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Entanglement is at the core of quantum physics, playing a central role in quantum phenomena involving
composite systems. According to the timeless picture of quantum dynamics, entanglement may also be essential
for understanding the very origins of dynamical evolution and the flow of time. Within this point of view, the
Universe is regarded as a bipartite entity comprising a clock C and a system R (or “rest of the Universe”)
jointly described by a global stationary state, and the dynamical evolution of R is construed as an emergent
phenomena arising from the entanglement between C and R. In spite of substantial recent efforts, many aspects
of this approach remain unexplored, particularly those involving mixed states. In the present contribution we
investigate the timeless picture of quantum dynamics for mixed states of the clock-system composite, focusing on
quantitative relations linking the clock-system entanglement with the emerging dynamical evolution experienced
by the system.
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I. INTRODUCTION

One of the goals of science is to formulate the most eco-
nomical description possible of natural phenomena. Guided
by this desire for conceptual economy, scientists try to develop
theories having the least possible number of basic assump-
tions or primitive elements. In this regard, research into the
phenomenon of quantum entanglement has led to remarkable
insights. For instance, the study of entanglement clarified the
origin of the states describing systems in thermal equilibrium
with a heat bath, without the need to invoke the microcanon-
ical distribution for the system-bath composite [1,2]. More
radically, research work revolving around quantum entangle-
ment also provided a plausible explanation of the origins of
dynamical evolution and the flow of time. The concomitant
arguments, according to which time and dynamics are emer-
gent phenomena arising from quantum correlations, were first
articulated by Page and Wootters (PW) [3,4], although related
ideas had been previously advanced in the context of the
quantum theory of gravity [5,6].

Within the PW timeless picture of quantum mechanics
[3,4], the whole Universe U is assumed to be in a global
stationary state, which is an eigenstate of the total Hamilto-
nian with zero energy eigenvalue. Dynamical evolution arises
from this static state as a result of the quantum entanglement
between the degree of freedom of an appropriate subsystem C,
called the clock, and the rest of the Universe R. According to
this idea, time and dynamics are emergent features of the Uni-
verse rooted in the entanglement between two subsystems, R
and C. The Schrödinger time-independent equation describing

the global stationary state of the R + C composite is reminis-
cent of the celebrated Wheeler-DeWitt equation in quantum
cosmology, describing a stationary state with zero eigenvalue
for the wave function of the entire (closed) Universe [5,6].

The PW timeless approach to quantum mechanics has
been elaborated and extended in various directions, from both
the theoretical and the experimental points of view [7–24].
Healthy controversy [9,11] has invigorated research into the
PW proposal, stimulating the exploration of its possibilities.
The timeless picture was criticized by Albrecht and Igle-
sias [9], who pointed out apparent ambiguities concerning
nonequivalent choices for the clock subsystem. Subsequent
counter arguments by Marletto and Vedral [11] showed that
these ambiguities do not arise, if one takes carefully into
account the properties needed by a subsystem to be acceptable
as a clock. Recent work reported in the literature attests to
the deep and manifold implications of the timeless picture
of quantum mechanics. Research into this subject has led to
the reconsideration of well-known foundational issues, such
as Pauli’s famous argument for the impossibility of a time
observable in quantum mechanics [15]. New facets of time
in quantum mechanics have been discovered, such as its basic
connection with quantum coherence [16]. Interesting forays
into relativistic scenarios have also been made, with the im-
plementation of the PW scheme for Dirac [17] and scalar [18]
particles. A formalism akin to the one behind the timeless pic-
ture has led to the development of alternative computational
techniques for problems in quantum dynamics, which are
reformulated as ground-state eigenvalue problems [19]. Going
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beyond theoretical considerations, concrete experiments illus-
trating the timeless picture have been successfully conducted
in recent years [20–22].

As already mentioned, the system-clock entanglement is
central to the timeless approach to quantum dynamics. How-
ever, the quantitative relation between quantum correlations
and specific, dynamic-related aspects of the evolving system
R has received relatively little attention, with most efforts
focusing on scenarios where the system-clock composite is in
a pure state [13,14,24]. Our aim in this work is to explore the
timeless picture of quantum dynamics for mixed global states
of the bipartite system R + C.

