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Canonical forms of two-qubit states under local operations
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Canonical forms of two-qubits under the action of stochastic local operations and classical communications
(SLOCC) offer great insight for understanding nonlocality and entanglement shared by them. They also enable
geometric picture of two-qubit states within the Bloch ball. It has been shown [Phys. Rev. A 64, 010101(R)
(2001)] that an arbitrary two-qubit state gets transformed under SLOCC into one of the two different canonical
forms. One of these happens to be the Bell diagonal form of two-qubit states and the other a nondiagonal
canonical form is obtained for a family of rank deficient two-qubit states. The method employed by Verstraete
et al. [Phys. Rev. A 64, 010101(R) (2001)] required highly nontrivial results on matrix decompositions in
n-dimensional spaces with an indefinite metric. Here we employ an entirely different approach—inspired by
the methods developed by Rao et al. [J. Mod. Opt. 45, 955 (1998)] in classical polarization optics—which leads
naturally towards the identification of two inequivalent SLOCC invariant canonical forms for two-qubit states.
In addition, our approach results in a simple geometric visualization of two-qubit states in terms of their SLOCC
canonical forms.
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I. INTRODUCTION

Geometric intuition inscribed in the Bloch ball picture
of qubits serves as a powerful tool in the field of quantum
information processing. Simplicity of this geometric represen-
tation of qubits inspired its generalization to quantum single
party systems in higher dimensions [1–3]. However, these
attempts resulted in complicated geometric features. On the
other hand, physically relevant visualization of the simplest
bipartite quantum system viz., joint state of two-qubits, has
been developed by several groups [4–13]. Geometric repre-
sentation of two-qubit states inside the Bloch ball provides
a natural picture to understand correlation properties, such
as entanglement [4,6,12–15], quantum discord [10–12], and
nonlocal steering [6,12,14–19].

Previously, Verstraete et al. [5] and Verstraete [6] high-
lighted that SLOCC on a two-qubit density matrix ρAB

correspond to Lorentz transformations on the 4 × 4 real ma-
trix parametrization � of ρAB and they arrived at two different
types of canonical forms for the real matrix �. The canonical
forms of � correspond to its Lorentz singular value decom-
positions, offering a natural classification of the set of all
two-qubit density matrices into two different SLOCC families.

*arutth@rediffmail.com

The canonical SLOCC transformations also paved way to vi-
sualization of two-qubit state—as an ellipsoid inscribed inside
the Bloch ball [5,6,10–12]. However, the mathematical recipe
used in Refs. [5,6] to arrive at the SLOCC canonical forms is
highly technical and depended on nontrivial results on matrix
decompositions in spaces with indefinite metric [20]. More-
over, it was pointed out [12] that this approach fails to reveal
the geometric features in an unambiguous fashion. A more
detailed investigation by Jevtic et al. [12] focused towards an
elegant geometric representation, mapping a two-qubit state to
an ellipsoid lying inside the Bloch ball in a complete manner
with the help of suitable SLOCC transformations. However,
this paper did not address the relevant issue of identifying
canonical forms of two-qubit density matrix ρAB, based on the
Lorentz singular value decomposition of the associated 4 × 4
real matrix �. A straightforward method to identify Lorentz
singular value decomposition, which, in turn, gets connected
with the SLOCC canonical forms of two-qubit states, is still
lacking. In this paper we address this issue, using the meth-
ods developed in classical polarization optics by some of us
[21,22]. Our method leads to the identification of two dif-
ferent types of SLOCC canonical forms for two-qubit states.
The canonical forms identified by our approach are shown to
be Lorentz equivalent to the ones obtained in Ref. [5]. Our
detailed analysis gives a fresh perspective on the geometric
representation of two-qubit states in terms of their SLOCC
inequivalent canonical forms.
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Contents of the paper are organized as follows: In Sec. II,
we obtain the 4 × 4 real matrix parametrization � of a two-
qubit density matrix ρAB shared between Alice and Bob. After
giving a brief outline on Minkowski space notions of posi-
tive, neutral, negative four-vectors, and orthochronous proper
Lorentz group (OPLG), we show that: (i) the real 4 × 4 matrix
� gets pre- and postmultiplied by the 4 × 4 Lorentz matrices
LA and LT

B (the superscript “T ” denotes matrix transposition)
under the action of SLOCC transformation—implemented
by Alice and Bob, respectively, on their individual qubits;
(ii) the 4 × 4 real matrix � maps the set of all four-vectors
with non-negative Minkowski norm into itself. Section III
gives details on finding the canonical forms of real sym-
metric matrices �A = �G�T and �B = �T G�, [which are
constructed from the real matrix � and the Minkowski
metric G = diag(1,−1,−1,−1)] using Lorentz congruent
transformations LA�ALT

A and LB�BLT
B , respectively. Lorentz

singular value decompositions �c = LA�LT
B of two inequiva-

lent canonical forms �Ic , �IIc of the 4 × 4 real matrix � and
the corresponding two-qubit density matrices ρ

Ic
AB, ρ

IIc
AB, and

ρ
IIc
BA are also given here. Furthermore, equivalence between the

canonical forms obtained earlier by Verstraete et al. [5] and
Verstraete [6] with the ones realized based on our approach,
is established in Sec. III. Geometric representation to aid vi-
sualization of SLOCC canonical forms of the two-qubit states
is discussed in Sec. IV. A concise summary of our results is
presented in Sec. V.

II. REAL PARAMETRIZATION OF TWO-QUBIT DENSITY
MATRIX AND SLOCC TRANSFORMATIONS

Consider a two-qubit state ρAB belonging to the Hilbert
space HA ⊗ HB ≡ C2 ⊗ C2, shared between two parties Al-
ice and Bob. It can be expressed in the Hilbert-Schmidt basis
{σμ ⊗ σν, μ, ν = 0–3} as

ρAB = 1

4

3∑
μ,ν=0

�μν (σμ ⊗ σν ), (2.1)

where

�μν = Tr[ρAB(σμ ⊗ σν )]. (2.2)

Here σ0 = 12, denotes a 2 × 2 identity matrix, and σ1, σ , and
σ3 are the Pauli matrices.

Expressed in the 2 × 2 block form, the 4 × 4 real matrix �

defined in (2.2) takes the following compact form:

� =
(

1 bT

a T

)
, (2.3)

with the superscript T denoting matrix transposition; a =
(a1, a2, a3)T , b = (b1, b2, b3)T denote Bloch vectors of the
reduced density matrices ρA = TrB(ρAB), ρB = TrA(ρAB) of
qubits A, B, respectively, and T corresponds to a 3 × 3 real
correlation matrix, elements of which are given by ti j =
Tr(ρABσi ⊗ σ j ), i, j = 1–3. Thus, the 4 × 4 matrix � is char-
acterized by 15 real parameters (three each of the Bloch
vectors a, b, and nine elements of the correlation matrix T )
and provides a unique real matrix parametrization of the two-
qubit density-matrix ρAB.

We give a brief outline on the Minkowski four-vectors
and OPLG transformations in the following subsection before
discussing the properties of the real parametrization � of the
two-qubit state.

A. Minkowski space, four-vectors, and OPLG

The Minkowski space M is a four-dimensional real
vector space consisting of four-vectors or Minkowski vec-
tors [23,24], denoted by x = (x0, x1, x2, x3)T . The space is
equipped with the metric,

G = diag(1,−1,−1,−1), (2.4)

and a scalar product,

xT Gy = x0y0 − x1y1 − x2y2 − x3y3. (2.5)

As the Minkowski squared norm xT Gx of an arbitrary four-
vector x can assume positive, zero, or negative values, we
employ the following nomenclature [21–25]:

(i) xT Gx > 0: positive four-vector,
(ii) xT Gx = 0: neutral (or null) four-vector,
(iii) xT Gx < 0: negative four-vector.

