states generating the POVM are given by Eq. (21)
for n = 3. To visualize the POVM on the Bloch sphere for
qutrits, we utilize Majorana representation [24]. It allows us to
associate a pair of two-dimensional states with a qutrit. For the
qutrit measurement vector, given by Eq. (21), one can write a
quadratic Majorana polynomial p(|ψM〉) = 0 [25]:

e
i(t−τ )2

4βL−2iσ2 z2 −
√

2e
it2

4βL−2iσ2 z + e
i(t+τ )2

4βL−2iσ2 = 0. (25)

Stereographic projection is used to associate the two complex
numbers with two points on the Bloch sphere. We visualize
this for two different lengths of the fiber to see how the pairs
of points are distributed on the Bloch sphere.

In the case of qutrits, we follow a very similar quantum
tomography procedure as for qubits. First, we use the same
parametric-dependent formula for the unknown density ma-
trix given by Eq. (22). Here, the matrix W depends on nine
real parameters:

W =
⎛
⎝ w1 0 0

w4 + i w5 w2 0
w8 + i w9 w6 + i w7 w3

⎞
⎠. (26)

Thus, the problem of state reconstruction for qutrits can be
translated into finding the values of w1,w2, . . . ,w9. Next, to
evaluate the effectiveness of the POVM for qutrits, we follow
exactly the same steps as for qubits.

The results of the average fidelity for quantum tomography
of qutrits are gathered in Table II. One can observe that in
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TABLE II. Average fidelity with standard deviation for quantum
tomography of qutrits computed numerically for different values of
experimental parameters. The results were obtained over a sample
of 9261 qutrits. The experimental results were simulated with the
Poisson noise. The same set of data was used for both LS and MLE
quantum tomography techniques.

L\σD 0 ps 1 ps 4 ps

200 m LS 0.988(13) 0.949(52) 0.61(24)
MLE 0.988(15) 0.959(36) 0.61(24)

500 m LS 0.971(31) 0.969(31) 0.91(8)
MLE 0.970(29) 0.969(29) 0.91(8)

the case of perfect measurements (no jitter), both methods
can reconstruct the initial quantum state with only limited
accuracy. If we analyze the results in the row for L = 200 m,
we can observe a substantial influence of the detector jitter
on the average fidelity. Particularly, if σD = 4 ps, the average
fidelities are relatively small, but they are very close to the
results in the case of qubit reconstruction. The difference is
that for qutrits we get a higher standard deviation, which
means that the variation of the set of quantum state fidelities
is greater than for qubits.

Two conclusions can be drawn from the results in the
columns. First, if σD = 1 ps or σD = 4 ps, the MLE and LS
methods appear to follow the same tendency as for qubits,
i.e., the average fidelity increases when we use a longer fiber.
Second, it should be noted that for σD = 4 ps the scale of
improvement is most significant. Interestingly, both quantum
state tomography techniques yielded the same results. How-
ever, the LS method leads to worse precision than in the case
of qubits.

C. Entangled qubits

To demonstrate the performance of our quantum tomogra-
phy framework on entangled photon pairs, we shall consider
input states in the form

|	+〉 = 1√
2

(|00〉 + eiφ |11〉), (27)

where φ is the relative phase (0 � φ < 2π ). This type of two-
photon entangled state is commonly considered in quantum
communication protocols based on time bins since it can be
produced by spontaneous four-wave mixing (SFWM) in a
dispersion-shifted fiber [33,34], by spontaneous parametric
down conversion (SPDC) [35], and by a source utilizing quan-
tum dots [36,37].

The problem of relative phase estimation was first solved
for polarization entangled photons [38]. In the case of time-
bin entangled qudits, it has recently been undertaken [39,40]
though by different measurement techniques. For such states,
as given by Eq. (27), we simulated measurement results which
are distorted by the Poisson noise. We use 25 measurement
operators defined as

M(ti, t j ) := M̂D(ti ) ⊗ M̂D(t j ), (28)

TABLE III. Average fidelity with standard deviation for entan-
gled qubits tomography, computed numerically for different values
of experimental parameters. Each value was obtained over a sample
of 200 states. The experimental results were simulated with the
Poisson noise. The same set of data was used for both LS and MLE
quantum tomography techniques.

L\σD 0 ps 1 ps 4 ps

200 m LS 0.974(15) 0.937(41) 0.48(31)
MLE 0.988(1) 0.951(36) 0.45(34)

500 m LS 0.981(1) 0.978(11) 0.85(1)
MLE 0.99(1) 0.984(16) 0.85(1)

where M̂D(ti) denotes the single-qubit measurement operator
with the detector jitter, Eq. (16), and ti, t j belong to a discrete
five-elements subset selected from the time domain.

Numerical data are used to perform quantum state tomog-
raphy by MLE and LS methods. We assume that there is
no a priori knowledge about the system; i.e., the unknown
quantum state takes the general form of 4 × 4 density matrix.
Thus, we follow Eq. (22), where the matrix W depends on 16
real parameters:

W =

⎛
⎜⎝

w1 0 0 0
w5 + i w6 w2 0 0

w11 + i w12 w7 + i w8 w3 0
w15 + i w16 w13 + i w14 w9 + i w10 w4

⎞
⎟⎠.

(29)
We consider a sample of 200 input states defined as Eq. (27)
with different values of the relative phase. For each input state,
we generate a set of realistic measurement results and then
we introduce this data to MLE and LS algorithms in order to
estimate the values of 16 parameters. Finally, we compute the
fidelity between the reconstructed state and the original state
ρin = |	+〉 〈	+|.

Table III presents the values of the average state fi-
delity computed for different combinations of experimental
parameters.

One can observe tendencies very similar to those in the
earlier examples. For σD = 4 ps and L = 200 m, the quan-
tum tomography framework appears inefficient, whereas if we
replace the length of the fiber with L = 500 m, the average
fidelity improves.

It is worth noting that the length of the fiber can com-
pensate for the detector even for greater values of the timing
jitter. If we consider σD = 20 ps and L = 5 km, we get the
average fidelity equal to 0.85(14) (LS) and 0.80(20) (MLE).
Additionally, these figures can rise if one performs more mea-
surements. By taking 36 operators of the form Eq. (28), we
can increase the average fidelity to 0.97(2) (LS) and 0.88(12)
(MLE). It appears that the interdependence between the de-
tector jitter and the fiber length should be studied in detail.
However, changing the length of the fiber involves adapting
the choice of time instants due to dispersion, which causes
broadening the pulse widths of the photons. Extensive analy-
sis of the average fidelity for the full range of lengths would
require more processing power and for this reason it will be
the subject of future research.
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IV. SUMMARY AND OUTLOOK

In conclusion, we have demonstrated an effective method
of measuring quantum states encoded in temporal modes of
photons. Numerical tools allowed us to verify under which cir-
cumstances the reconstruction methods are the most effective
for a set of realistic experimental parameters. To investigate
the performance of our quantum state tomography schemes,
we employed the average fidelity. Our analysis indicates that a
longer fiber can compensate for the effects caused by detector
jitter.

There are remaining research problems that need further
investigation. For instance, it will be useful to perform more
numerical simulations of the average fidelity for a wider range
of parameters in order to obtain a broad view on the effec-

tiveness of our schemes. Moreover, the quantum tomography
framework shall be tested on different multiphoton states;
in particular, more types of entangled photon pairs will be
considered.
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