Motivations to study mixed states within this context are
manifold. First, the system R is, in general, itself compos-
ite. In realistic circumstances one may have access only to
a subsystem Ra of R that, while weakly coupled to other
parts of R, may nevertheless be entangled with them and,
consequently, be in a mixed state. In this scenario the system
R = Ra + Rb has a total Hamiltonian ĤR ≈ ĤRa + ĤRb , where
ĤRa and ĤRb are the Hamiltonians of Ra and Rb, respectively.
If the state of R is σR, the subsystem Ra is described by
the reduced, marginal state σRa = TrRb[σR] obeying the von
Neumann equation

dσRa

dt
= 1

ih̄
[ĤRa , σRa ]. (1)

The subsystem Ra is then, for all intents and purposes,
our rest of the Universe. The PW approach, in its standard
formulation (pure-state version), studies how the dynamics of
an isolated system R described by a pure state and obeying
the Schrödinger equation can be embedded into a stationary
pure state of the R + C system. It is legitimate and pertinent
to inquire if the dynamics of a system Ra evolving according
to von Neumann’s equation (1), which is the most general
equation of motion for a closed quantum system, can similarly
be embedded into a stationary mixed state of Ra + C. One
can, of course, circumvent the need to consider mixed states
by implementing the pure-state version of the PW picture
for the complete composite Ra + Rb + C, assumed to be in
a pure state. But that procedure entails carrying the excess
baggage of describing all the degrees of freedom of subsystem
Rb, which may be inaccessible and irrelevant. Avoidance of
that extra load is the main motivation for considering the PW
approach for mixed states, which, by the way, coincides with
the very reason for using the von Neumann equation (1) to
study the dynamics of entangled, but dynamically isolated,
subsystems. In a cosmological context, the aforementioned
picture is consistent with the one advanced by Bunyi and Hsu
in Ref. [25]. According to these authors, the standard Big-
Bang cosmological model implies that a given subsystem Ra

of the Universe is likely to be entangled to other subsystems
with which Ra is not currently interacting.

Second, relevant motivations for developing a PW ap-
proach for mixed states are not limited to scenarios, such as
those discussed above, where mixed states describe subsys-
tems of a composite quantum Universe that, as a whole, may
be in a pure state. Indeed, the Universe itself (that is, the whole
system R + C) may conceivably be in a mixed state [26,27].
This possibility was entertained by Page in Ref. [26], where a
quantum description of the Universe was proposed which, in

contrast with the celebrated Hartle-Hawking wave function,
corresponds to a density matrix describing an impure quantum
state. Physical effects depending on the degree of mixture
of the density matrix of the Universe were considered by
Gurzadyan and Kocharyan in Ref. [27]. In the present work,
according to the above discussion, the expression “rest of
the Universe” may refer either to the “total rest” R, or to an
appropriate subsystem Ra. In the latter case we shall drop the
subindex a.

Additionally, considering the more general framework
given by mixed states may also help in adapting the time-
less PW picture to extensions or modifications of quantum
mechanics motivated by research into the interface between
quantum and gravitational phenomena. In this regard, we
can mention Deutch’s proposal for a formulation of quantum
mechanics in the presence of closed timelike curves (CTCs),
which explicitly requires density matrices describing mixed
states and cannot be formulated in terms of wave functions
[28]. Last, the analysis of mixed states in connection with the
timeless approach to quantum mechanics may shed new light
on the problem of the ontological status of mixed states [29].

All the above motivations can be encompassed by a single
aim: To formulate the PW picture in a fashion that incor-
porates the most general description of the dynamics of a
closed quantum system, which is the one given by von Neu-
mann’s equation for the evolution of time-dependent mixed
states. Therefore, in the present work we advance a PW-like
static scenario involving mixed global states of composite R +
C. Our proposal is compatible with general time-dependent
mixed states of the evolving system R, but otherwise keeps
the main assumptions of the PW scenario. This mixed-state
version of the PW approach constitutes a proof of principle
showing that a consistent mixed-state PW scenario can be
developed, and provides a testing ground to explore possible
physical features of such a scenario, particularly in connection
with quantum entanglement. We shall analyze quantitatively
the entanglement between R and C and its relation with the
emerging time evolution experienced by R. We investigate a
quantitative indicator of entanglement, based on comparing
an entropic measure evaluated on the global system with
the corresponding entropic measure evaluated on the reduced
state associated with R. Using this indicator of entanglement
we prove that (under the PW constraint of a definite total
energy of R + C equal to zero) the composite system R + C
necessarily has to be entangled for the system R to exhibit
dynamical evolution, meaning that other forms of nonclassical
correlations alone are not sufficient for time and evolution to
arise. We establish an upper bound, as well as the asymptotic
value, of the entanglement indicator, expressing these quan-
tities in terms of an entropic measure of the spread of the
energy probability distribution associated with the system R.
We also investigate the connection between the entanglement
present in the R + C composite, and a measure of the energy
uncertainty of the system R.

The paper is organized as follows. A brief summary of
the timeless approach is given in Sec. II. The connection
between time evolution and entanglement for mixed states of
the whole system R + C is analyzed in Sec. III, on the basis
of an appropriate entropic entanglement indicator. An upper
bound and the asymptotic limit of this quantity is discussed in
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Sec. IV. Its connection with the energy dispersion of the
system is investigated in Sec. V. Finally, some concluding
remarks are given in Sec. VI.