Consider the set of all real 4 × 4 matrices,

{L| det L = 1, L00 > 0},
which constitutes the orthochronous proper Lorentz group
SO(3,1). By definition, Lorentz matrix L preserves the
Minkowski norm, i.e., the four-vector Lx is positive, neutral,
or negative depending on whether x ∈ M is positive, neu-
tral, or negative, respectively. In particular, it is pertinent to
highlight that the set S+: {x ∈ M|xT Gx � 0, x0 > 0} of four-
vectors gets mapped to itself under OPLG, i.e., S̃+: {x̃ = Lx ∈
M|x̃T Gx̃ � 0, x̃0 > 0} ≡ S+. We would discuss, in Sec. II C,
about encoding the set of all non-negative single-qubit opera-
tors in C2 in terms of four-vectors of the set S+.

B. SLOCC transformations and OPLG

Under the action of SLOCC, a two-qubit density matrix
ρAB transforms as [5,6,12]

ρAB −→ ρ̃AB = (A ⊗ B)ρAB(A† ⊗ B†)

Tr[ρAB(A†A ⊗ B†B)]
, (2.6)

where A, B ∈ SL(2, C) denote 2 × 2 complex matrices with a
unit determinant. Owing to the homomorphism between the
groups SL(2,C) and SO(3,1), one finds the correspondence
±A �→ LA, ±B �→ LB, where A, B ∈ SL(2, C) and LA, LB ∈
SO(3, 1). In particular, the basis matrices σμ ⊗ σν, μ, ν =
0–3 get transformed under SL(2, C) ⊗ SL(2, C) as

(A ⊗ B)(σμ ⊗ σν )(A† ⊗ B†) = AσμA† ⊗ BσνB†

=
∑

α,β=0–3

(LA)αμ(LB)βνσα ⊗ σβ. (2.7)

Thus, SLOCC operation ρAB → ρ̃AB on the two-qubit state is
equivalent to the following transformation (up to normaliza-
tion),

� −→ �̃ = LA�LT
B , (2.8)
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on the real matrix �. So, it is evident that �̃—obtained after
OPLG transformations LA, LB on � [see (2.8)]—parametrizes
the two-qubit density matrix ρ̃AB, which is physically real-
izable under SLOCC. Using suitable OPLG transformations
LAc , LBc one should be able to arrive at a canonical (normal)
form �c associated with a given �, i.e.,

�c = LAc�LT
Bc

. (2.9)

It may be seen that (2.9) is the Minkowski space counterpart
of the singular value decomposition in Euclidean space and is
referred to as the Lorentz singular value decomposition [5,6].

C. Real symmetric matrices �A = �G�T and �B = �TG�

Let us denote the set of all non-negative operators acting on
the Hilbert space C2 by P+ := {P|P � 0}. An element P ∈
P+ can be represented in the Pauli basis σμ = (12, σ1, σ2, σ3)
as

P = 1

2

∑
μ

pμσμ, (2.10)

where pμ = Tr(Pσμ), μ = 0–3 are the four real parame-
ters characterizing P. With every P ∈ P+, we associate a
four-vector p = (p0, p1, p2, p3)T . Non-negativity P � 0 of
the operator P is synonymous to the conditions p0 > 0 and
p2

0 − p2
1 − p2

2 − p2
3 � 0 on the four-vector p. In the language

of Minkowski space, non-negativity of the operator P �
0 reflects itself as the squared Minkowski norm condition
pT Gp � 0 together with the restriction p0 > 0 on the zeroth
component of the four-vector p.

Let us consider the map,

PA �→ QB = 2 TrA[(
√

PA ⊗ 12)ρAB(
√

PA ⊗ 12)]

= 2 TrA[ρAB(PA ⊗ 12)], (2.11)

from the set of all non-negative operators P+
A := {PA|PA � 0}

on the Hilbert space HA to the set of non-negative opera-
tors Q+

B := {QB = 2 TrA[ρAB(PA ⊗ 12)]} acting on the Hilbert
space HB. We have

QB = 2 TrA[ρAB(PA ⊗ 12)]

= 1

2

∑
ν

(�T pA)νσν, (2.12)

which results in the Minkowski four-vector transformation,

qB = �T pA. (2.13)

Thus, the map PA �→ QB is found to be identical to the four-
vector map �T : pA �→ qB = �T pA. Non-negativity of the
squared Minkowski norm of the four-vector qB (which cor-
responds to QB � 0) leads to

qT
B GqB � 0 �⇒ pT

A�G�T pA � 0

�⇒ pT
A�ApA � 0, (2.14)

where

�A = �G�T (2.15)

denotes a real symmetric 4 × 4 matrix, associated with the
real parametrization � of the two-qubit density matrix ρAB.

Furthermore, positivity of the zeroth component of the four-
vector pA imposes that

pA0 > 0 �⇒ qB0 = (�T pA)0 > 0. (2.16)

Similarly, the map,

PB �→ QA = 2 TrB[(12 ⊗ √
PB)ρAB(12 ⊗ √

PB)]

= 2 TrB[ρAB(12 ⊗ PB)], (2.17)

from the set of all non-negative operators P+
B := {PB |PB �

0} acting on the Hilbert space HB to the set Q+
A := {QA =

2 TrB[ρAB(12 ⊗ PB)] ⊂ HA on the Hilbert space HA leads to
the identification,

QA = 1

2

∑
μ

(�pB)μσμ. (2.18)

In turn, we obtain the Minkowski four-vector transformation,

qA = �pB, (2.19)

where the four-vector qA characterizes a non-negative oper-
ator QA ∈ Q+

A faithfully. The map PB �→ QA reflects itself in
terms of the four-vector transformation �: pB �→ qA = �pB

in the Minkowski space such that

qA0 > 0 �⇒ (�pB)0 > 0, (2.20)

qT
A GqA � 0 �⇒ pT

B�T G�pB � 0

�⇒ pT
B�BpB � 0, (2.21)

where, we have denoted

�B = �T G�. (2.22)

The 4 × 4 real symmetric matrices �A = �G�T , �B =
�T G� constructed from the real counterpart � of the two-
qubit density matrix ρAB play a central role in our analysis.

III. LORENTZ SINGULAR VALUE DECOMPOSITION OF
� AND CANONICAL FORMS OF TWO-QUBIT DENSITY

MATRIX UNDER SLOCC

From the properties of the 4 × 4 real matrix �, parametriz-
ing the two-qubit density matrix ρAB, it is clear that: (i)
under the map pA �→ qB = �T pA and pB �→ qA = �pB [(see
(2.13), (2.19)], four-vectors pA, qA with Minkowski norms
pT

A GpA � 0, qT
A GqA � 0 and positive zeroth components

pA0 > 0, qA0 > 0 get transformed to four-vectors qB, pB

such that {qT
B GqB � 0, qB0 > 0}, {pT

B GpB � 0, pB0 > 0},
respectively. Furthermore, (ii) the sets {�p|pT Gp � 0, p0 >

0} and {p̃ = LA�LT
B p|p̃T Gp̃ � 0, p̃0 > 0} are equivalent, as

they are related to each other via SLOCC transformations on
the two-qubit state ρAB.

Our interest is to look for a particularly simple canonical
form as in (2.9) for � by identifying suitable OPLG trans-
formations LAc , LBc . In terms of the real symmetric matrices
�A = �G�T and �B = �T G� introduced in (2.15), (2.22),
we express

�c
A = LAc�LT

Bc
GLBc�

T LT
Ac

= LAc�ALT
Ac

, (3.1)
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�c
B = LBc�

T LT
Ac

GLAc�LT
Bc

= LBc�BLT
Bc

, (3.2)

where we have used the defining property LT GL = G of
Lorentz transformation matrix L and denoted the canonical
forms of the real symmetric matrices �A,�B by �c

A, �c
B,

respectively.
We would like to emphasize here that the canonical form

�c
A is determined completely by the real matrix � and the

OPLG tranformations LAc [see (3.1)]. Similarly, �c
B is entirely

characterized by � and LBc [see (3.2)]. Therefore, it is possible
to introduce the following canonical forms �c

A,�c
B (up to

normalization) for the real matrix �, associated with �c
A and

�c
B, respectively,

�c
A = LAc�LT

B , �c
B = LBc�

T LT
A . (3.3)

Note that in (3.3) the OPLG transformations LAc , LBc corre-
spond to physical SLOCC operations carried out by Alice,
Bob on their parts of the two-qubit state; but the operations
LA, LB denote any arbitrary OPLG transformations, which,
respectively, leave the structure of �c

A,�c
B unaltered. Thus,

we express

�c
A = �c

AG
(
�c

A

)T
, �c

B = �c
BG

(
�c

B

)T
, (3.4)

by substituting (3.3).
Continuing further, we note that the Lorentz congruent

transformations,

�A −→ �̃A = LA�ALT
A ,

�B −→ �̃B = LB�BLT
B (3.5)

are not similarity transformations. But, the following pair of
matrices

G�A = G�G�T , G�B = G�T G� (3.6)

do undergo similarity transformations,

G�A −→ GLA�ALT
A

= (
LT

A

)−1
G�ALT

A , (3.7)

G�B −→ GLB�BLT
B

= (
LT

B

)−1
G�BLT

B , (3.8)

when �A,�B undergo OPLG transformations (3.5). In (3.7),
(3.8), we have used GL = (LT )−1G satisfied by every OPLG
matrix L. It is evident that the eigenvalues of G�A and
G�B remain invariant under OPLG transformations LA, LB,
associated with the SLOCC operations on qubits A and B, re-
spectively. Furthermore, it is readily seen that the eigenvalues
of G�A, G�B are identical as

Tr[(G�A)n] = Tr[(G�B)n], n = 1, 2, . . . . (3.9)

Based on a detailed algebraic analysis carried out by some
of us [21,22,26] on 4 × 4 real matrices, satisfying the condi-
tions (2.14), (2.16), (2.20), and (2.21), we state the following
theorem on the nature of eigenvalues and eigenvectors of the
matrices G�A (G�B):

Theorem. The 4 × 4 real matrix G�A (G�B) associated
with the real form � of a two-qubit density matrix ρAB neces-
sarily possesses

(i) non-negative eigenvalues;
(ii) either positive or neutral eigenvectors corresponding

to its highest eigenvalue;
(iii) a set of eigenvectors consisting of either

(a) one positive four-vector belonging to the highest
eigenvalue and three negative four-vectors

or
(b) one neutral four-vector belonging to the highest

eigenvalue—at least, doubly degenerate—and two nega-
tive four-vectors.
From the above theorem (see Appendix A for a concise

proof) it follows that two different cases arise, depending on
whether the eigenvector belonging to the highest eigenvalue
of G�A (G�B) is positive or neutral. Consequently, we have
two types of canonical forms for �A (�B) and, consequently,
for the real parametrization �, the corresponding two-qubit
density matrix ρAB under SLOCC transformations. Note that
the eigenvalues, eigenvectors of G�A (G�B) are also referred
to as G eigenvalues and G eigenvectors of the real symmetric
matrix �A (�B).

Next, we proceed to find two different types of canonical
forms of the real symmetric matrices �A, �B.

A. Type-I canonical form

Let us arrange the eigenvalues of G�A, G�B in the or-
der λ0 � λ1 � λ2 � λ3 and denote the associated set of
eigenvectors by {a0, a1, a2, a3} and {b0, b1, b2, b3}, respec-
tively. Suppose that a0 and b0 are positive four-vectors. From
(iii a) of the theorem, it is clear that the set of eigenvectors
{a0, a1, a2, a3} and {b0, b1, b2, b3} associated with the eigen-
values λ0, λ1, λ2, λ3 of the respective matrices G�A, G�B

form Minkowski G-orthoronal tetrads (see Appendix B for
details) obeying

aT
μGaν = Gμν, (3.10)

bT
μGbν = Gμν, (3.11)

where μ, ν = 0–3, and Gμ ν are elements of the Minkowski
matrix G. We construct OPLG canonical transformation ma-
trices LT

AIc
, LT

BIc
explicitly (see Appendix B),

LT
AIc

= (a0 a1 a2 a3), (3.12)

LT
BIc

= (b0 b1 b2 b3), (3.13)

by arranging the eigenvectors {a0, a1, a2, a3} and
{b0, b1, b2, b3} of G�A, G�B as columns of LT

AIc
, LT

BIc
,

respectively.
Using (3.10), (3.11), (3.12), (3.13), and the property,

G�A aμ = λμaμ ⇒ �Aaμ = λμGaμ, (3.14)

G�Bbμ = λμbμ ⇒ �Bbμ = λμGbμ, (3.15)
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of the eigenvectors of G�A, G�B, we arrive at the diagonal
canonical forms �Ac , �Bc ,

�
Ic
A = LAIc

�ALT
AIc

=

⎛⎜⎝λ0 0 0 0
0 −λ1 0 0
0 0 −λ2 0
0 0 0 −λ3

⎞⎟⎠,

�
Ic
B = LBIc

�BLT
BIc

=

⎛⎜⎝λ0 0 0 0
0 −λ1 0 0
0 0 −λ2 0
0 0 0 −λ3

⎞⎟⎠. (3.16)

Corollary 1. Under the canonical OPLG transformations
LAIc

, LBIc
as in (3.12), (3.13), the real matrix �, with

sgn[det(�)] = ±, assumes the following diagonal canonical
forms:

�
Ic
A = LAIc

�LT
B(

LAIc
�LT

B

)
00

= diag

(
1,

√
λ1

λ0
,

√
λ2

λ0
,±

√
λ3

λ0

)
,

�
Ic
B = LA�LT

BIc(
LA�LT

BIc

)
00

= diag

(
1,

√
λ1

λ0
,

√
λ2

λ0
,±

√
λ3

λ0

)
×λ0 � λ1 � λ2 � λ3, (3.17)

if and only if the eigenvectors corresponding to the highest
eigenvalue λ0 of G�A, G�B are positive four-vectors in M.

Proof. It follows from explicit evaluation that

�
Ic
A = λ0�

Ic
A G

(
�

Ic
A

)T
,

�
Ic
B = λ0(�Ic

B )T G
(
�

Ic
B

)
.

�
Expressed in terms of the three-term factorization,

� = (
LAIc

)−1
�

Ic
A

(
LT

B

)−1

[or equivalently � = (LBIc
)−1 �

Ic
B (LT

A )−1], it is evident that �

is characterized by 15 real parameters where six real param-
eters each are from the Lorentz transformations LAIc

, LB (or
LBIc

, LA) and the rest of the three real parameters are given by√
λi/λ0, i = 1–3.
It is easy to see that the two-qubit density matrix ρ

Ic
AB asso-

ciated with both canonical forms �
Ic
A , �

Ic
B is a Bell-diagonal

state,

ρ
Ic
AB = 1

4

(
12 ⊗ 12 +

∑
i=1,2

√
λi

λ0
σi ⊗ σi ∓

√
λ3

λ0
σ3 ⊗ σ3

)
= ρ

Ic
BA. (3.18)

B. Type-II canonical forms

Suppose the maximum eigenvalue λ0 of G �A, associated
with the neutral eigenvector u0 is, at least, doubly degenerate.
Let us denote the set of eigenvalues of G�A by {λ0, λ0, λ1, λ2}

arranged as λ0 � λ1 � λ2. From (iii b) of the theorem, we
have a maximal G-orthogonal triad {u0, ã1, ã2} of eigenvec-
tors of G�A obeying

uT
0 Gu0 = 0, uT

0 G̃ai = 0,

ãT
i G̃a j = −δi j, i, j = 1, 2.