II. TIMELESS APPROACH TO DYNAMICS FOR PURE
STATES OF THE SYSTEM-CLOCK COMPOSITE

As a starting point, we consider a bipartite quantum system
(the Universe U ) comprising a clock (C) and the rest of the
Universe (R). The Hilbert spaces corresponding to these two
subsystems and to the total system are, respectively, HC , HR,
and HU = HR ⊗ HC . Global states of R + C are spanned in a
product orthonormal basis {|x〉 ⊗ |t〉 = |x〉|t〉} of HU , where
{|t〉} and {|x〉} are the orthonormal bases of HC and HR,
respectively. The continuous label t ∈ R characterizing the
basis states of HC corresponds to the eigenvalues of an ob-
servable T̂ associated with the position of the clock’s hands,
so that T̂ |t〉 = t |t〉. Likewise, the label x characterizing the
basis states of HR represents the position, or any other degrees
of freedom, of the particle or particles constituting the system
R. Throughout the paper we will assume that x is a continu-
ous variable, yet it may also denote a discrete one, provided
integrals are properly substituted by discrete sums.

To analyze the behavior of the complete system during a
finite time interval [0, T ], we assume that U is in the pure
state

|�〉 = 1√
T

∫
�(x, t )|x〉|t〉dxdt, (2)

described by a wave function �(x, t ) = (〈x|〈t |)|�〉 that is
spatially normalized,

∫ |�(x, t )|2dx = 1. The state (2) is then
properly normalized, both spatially and temporally,

〈�|�〉 = 1

T

∫ T

0

(∫
|�(x, t )|2dx

)
︸ ︷︷ ︸

=1

dt = 1. (3)

The state of R for a given configuration of the clock’s hands
(that is, for a particular value of t) is described by the Everett
relative state [30]

|�t 〉 = 〈t |�〉 = 1√
T

∫
�(x, t )|x〉dx = 1√

T
|�̃t 〉, (4)

obtained by projecting |�〉 onto |t〉. In Eq. (4), |�̃t 〉 stands for
the normalized relative state, satisfying

〈�̃t |�̃t 〉 = T 〈�t |�t 〉 = 1. (5)

Restricting our analysis to the finite time interval [0, T ] cor-
responds to considering a part of the history of the Universe
that, from the standard time-based viewpoint, is perceived as
having a duration T . Quantum states normalized within the
range [0, T ] result from projecting the state of the Universe
onto the subspace spanned by the eigenstates of T̂ having
eigenvalues t ∈ [0, T ]. These states can be regarded as the re-
sult of postselecting the measurement value 1 when measuring
the observable (projector) � = ∫ T

0 dt |t〉〈t |.
Within the timeless formalism it is assumed that

ĤU |�〉 = 0, (6)

where ĤU is the total Hamiltonian ĤU = ĤR ⊗ IC + IR ⊗ ĤC ,
with ĤR being an arbitrary Hamiltonian of R, and ĤC the

Hamiltonian of the clock. Notice that a good clock, in order
to appropriately keep track of time, has to be dynamically
isolated and should not be perturbed by interactions with other
systems. The absence of interaction between R and C also
plays a crucial role in guaranteeing the uniqueness of the R|C
bipartition of the complete system U [11], solving the ambi-
guity problem raised in Ref. [9]. As discussed in Ref. [11], we
consider here an ideal clock that does not interact at all with
R. Furthermore, it is considered that the clock’s observable
T̂ and the Hamiltonian ĤC satisfy the commutation relation
[T̂ , ĤC] = ih̄. Under these conditions, it follows from Eq. (6)
[10] that the relative state |�t 〉 (whether normalized or not)
obeys the Schrödinger equation,

ih̄
∂

∂t
|�t 〉 = ĤR|�t 〉. (7)

We thus see that the usual dynamical scenario—embodied
in the (time-dependent) Schrödinger equation—ensues from
the static image of the nonevolving state |�〉. The important
point here to be noticed is that the evolution emerges if and
only if C and R are entangled. Otherwise, �(x, t ) factorizes
as �(x, t ) = �C (t )�R(x), �R(x) is an eigenstate of ĤR, and
therefore �(x, t ) is a stationary (nonevolving) state. Such an
intimate relationship between entanglement and time evolu-
tion has been explored previously [13,14,24] in this pure-case
scenario. In what follows we will analyze the more general
case of mixed states and show that the relation still holds.

Before ending this section, let us add a few comments
regarding the eigenvalue spectra of the observables T̂ and ĤC .
Both of them have continuous spectra. The allowed eigenval-
ues of ĤC , however, are restricted to a discrete set, because
the complete system is assumed to be in a zero-energy eigen-
state of the total Hamiltonian ĤR ⊗ IC + IR ⊗ ĤC . Indeed,
if ĤR has a discrete spectrum consisting of the eigenvalues
{En}, n = 0, 1, 2, . . . (as we assume here), then the set of
allowed eigenvalues of ĤC is discrete too: these eigenvalues,
and their associated eigenstates, are {−En} and {e−iEnt/h̄}, re-
spectively. We have, therefore, an effectively discrete Hilbert
space for C, spanned by this discrete set of states. This re-
sembles what happens with the operators x̂ and p̂ of a particle
in a finite box. The commutation relation satisfied by these
operators coincides with the one satisfied by T̂ and ĤC . Im-
posing appropriate boundary conditions on the walls of the
box yields a discrete set {pn} of accessible eigenvalues for
p̂, with a corresponding discrete set of eigenvalues {e−ipnx/h̄},
that span the Hilbert space of the system. Of course, the above
similarity is only formal, since in the present situation the
(effective) discrete spectra of ĤC results from the constraint
of total zero energy of the C + R composite, instead of arising
from boundary conditions.