As outlined in the Appendix B we construct a G-orthogonal
tetrad {̃a0, ã1, ã2, ã3} of four-vectors from the given set
{u0, ã1, ã2} of the eigenvectors of G�A which consists of one
neutral and two negative four-vectors.

Choosing a four-vector u3 such that uT
3 Gu0 �= 0 and

uT
3 G̃ai = 0, i = 1, 2, we construct

ã0 = u3 + τuu0, ã00 � 0,

ã3 = u3 − κuu0, (3.19)

where

τu = 1 − uT
3 Gu3

2uT
3 Gu0

,

κu = 1 + uT
3 Gu3

2uT
3 Gu0

. (3.20)

The tetrad {̃a0, ã1, ã2, ã3} of four-vectors satisfy the G-
orthogonality conditions: ãT

μG̃aν = Gμν .
On arranging the G-orthogonal tetrad {̃a0, ã1, ã2, ã3} as

columns, we construct the OPLG matrix,

LAIIc
= (̃a0 ã1 ã2 ã3), (3.21)

in order to transform �A to its canonical form.
Let us denote the “00” element of the matrix �

IIc
A by

φ0 = (
LAIIc

�ALT
AIIc

)
00

= ãT
0 �Aã0. (3.22)

Substituting (3.19), (3.20), (3.22), and simplifying “30” and
“33” matrix elements of �

IIc
A we obtain(

LAIIc
�ALT

AIIc

)
30 = ãT

3 �Aã0

= φ0 − λ0,(
LAIIc

�ALT
AIIc

)
33 = ãT

3 �Aã3

= φ0 − 2λ0. (3.23)

We, thus, arrive at the nondiagonal type-II canonical form of
the real symmetric matrix �A as

�
IIc
A = LAIIc

�ALT
AIIc

=

⎛⎜⎝ φ0 0 0 φ0 − λ0

0 −λ1 0 0
0 0 −λ2 0

φ0 − λ0 0 0 φ0 − 2λ0

⎞⎟⎠, (3.24)

where λ0 � λ1 � λ2.
In an analogous manner, we consider the triad {v0, b̃1, b̃2}

of eigenvectors of G�B corresponding, respectively, to the
eigenvalues λ0 (doubly degenerate) λ1 and λ2. The eigenvec-
tors satisfy G-orthogonality conditions,

vT
0 Gv0 = 0, vT

0 Gb̃k = 0,

b̃T
k Gb̃l = −δkl , k, l = 2, 3. (3.25)
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Starting from this eigenvector set containing one neutral and
two negative four-vectors, we pick a four-vector v3 such that
vT

3 Gv0 �= 0 and vT
3 Gb̃i = 0, i = 1, 2, and construct (see Ap-

pendix B for details),

b̃0 = v3 + τvv0, b̃00 � 0,

b̃3 = v3 − κvv0, (3.26)

where

τv = 1 − vT
3 Gv3

2vT
3 Gv0

,

κv = 1 + vT
3 Gv3

2vT
3 Gv0

. (3.27)

This helps us to identify the tetrad {̃b0, b̃1, b̃2, b̃3} of four-
vectors obeying G-orthogonality conditions b̃T

μ Gb̃ν = Gμν .
So, we can explicitly construct the canonical OPLG matrices,

LT
BIIc

= (̃b0 b̃1 b̃2 b̃3), (3.28)

and obtain the canonical form of the real symmetric matrix
�B = �T G� as

�
IIc
B = LBIIc

�BLT
BIIc

=

⎛⎜⎝ χ0 0 0 χ0 − λ0

0 −λ1 0 0
0 0 −λ2 0

χ0 − λ0 0 0 χ0 − 2 λ0

⎞⎟⎠. (3.29)

Here, we have denoted the “00” element of �
IIc
B by

χ0 = (
LBIIc

�BLT
BIIc

)
00 = b̃T

0 �Bb̃0. (3.30)

Then, we evaluate 30 and 33 elements of �
IIc
B by substituting

(3.26), (3.27), and (3.30) to obtain(
LBIIc

�BLT
BIIc

)
30 = b̃T

3 �Bb̃0

= χ0 − λ0,(
LBIIc

�BLT
BIIc

)
33 = b̃T

3 �Bb̃3

= χ0 − 2λ0. (3.31)

Corollary 2. When the eigenvectors corresponding to—at
least, doubly degenerate—largest eigenvalue λ0 of the matrix
G�A(G�B) is a neutral four-vector in M, there exist canon-
ical OPLG transformations LAIIc

, LBIIc
yielding the following

nondiagonal canonical forms of the real matrix �,

�
IIc
A = LAIIc

�LT
B(

LAIIc
�LT

B

)
00

=

⎛⎜⎜⎜⎜⎝
1 0 0 0

0
√

λ1
φ0

0 0

0 0 ±
√

λ2
φ0

0

1 − λ0
φ0

0 0 λ0
φ0

⎞⎟⎟⎟⎟⎠, (3.32)

where LB is an OPLG transformation and

�
IIc
B = LA�LT

BIIc(
LA�LT

BIIc

)
00

=

⎛⎜⎜⎜⎜⎜⎝
1 0 0 1 − λ0

χ0

0
√

λ1
χ0

0 0

0 0 ±
√

λ2
χ0

0

0 0 0 λ0
χ0

⎞⎟⎟⎟⎟⎟⎠,

(3.33)
with LA being a suitable OPLG transformation.

Depending on if sgn(det �) = ±, one obtains “±” sign in
the diagonal element (�IIc

A,orB)22 in (3.32), (3.33).
Proof. It readily follows from explicit evaluations that

�
IIc
A = φ0�

IIc
A G

(
�

IIc
A

)T
,

and

�
IIc
B = χ0

(
�

IIc
B

)T
G�

IIc
B .

�
Remark. From our discussions in Sec. II, which resulted

in the identification of real symmetric matrices �A,�B as-
sociated with the real parametrization � of the two-qubit
density-matrix ρAB [see (2.1), (2.3), (2.12)–(2.15), (2.18)–
(2.22)], we observe that

(i) although the real matrix � parametrizes the two-qubit
density-matrix ρAB, its transpose �T characterizes ρBA, which
is obtained by swapping A and B;

(ii) canonical SLOCC transformations ρAB −→ ρc
AB and

ρBA −→ ρc
BA are governed by the eigenvalues and the eigen-

vectors of the real matrices G�G�T = G�A, G�T G� =
G�B, respectively;

(iii) even though G�A, G�B share same eigenspectrum,
the associated set of eigenvectors is different, in general, and,
hence, one may expect different canonical structures ρc

AB, ρc
BA

for the density-matrices ρAB, ρBA;
(iv) exactly identical canonical forms �

Ic
A = �

Ic
B [see

(3.17)] and correspondingly ρc
AB = ρc

BA [see (3.18)] are ob-
tained when the eigenvectors of G�A, G�B corresponding to
their highest eigenvalue are positive four-vectors in M;

(v) when neutral four-vectors in M happen to be one of
the eigenvectors of G�A, G�B (corresponding to, at least,
doubly repeated highest eigenvalue λ0) there are two different
OPLG canonical forms [see (3.32), (3.33)] �

IIc
A ,�

IIc
B , and,

hence, SLOCC canonical forms ρ
IIc
AB, ρ

IIc
BA of the corresponding

density-matrix ρAB differ, in general;
(vi) when �

IIc
A = �

IIc
B one obtains �

IIc
A = (�IIc

B )T .
Corresponding to the type-II canonical form �

IIc
A given by

(3.32) we obtain explicit matrix form of ρ
IIc
AB (in the standard

two-qubit basis {|0A, 0B〉, |0A, 1B〉, |1A, 0B〉, |1A, 1B〉}),

ρ
IIc
AB = 1

2

⎛⎜⎜⎜⎝
1 0 0 r1−r2

2

0 (1 − r0) r1+r2
2 0

0 r1+r2
2 0 0

r1−r2
2 0 0 r0

⎞⎟⎟⎟⎠, (3.34)

where we have denoted

λ0

φ0
= r0,

√
λi

φ0
= ri, i = 1, 2. (3.35)
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Non-negativity condition ρ
IIc
AB � 0 of the density matrix de-

mands that

r1 = −r2, r0 � r2
1 . (3.36)

Similarly, the explicit matrix structure of the two-qubit
density-matrix ρ

IIc
BA associated with the type-II canonical form

�
IIc
B [see (3.33)] is given by

ρ
IIc
BA = 1

2

⎛⎜⎜⎜⎝
1 0 0 s1−s2

2

0 0 s1+s2
2 0

0 s1+s2
2 (1 − s0) 0

s1−s2
2 0 0 s0

⎞⎟⎟⎟⎠, (3.37)

where we have denoted

λ0

χ0
= s0,

√
λi

χ0
= si, i = 1, 2. (3.38)

It is readily seen that ρ
IIc
BA � 0 if and only if

s1 = −s2, s0 � s2
1. (3.39)

Substituting (3.36), (3.39), we get bona fide type-II Lorentz
canonical forms �

IIc
A ,�

IIc
B and the associated density-matrices

ρ
IIc
AB, ρ

IIc
BA as

�
IIc
A = LAIIc

�LT
B(

LAIIc
�LT

B

)
00

=

⎛⎜⎝ 1 0 0 0
0 r1 0 0
0 0 −r1 0

1 − r0 0 0 r0

⎞⎟⎠,

ρ
IIc
AB = 1

2

⎛⎜⎝1 0 0 r1

0 1 − r0 0 0
0 0 0 0
r1 0 0 r0

⎞⎟⎠, 0 � r2
1 � r0 � 1,

�
IIc
B = LA�LT

BIIc(
LA�LT

BIIc

)
00

=

⎛⎜⎝1 0 0 1 − s0

0 s1 0 0
0 0 −s1 0
0 0 0 s0

⎞⎟⎠,

ρ
IIc
BA = 1

2

⎛⎜⎝1 0 0 s1

0 0 0 0
0 0 1 − s0 0
s1 0 0 s0

⎞⎟⎠, 0 � s2
1 � s0 � 1

(3.40)

It is pertinent to point out that type-II canonical forms
are associated with SLOCC transformations on the two-qubit
density matrices of rank less than or equal to 3. Based

on the three-term factorization (up to normalization) � =
(LAIIc

)−1�
IIc
A (LT

B )−1, it is clear that the 14 real parameters char-
acterizing � are expressed in terms of 12 parameters of the
OPLG transformations LAIIc

, LB and the two parameters of the
canonical form, i.e., r0 = λ0/φ0, r1 = √

λ1/φ0. [Similarly,
(LA)−1�

IIc
B (LT

BIIc
)−1 is characterized by 12 real parameters of

transformations LA, LBIIc
and the canonical parameters s0 =

λ0/χ0, s1 = √
λ1/χ0].

C. Nondiagonal SLOCC normal form of Verstraete et al.

Verstraete et al. [5] had obtained two different types of
Lorentz canonical forms of the real matrix � under the trans-
formation � −→ LA�LT

B , LA, LB ∈ SO(3, 1), by making use
of Theorem (5.3) of Ref. [20] on matrix decompositions in
n-dimensional space with an indefinite metric. One of the
canonical forms of real matrix � of Ref. [5] is diagonal (type
I) and the corresponding SLOCC structure of the two-qubit
density matrix is Bell diagonal. Our type-I canonical form
(3.17) for the real matrix � agrees identically with this result
given by Ref. [5]. The nondiagonal canonical form of the real
matrix �, corresponding to two-qubit states of rank less than
4, has the following explicit structure [5]:

� =

⎛⎜⎝1 0 0 b
0 d 0 0
0 0 −d 0
c 0 0 1 + c − b

⎞⎟⎠, (3.41)

where b, c, and d are real parameters. The two-qubit density-
matrix ρ�

AB associated with the real matrix � is given (in the
standard two-qubit basis) by

ρ�
AB = 1

2

⎛⎜⎝1 + c 0 0 d
0 0 0 0
0 0 b − c 0
d 0 0 1 − b

⎞⎟⎠. (3.42)

It is clearly seen that the eigenvalues of ρ�
AB are non-negative

if

(1 + c)(1 − b) � d2, 0 � (b − c) � 2,

−1 � b, c, d � 1. (3.43)

In order to establish a connection between the nondi-
agonal form (3.41) with the type-II canonical forms (3.40)
we evaluate the symmetric 4 × 4 matrices �A = �G�T and
�B = �T G� associated with the nondiagonal canonical form
(3.41), which are given explicitly by

��
A = �G�T =

⎛⎜⎜⎝
1 − b2 0 0 −(1 − b)(b − c)

0 −d2 0 0
0 0 −d2 0

−(1 − b)(b − c) 0 0 (1 − b)(b − 2c − 1)

⎞⎟⎟⎠

��
B = �T G� =

⎛⎜⎜⎝
1 − c2 0 0 (b − c)(1 + c)

0 −d2 0 0
0 0 −d2 0

(b − c)(1 + c) 0 0 (1 + c)(2b − c − 1)

⎞⎟⎟⎠.
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Note that when b = c, the symmetric matrices ��
A ,��

B are
diagonal and, thus, one obtains type-I diagonal canonical form
(see Sec. III A) for �. Moreover, for b = ±1 or c = ±1 the
density-matrix (3.42) reduces to a product form ρ�

AB = ρA ⊗
ρB where ρA or ρB are pure states. It is easy to see that the
eigenvalues of G��

A and G��
B are zero in the cases b = ±1 or

c = ±1. We, thus, confine our attention to b �= c, b, c �= ±1.
Eigenvalues of G��

A , G��
B are readily obtained as

λ0 = λ3 = (1 + c)(1 − b), λ1 = λ2 = d2. (3.44)

From the non-negativity constraint (1 + c)(1 − b) � d2 on
the density-matrix ρ�

AB [see (3.43)] it follows that λ0 happens
to be the highest eigenvalue and the corresponding eigenvec-
tors of G��

A , G ��
B are neutral four-vectors. This confirms

that under SLOCC operations on the two-qubit density-matrix
ρ�

AB of (3.42) the real matrix � can be transformed to Lorentz
canonical forms of type II [see (3.40), (3.35), and (3.38)],
which we denote by �

IIc
A�

or �
IIc
B�

. Now we proceed further to
obtain explicit matrices corresponding to these type-II canon-
ical forms of �.