III. EVOLUTION AND ENTANGLEMENT FOR MIXED
STATES OF THE SYSTEM-CLOCK COMPOSITE

To extend the above ideas beyond scenarios corresponding
to pure global states of the R + C system, we shall assume a
mixed global state ρ that is stationary under the dynamics de-
termined by the total Hamiltonian ĤU , and has a definite total
energy equal to zero. That is, we shall assume that 〈ĤU 〉 =
Tr(ρĤU ) = 0 and 〈Ĥ2

U 〉 − 〈ĤU 〉2 = Tr[ρ(ĤU − 〈ĤU 〉)2] = 0.
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The state ρ is then of the form

ρ =
∑

j

p j |� j〉〈� j |, (8)

where p j � 0 for all j,
∑

j p j = 1, and {|� j〉} is a set of
stationary pure states of U with ĤU |� j〉 = 0 for all j. The
density matrix (8) describes thus a statistical mixture of the
pure states |� j〉 with (probability) weights p j .

Using the same notation as in the previous section, we have

|� j〉 = 1√
T

∫
� j (x, t )|x〉|t〉dxdt, (9)

and the corresponding relative state

|� j,t 〉 = 〈t |� j〉 = 1√
T

∫
� j (x, t )|x〉dx = 1√

T
|�̃ j,t 〉, (10)

where |�̃ j,t 〉 = √
T |� j,t 〉 stands for the normalized relative

states (〈�̃ j,t |�̃ j,t 〉 = 1).
Now, in this case the Everett relative state, describing the

state of R given that the clock’s hands state is |t〉, is obtained
according to

σR,t = TrC (|t〉〈t |ρ)

Tr(|t〉〈t |ρ)
= T

∑
j

p j |� j,t 〉〈� j,t |

=
∑

j

p j |�̃ j,t 〉〈�̃ j,t |. (11)

This is a mixture of the states |� j,t 〉, each of which satisfies
the Schrödinger equation (7). Therefore, the relative state of
R satisfies the von Neumann equation,

d

dt
σR,t = 1

ih̄
[ĤR, σR,t ]. (12)

We thus verify that the quantum dynamical equations of R are
recovered also in the mixed state case.

To investigate the relation between the evolution and the
entanglement in this more general scenario, we shall use an
entanglement criteria based on the reduced, marginal, density
matrix ρR of the system R, obtained by taking the partial trace
over C of the global density matrix ρ:

ρR = TrCρ =
∫ T

0
〈t |ρ|t〉dt

= 1

T

∫ T

0
σR,t dt = σR,t , (13)

where (·) denotes the time average: (·) = 1
T

∫ T
0 (·)dt . It is

worth emphasizing that the density matrices σR,t and ρR, al-
though both referring to system R, represent different states.
The former represents the state of R conditioned to the state
|t〉 of the clock and is a mixed state that evolves unitarily as a
function of the parameter t . On the other hand, the (in general)
mixed state ρR is obtained through taking, on the global state
of R + C, the partial trace over the degrees of freedom of C. It
represents a time-averaged state (over the interval [0, T ]) and
does not depend on t .

Now, the entropies S[ρ] and S[ρR] of the global (ρ) and
the marginal (ρR) density matrices, respectively, provide an

entanglement criterion for the global state as follows (see
Refs. [31–35]):

S[ρR] > S[ρ] ⇒ ρ is entangled. (14)

That is, if we have less information about the subsystem R
than information about the composite system R + C, then R
and C are entangled. This entropic entanglement criterion can
be implemented irrespective of the particular entropic mea-
sure used. Possible choices are von Neumann entropy, or the
linear entropy defined, for a generic density matrix �, as

SL[�] ≡ 1 − Tr�2. (15)

Since this latter has some computational advantages, we
choose it for our calculations, and thus compare SL[ρ] with
SL[ρR]. Our entanglement indicator is thus

	S ≡ SL[ρR] − SL[ρ], (16)

in terms of which the entanglement criterion reads

	S > 0 ⇒ ρ is entangled. (17)

The linear entropy of the global state ρ is given by

SL[ρ] = 1 − Trρ2 = 1 −
∑

jk

p j pk|〈� j |�k〉|2

= 1 −
∑

jk

p j pk

∣∣∣∣ 1

T

∫ T

0
〈�̃ j,t |�̃k,t 〉dt

∣∣∣∣
2

. (18)