We identify that ��
B already exhibits a canonical form as

given in (3.29) if we substitute

χ0 = (
��

B

)
00 = 1 − c2. (3.45)

Thus, we recognize that LBIIc
= 14, i.e., a 4 × 4 identity ma-

trix. With the help of an OPLG transformation matrix,

LA =

⎛⎜⎜⎜⎝
1√

1−c2 0 0 −c√
1−c2

0 1 0 0
0 0 1 0
−c√
1−c2 0 0 1√

1−c2

⎞⎟⎟⎟⎠, (3.46)

we obtain one of the type-II canonical stuctures (3.40) for �,

�
IIc
B�

= LA�

(LA�)00
=

⎛⎜⎜⎜⎝
1 0 0 b−c

1−c

0 d√
1−c2 0 0

0 0 −d√
1−c2 0

0 0 0 1−b
1−c

⎞⎟⎟⎟⎠. (3.47)

In other words our type-II canonical form �
IIc
B�

is Lorentz
equivalent to the real matrix � [see (3.41)] of Ref. [5].

Following the method outlined in the Sec. III B and in
Appendix B, for the construction of the explicit OPLG trans-
formation matrix LAIIc

, we obtain

LAIIc
=

⎛⎜⎜⎜⎝
1−b+c√

(1+c)(1+c−2b)
0 0 −b√

(1+c)(1+c−2b)

0 1 0 0
0 0 1 0
−b√

(1+c)(1+c−2b)
0 0 1−b+c√

(1+c)(1+c−2b)

⎞⎟⎟⎟⎠, (3.48)

and verify that

�
IIc
A�

= LAIIc
�(

LAIIc
�

)
00

=

⎛⎜⎜⎜⎜⎝
1 0 0 0

0
√

d2(1+c−2b)
λ0(1−b) 0 0

0 0 −
√

d2(1+c−2b)
λ0(1−b) 0

c−b
1−b 0 0 1−2b+c

1−b

⎞⎟⎟⎟⎟⎠
(3.49)

exhibits type-II canonical form �
IIc
A given in (3.40). This

proves that the nondiagonal normal form � [given by (3.41)]
is SLOCC equivalent to the type-II canonical form �

IIc
A�

of
(3.49) in conformity with our approach.

IV. GEOMETRIC REPRESENTATION OF SLOCC
CANONICAL FORMS OF TWO-QUBITS

It is shown in Sec. III that the real matrix �, parametrizing
a two-qubit density-matrix ρAB, can be reduced to two alge-
braically distinct types of canonical forms (3.17), (3.40) under
OPLG transformations. The algebraically distinct canonical
forms are determined via the eigenvalues and eigenvectors
of the matrices G�A = G�G�T and G�B = G�T G� con-
structed from � and the Minkowski space metric tensor G.
In this section we discuss the geometrical representation cap-
tured by the canonical forms of �, which, in turn, offer
visualization of the SLOCC invariant families of two-qubit
density matrices on and within the Bloch ball. To this end we
recall (see Sec. II C) that a map PA �→ QB from the set P+

A :=
{PA = 1

2

∑
μ pAμ

σμ|PA � 0} of all non-negative operators act-
ing on the Hilbert space HA to another set of non-negative
operators Q+

B := {QB = 2 TrA[ρAB(PA ⊗ 12)]|QB � 0} on the
Hilbert space HB can be expressed alternately as a linear trans-
formation on Minkowski four-vectors, i.e., �T : pA �→ qB =
�T pA, where pA, qB are non-negative ( positive/neutral )
four-vectors with their zeroth components positive pA0 >

0, qB0 > 0. Similarly, the real matrix � induces a linear
transformation �: pB �→ qA = �pB from the set of all non-
negative four-vectors {pB|pT

B GpB � 0, pB0 > 0} to the set
{qA = �pB|qT

A GqT
A � 0, qA0 > 0}.

Using the fact that every positive four-vector can always
be expressed as a sum of neutral four-vectors [21,22,24], we
conveniently restrict ourselves to the maps,

(i) pn �→ q = �pn,
(ii) pn �→ q = �T pn

induced by the real matrix �, on the set of all neutral four-
vectors {pn|pT

n Gpn = 0, pn0 > 0}.
Let us consider the set of all neutral four-vectors {pn =

(1, x1, x2, x3)T , x2
1 + x2

2 + x2
3 = 1} with (x1, x2, x3) represent-

ing the entire Bloch sphere (i.e., the unit sphere S2 ∈ R3).
The type-I canonical form �

Ic
A given in (3.17) transforms pn =

(1, x1, x2, x3)T to a non-negative four-vector q = �Ic pn =
(1, y1, y2, y3) where

y1 =
√

λ1

λ0
x1, y2 =

√
λ2

λ0
x2, y3 = ±

√
λ3

λ0
x3. (4.1)

Evidently, the transformed three-vector (y1, y2, y3) obeys the
equation of a point on the surface of an ellipsoid,

y2
1

ξ 2
1

+ y2
2

ξ 2
2

+ y3
3

ξ 2
3

= 1, (4.2)

where ξi = √
λi/λ0, i = 1–3. Geometric intuition

of the canonical form �
Ic
A is, thus, clear: The map

�Ic : (1, x1, x2, x3)T �→ (1, y1, y2, y3)T transforms the Bloch
sphere to an ellipsoidal surface described by (4.2). It may
be recognized that the ellipsoidal surface described by (4.2)
geometrically represents the set of all steered Bloch vectors
[6,10–12] of Alice’s (Bob’s) qubit after Bob (Alice) performs
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FIG. 1. Ellipsoid representing type-I canonical form �Ic given
by (3.17). Semiaxes lengths of this ellipsoid [see (4.2)] are given
by (

√
λ1/λ0,

√
λ2/λ0,

√
λ3/λ0 ), where λ0 � λ1 � λ2 � λ3 denote

eigenvalues of G�A, G�B [see (3.6)]. The ellipsoid is centered at
the origin (0,0,0), and it provides geometric insight for the set of
all two-qubit states, which are on the SLOCC orbit of Bell-diagonal
states (3.18).

projective measurements on his (her) qubit [see (2.17), (2.20),
and (2.21)], given that the two-qubit state shared between
them is in the canonical Bell-diagonal form (3.18), which is
achieved by SLOCC on ρAB.

In Fig. 1 we have depicted the ellipsoid with lengths of
its semiaxes given by [see (4.2)] (

√
λ1/λ0,

√
λ2/λ0,

√
λ3/λ0).

Here λ0 � λ1 � λ2 � λ3. The ellipsoid is centered at the ori-
gin (0,0,0).

Associated with the type-II canonical forms �
IIc
A ,�

IIc
B [see

(3.40)] one obtains

�
IIc
A (1, x1, x2, x3)T = (1, yA1 , yA2 , yA3 )T(

�
IIc
B

)T
(1, x1, x2, x3)T = (1, yB1 , yB2 , yB3 )T . (4.3)

Here x2
1 + x2

2 + x2
3 = 1 represents the Bloch sphere and

yA1 = r1x1, yA2 = −r1x2,

yA3 = (1 − r0) + r0x3, 0 � r2
1 � r0 � 1, (4.4)

yB1 = s1x1, yB2 = −s1x2

yB3 = (1 − s0) + s0x1, 0 � s2
1 � s0 � 1 (4.5)

represent the set of all qubit states (Bloch vectors) that can be
steered to by projective measurements performed on another
qubit of the two-qubit state ρ

IIc
AB of (3.40), where r0, r1, are

specified by (3.35) and (3.36) and s0, s1 are defined via (3.38)
and (3.39), together with (3.22) and (3.30). From (4.4) it is
seen that (yA1 , yA2 , yA3 ) and (yB1 , yB2 , yB3 ) satisfy the equa-
tions,

y2
A1

+ y2
A2

r2
1

+ [yA3 − (1 − r0)]2

r2
0

= 1,

y2
B1

+ y2
B2

s2
1

+ [yB3 − (1 − s0)]2

s2
0

= 1, (4.6)

which represent surfaces of spheroids centered, respectively,
at (0, 0, 1 − r0), (0, 0, 1 − s0). The spheroidal surfaces (4.6)

FIG. 2. Steering spheroid (4.6) offering pictorial representation
of type-II canonical form �IIc

A , which characterizes the two-qubit
state ρIIc

AB [see (3.40)]. The spheroid is centered at (0, 0, 1 − r0) and
has semiaxes lengths (r1, r1, r0), 0 � r2

1 � r0 � 1.

provide geometric visualization of the collection of all Bloch
vectors of one of the qubits after projective measurements
are performed on the other qubit [6,10–12] when the two-
qubit state ρAB is SLOCC equivalent to the type-II canonical
density-matrix ρ

IIc
AB of (3.40). In Fig. 2 steering spheroid rep-

resenting type-II states ρ
IIc
AB of (3.40) is shown.

V. SUMMARY

In this paper we have presented a complete analysis to
obtain two different types of SLOCC canonical forms and
the associated geometric visualization of two-qubit states—
which happen to be the simplest composite systems. Using
the established result that the action of SLOCC on a two-
qubit state ρAB = 1

4

∑3
μ,ν=0 �μ,νσμ ⊗ σν manifests itself in

terms of Lorentz transformation on its 4 × 4 real matrix
parametrization �, two different types of canonical forms had
been obtained previously by Verstraete et al. [5] and Verstraete
[6]. However, the approach employed by Refs. [5,6] to ar-
rive at the SLOCC canonical forms involved highly technical
results on matrix decompositions in spaces with indefinite
metric.

Based on a different approach, inspired by the techniques
developed in classical polarization optics by some of us
[21,22], we have given here a simple procedure to explicitly
evaluate two different types of SLOCC canonical forms of the
real matrix � and the associated two-qubit density matrix.
Equivalence between the canonical forms obtained via our
approach with the ones obtained in Ref. [5] has also been
established here. Finally, our approach leads to an elegant
geometric representation aiding visualization of two different
types of canonical forms associated with the entire family of
two-qubit states on the respective SLOCC orbits. We believe
that our comprehensive analysis offers new insights in the
study of SLOCC canonical forms of higher-dimensional and
multipartite composite systems too.
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APPENDIX A

For the sake of completeness we give a brief outline cov-
ering essential elements of the proof of the theorem stated in
Sec. III. For a detailed proof with all its nuances addressed,
see Ref. [21].

To begin with, note that the real matrix � parametrizing
a two qubit density matrix induces a linear trasnformation
�:p �→ q = �p from the set of all non-negative four-vectors,

{p|pT Gp � 0, p0 > 0}, (A1)

to another identical set,{
q = �p|qT Gq � 0, q0 > 0

}
. (A2)

Since every positive four-vector can always be expressed as a
sum of neutral four-vectors [21], we restrict ourselves to the
set,{

pn = (1, x)T , xT x = x2
1 + x2

2 + x2
3 = 1; pT

n Gpn = 0
}
,

without any loss of generality. We then express the non-
negativity condition (A2) as{

q = �pn, pT
n Gpn = 0 ⇒ qT Gq = pT

n �pn � 0
}
, (A3)

where

� = �T G� = �T (A4)

is a 4 × 4 real symmetric matrix.
Let us express � as a 1 ⊕ 3 block matrix,

� =
(

n0 ñT

ñ A

)
, (A5)

with n0 > 0, ñ = (ñ1, ñ2, ñ3)T a three-componental column
and AT = A is a 3 × 3 real symmetric matrix.

With the help of a Lorentz transformation L = 1 ⊕ R,
where R ∈ SO(3) denotes a three-dimensional rotation matrix,
one can diagonalize the 3 × 3 real symmetric matrix A [see
(A5)], i.e., RT AR = A0 = diag(α1, α2, α3). We, thus, obtain

�0 = LT �L =

⎛⎜⎝n0 n1 n2 n3

n1 α1 0 0
n2 0 α1 0
n3 0 0 α3

⎞⎟⎠
where (n1, n2, n3)T = n = Rñ.

Let us denote

pT
n �0 pn = D(�0; x).

The non-negativity condition pT
n �0pn = D(�0; x) � 0 as-

sumes the form

D(�0; x) = n0 + 2xT n + xT A0 n � 0 ∀ xT x = 1. (A6)

Note that the condition (A6) is ensured for all xT x = 1, if the
absolute minimum Dmin of the function D(�0; x), or equiva-
lently, all the critical values Da of D(�0; x) are non-negative.
The method of Lagrange multipliers to evaluate the critical
values of the function D(�0; x), subject to the constraint
xT x = 1, leads to an auxiliary function,

K (�0; x) = D(�0; x) + λ(xT x − 1), (A7)

where λ denotes the Lagrange multiplier. Critical values Da of
the function D(�0; x) can then be obtained by solving

∂K (�0; x)

∂λ

∣∣∣∣∣
λa,xa,i

= 0,

∂K (�0; x)

∂xi

∣∣∣∣∣
λa,xa,i

= 0, i = 1–3. (A8)

The equations determining λa, xa,i = (xa,1, xa,2, xa,3) can
then be expressed as

(A0 + λa13)xa = −n, xT
a xa = 1, (A9)

where 13 denotes 3 × 3 identity matrix. Solutions of (A9), in
turn, determine the critical values D(�0; λa, xa) = Da of the
function D(�0; x).

Substituting A0 = diag(α1, α2, α3) in (A9) and simplify-
ing, we obtain

xa,i = −ni

(αi + λa)
, i = 1–3. (A10)

Furthermore, the normalization condition xT
a xa = 1 leads to

3∑
i=1

n2
i

(αi + λa)2
= 1. (A11)

The critical values of D(�0; x) are then given by

Da = n0 − λa −
3∑

i=1

n2
i

λa + αi
. (A12)

We focus on identifying the implications of the conditions
Da � 0, a = 1, 2, . . . on the eigenvalues and eigenvectors of
the 4 × 4 matrix G�, which are termed as G eigenvalues and
G eigenvectors of the real symmetric matrix �. To this end,
we study the behavior of the function,

h(λ) = n0 − λ −
3∑

i=1

n2
i

λ + αi
, (A13)

obtained by replacing λa by a continuous real variable λ in
(A12).

We list some of the important properties of the function
h(λ), which follow from its definition (A13):

(a) The function h(λ) is differentiable everywhere on the
λ axis except for a finite number of discontinuities at λ =
−αi, i = 1–3, whenever the corresponding ni �= 0.

(b) As h(λ) changes sign across a discontinuity, it is pos-
itive to the immediate left and is negative to the immediate
right of a discontinuity. This implies that there must be an odd
number of real zeros of the function h(λ) in between any two
consecutive discontinuities.
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(c) In the limit λ → ∞ it is seen that h(λ) → −∞ and
as λ → −∞ one finds h(λ) → ∞. This observation along
with the behavior of h(λ) near a discontinuity leads to the
conclusion that there must be an even number of zeros in the
interval (αmax,∞).

(d) Since the largest zero λmax occurs in the interval
(αmax,∞), the slope of h(λ) at λmax is either negative or zero.
In fact, when h′(λmax) = 0, both the zero and the critical value
occur simultaneously at λmax. [Here h′(λ) denotes differentia-
tion of h(λ) with respect to the variable λ].

(e) The function h(λ) must have, at least, k + 1 real zeros
where k � 3 denotes the number of discontinuities.