Since the inner product 〈�̃ j,t |�̃k,t 〉 is invariant under the uni-
tary evolution determined by the Schrödinger equation, we
can substitute 〈�̃ j,t |�̃k,t 〉 = 〈�̃ j,0|�̃k,0〉 in the above equation
and get

SL[ρ] = 1 −
∑

jk

p j pk|〈�̃ j,0|�̃k,0〉|2

= 1 −
∑

jk

p j pk|〈�̃ j,t |�̃k,t 〉|2

= 1 − Trσ 2
R,t = SL[σR,t ]

= SL[σR,t ], (19)

where the last equality is due to the fact that (as follows from
the first two lines) SL[σR,t ] is a time-independent quantity.

As for the linear entropy of the marginal state ρR, Eq. (13)
gives

SL[ρR] = SL[σR,t ]. (20)

It follows from the above expressions that comparing the
entropies of ρ and ρR amounts to compare the (time) average
entropy of σR,t with the entropy of the (time) average of σR,t .

Now, given a time-dependent density matrix �t and a con-
cave function f (x), the following inequality holds:

Tr[ f (�t )] � Tr[ f (�t )], (21)

with the equality satisfied only if �t is constant in time [36].
In particular, for f (x) = x − x2, we get SL(�t ) = Tr f (�t ), the
inequality (21) leads to

SL[�t ] � SL[�t ], (22)
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and, therefore, putting �t = σR,t , it follows from Eqs. (19) and
(20) that

SL[ρR] � SL[ρ], (23)

with the two entropies appearing in the above equation being
equal only if there is no time evolution. In other words, 	S
vanishes only if σR,t does not evolve in time; that is, 	S =
0 ⇒ no time evolution.

Since Eq. (23) holds for all states belonging to the subspace
spanned by the eigenstates of zero energy of the total Hamilto-
nian ĤU , it follows from the criterion (17) that all these states
are entangled, provided σR,t evolves in time. In other words, if
the (relative) state of R changes with the ticking of the clock’s
hands, then R is necessarily entangled with C. Put another
way, in the absence of entanglement between the clock and
the system R, the state of R remains independent of t , and
no evolution occurs. This means that, under the conditions
of our mixed-state PW scenario, quantum correlations other
than entanglement that may be present in mixed states, such
as quantum discord, are not enough for dynamics and the flow
of time to arise. Therefore, the study of mixed states within
the timeless approach to quantum dynamics provides further
evidence for the intimate link existing between entanglement
and evolution.

Finally, it is interesting to ask whether, for the type of
density matrices arising in the present PW context, the condi-
tion 	S = 0 implies that the entanglement between R and C
vanishes [this would amount to stating that an entangled state
implies 	S > 0, and consequently the criterion (17) would be
not only sufficient but also necessary]. For the special case
of pure states of the R + C system, the answer is yes. For
mixed states, the situation is more subtle. In such cases, as
we have just seen, 	S = 0 implies that the relative state of
R conditional to a given value of t , does not depend on this
t value (that is, R does not evolve). However, this condition
does not seem to imply that the joint density matrix of R + C
is nonentangled. It might happen that there are entangled joint
states of R + C for which R does not evolve. The existence or
not of such states remains an open question, certainly worthy
of further investigation.

IV. UPPER BOUND AND ASYMPTOTIC LIMIT
OF THE ENTANGLEMENT INDICATOR

Now we determine an upper bound for the indicator 	S
of entanglement between the system and the clock, and also
its asymptotic limit for large lengths of the interval [0, T ]
within which the joint state of the system-clock composite is
defined. We consider a d-level system with a Hamiltonian ĤR

having eigenstates {|0〉, |1〉, . . . , |d − 1〉} with corresponding
eigenvalues {E0, E1, . . . , Ed−1}. The relative state σR,t evolves
according to Eq. (12), and its matrix elements in the basis {|n〉}
(with n = 0, . . . , d − 1) can thus be written as

σnm(t ) ≡ 〈n|σR,t |m〉 = e−i(En−Em )t/h̄σnm(0). (24)

The matrix elements of the reduced state ρR are given, accord-
ing to Eqs. (13) and (24), by

〈n|ρR|m〉 = 〈n|σR,t |m〉
= σnm(0)ei(En−Em )T/2h̄ sinc[(En − Em)T/2h̄], (25)

with sincx = x−1 sin x.
From these expressions the linear entropies SL[ρ] and

SL[ρR] can be computed directly as follows:

SL[ρ] = SL[σR,t ] = 1 − Trσ 2
R,t = 1 −

∑
nm

σnmσmn

= 1 −
∑
nm

|σnm(0)|2, (26)

and

SL[ρR] = 1 − Trρ2
R = 1 −

∑
nm

〈n|ρR|m〉〈m|ρR|n〉

= 1 −
∑
nm

|σnm(0)|2 sinc2(ωnmT/2), (27)

where ωnm = |En − Em|/h̄. Decomposing the sum in Eq. (27)
into those terms for which ωnm = 0 and those for which
ωnm 
= 0, we get

SL[ρR] =

⎛
⎜⎜⎜⎝1 −

∑
nm

(ωnm = 0)

|σnm(0)|2

⎞
⎟⎟⎟⎠

−
∑
nm

(ωnm 
= 0)

|σnm(0)|2sinc2(ωnmT/2). (28)

The entanglement indicator is thus

	S = SL[ρR] − SL[ρ]

=
∑
nm

|σnm(0)|2[1 − sinc2(ωnmT/2)
]

=
∑
nm

(ωnm 
= 0)

|σnm(0)|2[1 − sinc2(ωnmT/2)
]

(29)

�
∑
nm

(ωnm 
= 0)

|σnm(0)|2, (30)

and its maximum value—which coincides with its asymptotic
value when T → ∞—is

	Smax =
∑

nm (ωnm 
= 0)

|σnm(0)|2. (31)

Notice that the condition ωnm 
= 0 introduced above is not nec-
essarily equivalent to n 
= m, due to possible degeneracies of
the energy eigenvalues. The label n should therefore be under-
stood as representing a (possibly compound) index containing
all the quantum numbers required to completely characterize
the eigenstates of ĤR. The set of possible values of this index
(even if it is compound) is at most denumerable and can thus
be regarded as ordered in the sequence n = 0, 1, . . ..

Now, let us denote with σR|M the state of R obtained when
a nonselective energy measurement is performed on R, that is

σR|M =
∑

E

pEσR|E =
∑

E

�EσR,t�E , (32)

where pE = Tr(�EσR,t ) is the probability of obtaining the
result E when measuring the energy of R when it is in the
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state σR,t , σR|E = �EσR,t�E/pE is the (collapsed) state of R
obtained when the energy measurement yields the result E ,
and �E = ∑

n
(En=E )

|n〉〈n| is the projector onto the subspace

spanned by the degenerate eigenstates |n〉 that correspond to
the same energy eigenvalue E . The projector satisfies

�E�E ′ =
∑
nm

(En = E ), (Em = E ′ )

|n〉〈n|m〉〈m|

= δEE ′
∑

n
(En = E )

|n〉〈n| = δEE ′�E , (33)

so that

σR|EσR|E ′ = σ 2
R|EδEE ′ . (34)

Taking into account the second equality in Eqs. (32) and (33),
we get for the linear entropy of the state σR|M

SL[σR|M] = 1 − Trσ 2
R|M

= 1 −
∑

E

Tr(σR,t�EσR,t�E )

= 1 −
∑

E

∑
nm

(En = Em = E )

|σnm(0)|2

= 1 −
∑
nm

(ωnm = 0)

|σnm(0)|2, (35)

which, combined with Eqs. (26) and (31), leads to

	Smax = SL[σR|M] − SL[σR,t ]. (36)

This relation shows that the asymptotic value, when T →
∞, of the entanglement indicator is given by the difference
between the entropy of the state of R after and before a
nonselective energy measurement is performed.

The entropy SL[σR|M] bears information regarding the
possible states σR|E that can be obtained after an energy
measurement, and also regarding the energy probability dis-
tribution {pE }. Such information can be extracted by recourse
to the first equality in Eq. (32) and to Eq. (34), obtaining

SL[σR|M] = 1 − Trσ 2
R|M

= 1 − Tr
∑
EE ′

pE pE ′σR|EσR|E ′

= 1 −
∑

E

p2
E Trσ 2

R|E

= SL[{pE }] +
∑

E

p2
E SL[σR|E ], (37)

where SL[σR|E ] stands for the linear entropy associated with
the state σR|E , and SL[{pE }] = 1 − ∑

E p2
E is the linear en-

tropy corresponding to the energy probability distribution
{pE }.

It is instructive to consider particular cases of the bound
(36). When the spectrum of ĤR has no degeneracy, one has
SL[σR|E ] = 0, hence SL[σR|M] becomes SL[{pE }], and the up-

per bound reduces to

(	Smax)|nondegenerate = SL[{pE }] − SL[σR,t ]. (38)

It is also particularly interesting to see what happens if the
global state ρ is pure, so that SL[ρ] = SL[σR,t ] = 0. In this
case also σR|E is a pure state, whence SL[σR|E ] = 0, and again
SL[σR|M] = SL[{pE }]. Consequently, for pure states one recov-
ers the expression [24]

(	Smax)|pure = SL[{pE }], (39)

meaning that the upper bound of the SL-based indicator of
entanglement is given by the spread of the energy probability
distribution pE , as measured by its linear entropy. This is
no longer the case for mixed states. In an extreme case, for
example, in which ρ is diagonal in the energy eigenbasis, one
has σnm ∼ δnm, and Eq. (31) leads straightforwardly to

(	Smax)|diagonal = 0, (40)

meaning that diagonal states do not evolve in time [see below
Eq. (23)]. Now, when ρ is diagonal in the energy eigenbasis,
all the spread in the energy probability distribution is purely
classical, whereas for pure states (that are not energy eigen-
states) all the spread in the energy probability distribution is of
a quantum nature. These observations, together with Eqs. (39)
and (40), indicate that only the quantum component of the
spread in the energy probability distribution contributes to the
upper bound of the system-clock entanglement.