(f) Depending on the number of nonzero values of
n1, n2, n3 and based on the degeneracies α1, α2, α3, there are
20 possible situations, each with a different number of dis-
continuities, zeros, and the critical values of h(λ): (i) none
of n1, n2, n3 are zero; (ii) one of n1, n2, n3 is zero; (iii) two
of n1, n2, n3 are zero; (iv) n1 = n2 = n3 = 0. Each of these
four cases fall under five different subclasses corresponding to
the degeneracies of α1, α2, α3: nondegenerate, i.e., (A) α1 �=
α2 �= α3, twofold degenerate, i.e, (B1) α1 = α2 ≡ α �= α3,
(B2) α1 �= α2 = α3 ≡ α, (B3) α1 = α3 ≡ α �= α2, and fully
degenerate, i.e., (C) α1 = α2 = α3 = α.

Associated with these 4 × 5 = 20 distinct possibilities one
may list the number of discontinuities, zeros, local maxima,
and local minima of h(λ). As mentioned already there are
k + 1 real zeros associated with k discontinuities of h(λ). For
instance, if there are k = 3 distinct discontinuities (realized
when α1 �= α2 �= α3 and n1, n2, n3 �= 0), it can be seen that,
at least, two zeros exist. Furthermore, in the region (αmax,∞)
one should find, at least, two zeros. In other words, at least,
four real zeros exist for the function h(λ) when there are three
distinct discontinuities. When there are two distinct disconti-
nuities (k = 2), at least, one zero of the function h(λ) occurs
between them; in the region (αmax,∞) two zeros (either dis-
tinct or doubly repeated) exist. Thus, 1 + 2 = 3 real zeros
exist for h(λ) when k = 2.

Interestingly, the function h(λ) can be expressed in terms of
the characteristic polynomial φ(λ) = det(� − λG) of the real
symmetric matrix � and ψ (λ) = ∏3

i=1(αi + λ) = det(A0 +
λ13) as

h(λ) = φ(λ)

ψ (λ)
= det(�0 − λG)

det(A0 + λ13)

= det(� − λG)

det(A + λ13)
. (A14)

Furthermore, it is found convenient to express the characteris-
tic polynomial φ(λ) as

φ(λ) = ψ (λ)h(λ)

= φ1(λ)g(λ)h(λ),

in terms of some simple polynomials φ1(λ), g(λ) with real
roots, chosen such that the roots of φ1(λ) may be readily
identified and φ1(λ), g(λ) are finite at every real zero of the
function h(λ).

Examining the characteristic equation φ(λ) = 0 and based
on explicit evaluations of φ1(λ), g(λ), and h(λ) in each of the
20 cases one arrives at the following conclusions [21]:

(1) Every real zero of h(λ) is a G eigenvalue of �.

(2) If r denotes the number of (real) roots of φ1(λ) and
k denotes the number of discontinuities of h(λ), then it is
identified that r + k + 1 = 4 in all the 20 cases, thus, proving
that φ(λ) has four real roots λμ, μ = 0–3. This proves that
the G eigenvalues of � are real.

(3) If x denotes the G eigenvector of � belonging to G-
eigenvalue λ, it can be seen that

xT GX = −h′(λ). (A15)

Let us denote the largest G eigenvalue of � by λ0. As stated
already [see property (d) of the function h(λ)] h′(λ0) must
be either negative or zero. Thus, from (A15) it is clear that
the G-eigenvector x0 belonging to the largest G-eigenvalue λ0

obeys xT Gx � 0 implying that it is either positive or neutral.
It also follows that the largest G-eigenvalue λ0 is doubly

degenerate when h′(λ0) = 0. In other words, x0 corresponding
to a largest doubly degenerate eigenvalue λ0 is a neutral four-
vector.

(4) The G-eigenvectors xr corresponding to the G-
eigenvalues λr < λ0 of � are negative, i.e., xT

r Gxr < 0.
This follows essentially from the observation that h′(λr ) =
−xT

r Gxr [see (A15)] is positive when λr < λ0.
(5) An explicit analysis of the G eigenspace of λ0 in

each of the 20 different cases proves that the real symmetric
4 × 4 matrix �, obeying the condition pT

n �pn � 0, possesses
either: (i) a positive G eigenvector belonging to the largest
G-eigenvalue λ0 and three negative G eigenvectors or (ii) a
neutral G eigenvector belonging to, at least, doubly degener-
ate G-eigenvalue λ0 and two negative G eigenvectors.

(6) A tetrad consisting of one positive and three negative G
eigenvectors constitute the columns of a Lorentz matrix which
ensures the transformation � → �c = L�Ic LT to a diagonal
canonical form �Ic . Based on a triad consisting of one neutral
and two negative G eigenvectors it is possible to construct a
Lorentz matrix (see Appendix B where explicit construction
of Lorentz matrix in this case is given) such that transforma-
tion � → �c = L�IIc LT resulting in a nondiagonal canonical
form �IIc can be obtained (when the largest eigenvalue λ0 of
� is doubly degenerate and the corresponding G eigenvector
is neutral).

(7) Using the explicit forms of the diagonal and nondiag-
onal canonical forms �Ic and �IIc of �, it can be explicitly
verified that the G eigenvalues of � are non-negative.

APPENDIX B

In this Appendix we discuss explicit construction of a
Lorentz matrix L belonging to OPLG in terms of a set of
G-orthogonal four-vectors [21,22,24].

(i) Consider a positive four-vector x0 with its zeroth com-
ponent x00 > 0 and three other negative four-vectors xi, i =
1–3, obeying Minkowski G-orthogonality conditions, i.e.,

xT
μGxν = Gμν, μ, ν = 0–3, (B1)

where Gμ ν denotes elements of the Minkowski matrix G. The
set {xμ, μ = 0–3} of four-vectors obeying (B1) forms a G-
orthogonal tetrad in M.

It is readily seen that a real 4 × 4 matrix L =
(x0 x1 x2 x3), with its columns forming a G-orthogonal
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set satisfies LT GL = G with (L)00 = x00 � 0, and hence, L is
a Lorentz matrix belonging to OPLG.

(ii) A set {y0, y1, y2} of four-vectors, consisting of a neu-
tral vector y0 and two negative vectors y1, y2 obeying the
property,

yT
0 Gy0 = 0, yT

0 Gyi = 0,

yT
i Gy j = −δi j, i, j = 1, 2

forms a G-orthogonal triad. The neutral vector y0 is a self-
orthogonal vector as its Minkowski norm yT

0 Gy0 is zero.
Given the G-orthogonal triad {y0, ỹ1, ỹ1}, consisting of

a neutral vector y0, it is possible to construct a tetrad
{̃y0, ỹ1, ỹ2, ỹ3 } of four-vectors obeying the G-orthonormality
conditions ỹT

μG̃yν = Gμν, μ, ν = 0–3. To this end, we con-
struct a four-vector y3 such that

yT
3 Gy0 �= 0, yT

3 G̃yi = 0, i = 2, 3, (B2)

and define two four-vectors ỹ0 and ỹ3 as follows [21,22]:

ỹ0 = y3 + τy y0, y00 � 0,

ỹ3 = y3 − κyy0, (B3)

where the real parameters τy, κy are given by

τy = 1 − yT
3 Gy3

2yT
3 Gy0

, κy = 1 + yT
3 Gy3

2yT
3 Gỹ0

. (B4)

By construction, the set {̃y0, ỹ1, ỹ2, ỹ3} of four-vectors forms
a G-orthonormal tetrad consisting of one positive and
three negative four-vectors. By following the explicit pro-
cedure outlined above one can construct a Lorentz matrix
L2 = (̃y0 ỹ1 ỹ2 ỹ3), starting from a G-orthogonal triad
{y0, ỹ2, ỹ3}, consisting of a neutral four-vector ỹ0.
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