An example: The qubit case

As an illustration of our previous results we consider now
a qubit (two-level) system with a Hamiltonian ĤR having
eigenstates |0〉 and |1〉, with corresponding eigenvalues E0

and E1. Following Eq. (24), the relative state σR,t in the basis
{|0〉, |1〉} reads

σR,t =
(

σ00(0) eiεt/h̄σ01(0)
e−iεt/h̄σ ∗

01(0) 1 − σ00(0)

)
, (41)

where we wrote ε = E1 − E0. The reduced density matrix ρR

is given, according to Eq. (25), by

ρR = σR,t =
(

σ00(0) σ01(0)eix sincx
σ ∗

01(0)e−ix sincx 1 − σ00(0)

)
, (42)

with x = εT/2h̄. The corresponding linear entropies are [see
Eqs. (26) and (27)]

SL[ρR] = 2{σ00(0)[1 − σ00(0)] − |σ01(0)|2 sinc2x}, (43)

and

SL[ρ] = SL[σR,t ]

= 2{σ00(0)[1 − σ00(0)] − |σ01(0)|2}. (44)

The entanglement indicator is thus

	S = 2|σ01(0)|2(1 − sinc2x), (45)

which is greater than zero for x > 0, provided σ01(0) 
= 0.
That is, for any nonzero T , the evolution of R reflects its
entanglement with the clock.

Basic features of the connection between the evolution of
the qubit and its entanglement with the clock can be appre-
ciated in Fig. 1. The dependence of the entropies SL[ρR] and
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FIG. 1. (left panel) SL[ρR] (black) and SL[ρ] (gray) as a function
of σ01(0) for a qubit state, setting σ00 = 0.2 and x = 1.2. (right panel)
	S as a function of x, setting σ00 = 0.2 and σ01(0) = 0.25 (black),
0.35 (gray). All depicted quantities are dimensionless.

SL[ρ] on the parameter σ01(0) is depicted in the left panel of
the figure. The entanglement indicator 	S as a function of
x = εT/2h̄ for two values of the parameter σ01(0) is shown
in the right panel. Notice that the entanglement indicator 	S
approaches its asymptotic limit rather quickly, becoming close
to its upper bound already at values of T corresponding to
εT/2h̄ ≈ 2.

V. RELATION BETWEEN THE ENTANGLEMENT
INDICATOR AND ENERGY DISPERSION

As we have seen in the previous sections, the entanglement
between the system R and the clock C is linked to the time
evolution of R. On the other hand, the evolution of a quantum
system is closely related to the system’s energy uncertainty.
Consequently, there has to be a connection between the energy
uncertainty of R and the entanglement between R and C. In
this section we shall investigate such a connection for mixed
joint states of R + C.

By recourse to Eq. (29) and to the Taylor series of the sinc
function,

sincz =
∞∑

l=0

(−1)l z2l

(2l + 1)!
, (46)

it can be verified that, to lowest order in T , the entanglement
indicator 	S is

	S = T 2

12h̄2

∑
nm

|σnm(0)|2(En − Em)2

= − T 2

12h̄2 Tr([ĤR, σR,t ]
2). (47)

Here we face a situation similar to the one analyzed in the
previous section, but now referred to the energy dispersion:

σ 2
E ≡ 〈

Ĥ2
R

〉 − 〈ĤR〉2

= Tr
(
Ĥ2

RσR,t
) − Tr2

(
ĤRσR,t

)
, (48)

instead of the spread in the energy probability distribution, as
measured by SL[{pE }]. This can be seen as follows: For pure
states σR,t = |�̃t 〉〈�̃t | we have

Tr([ĤR, σR,t ]
2) = Tr([ĤR, |�̃t 〉〈�̃t |]2)

= 2(〈�̃t |ĤR|�̃t 〉)2 − 2〈�̃t |Ĥ2
R |�̃t 〉

= −2σ 2
E , (49)

and we obtain the expression

(	S)|pure = T 2

6h̄2 σ 2
E , (50)

relating, for pure states of R + C, the lowest-order expansion
of the SL-based entanglement indicator (describing its behav-
ior for short-time intervals), with the energy dispersion. In the
other extreme situation, for mixed states that are diagonal in
the basis of eigenvectors of ĤR, one has [ĤR, σR,t ] = 0, and
Eq. (47) gives

(	S)|diagonal = 0. (51)

Equations (50) and (51) are analogous to Eqs. (39) and (40).
As happens with the spread of the energy probability distri-
bution, the energy dispersion has both classical and quantum
components. For pure states, all the energy dispersion is of
quantum nature, whereas for mixed states that are diagonal in
an energy eigenbasis, it is purely classical. Thus, the quantity

D ≡ −Tr([ĤR, σR,t ]
2) (52)

can be interpreted as a measure of the quantum contribution
to the energy dispersion of the state σR,t .

We shall now illustrate the above results considering states
of the form

σR,t = α|ψ (t )〉〈ψ (t )| + (1 − α)

d
Id , (53)

where 0 � α � 1, and Id is the d × d identity matrix (recall
that d is the dimension of HR). These states can be re-
garded as pure states perturbed by white noise. We decompose
|ψ (t )〉 as

|ψ (t )〉 =
∑

n

cne−iEnt/h̄|φn〉, (54)

where {|φn〉} is the set of (orthonormal) eigenstates of ĤR with
corresponding eigenvalues En, and the normalization condi-
tion

∑
n |cn|2 = 1 is satisfied.

Direct calculation gives

Trσ 2
R,t = α2 + 1

d
(1 − α2), (55)

and

Trσ 2
R|M =

∑
E

⎡
⎢⎢⎢⎣α2

∑
n

(En = E )

|cn|2
∑

m
(Em = E )

|cm|2

⎤
⎥⎥⎥⎦

+2
α(1 − α)

d

∑
E

pE︸ ︷︷ ︸
=1

+ (1 − α)2

d

=
∑

E

[
α2 p2

E

] + 1

d
(1 − α)2, (56)

where

pE =
∑

n (En = E )

|cn|2.
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Using Eq. (34) we thus get

	Smax = Trσ 2
R,t − Trσ 2

R|M

= SL[αpE ] + (α2 − 1)

= α2SL[{pE }], (57)

and therefore recover the result (39) for α = 1.
On the other hand, one also has

Tr([ĤR, σR,t ]
2) = α2Tr([ĤR, |ψ〉〈ψ |]2)

= − 2α2σ 2
E , (58)

which reduces for α = 1 to the expression (49) corresponding
to pure states.

In summary, the entropic indicator 	S that detects entan-
glement between the system R and the clock C is given, to
lowest order in the length T of the interval within which
the state of R + C is defined, by a quantity representing the
quantum contribution to the energy uncertainty of R.

VI. CONCLUDING REMARKS

Time evolution requires a composite consisting of at least
two parts: a system R that evolves, and a system C, the
clock, that keeps track of time. All the properties of the
dynamical evolution of R can be encoded in the correlations
(entanglement) exhibited by a stationary quantum state jointly
describing the complete system R + C. In this sense, the ori-
gins of dynamics and of the flow of time are, perhaps, the
most radical instances of the central role played by entangle-
ment in the physics of composite quantum systems. These
considerations constitute the gist of the timeless picture of
quantum dynamics. According to this viewpoint, there have
to be quantitative relations connecting the amount of entan-
glement between the clock and the evolving system, on the
one hand, with, on the other hand, specific features of the
dynamical evolution of the system.

In the present contribution we explore these relations for
an extension of the PW proposal which, while allowing mixed
quantum states of the R + C composite, keeps the other PW
main assumption, particularly that concerning a definite en-
ergy of the R + C system equal to zero. By recourse to an
entanglement indicator for the global state of R + C, it is

possible to elucidate how entanglement relates to the time
evolution of the system R. It turns out that, in our extension
of the PW scenario, entanglement is indeed necessary for R
to exhibit evolution. That is, mild forms of quantum correla-
tions, such as quantum discord without entanglement, are not
enough to give rise to time and dynamics. This conclusion
follows from an entropic sufficient criterium for entanglement
satisfied by the state (pure or mixed) of R + C whenever the
system R exhibits dynamical evolution.

It is a fact of the quantum world that dynamical evolution
is always accompanied by energy uncertainty. Consistently,
the system-clock entanglement is related to energy uncertainty
as well. Indeed, the aforementioned entanglement indicator
for global states of R + C admits an upper bound and an
asymptotic limit, both expressible in terms of the spread of
the energy probability distribution associated with the system
R, as measured by an entropic measure evaluated on that
distribution. The entanglement indicator is also related to the
energy dispersion of system R, in a way reminiscent of a
time-energy uncertainty relation.

Our present developments suggest various possible lines
for further inquiry. In would be interesting to explore mixed-
state formulations of the PW timeless approach for systems
with a clock having a discrete, finite Hilbert space. For
this kind of system, mixed-state timeless scenarios may be
amenable to experimental implementation, leading to exten-
sions of the works reported in Refs. [21,22]. On the theoretical
side, including mixed states within the timeless picture may
contribute to elucidating a way in which the PW approach is
related to quantum thermodynamics and to quantum coher-
ence [16]. In this regard, it would be interesting to explore
more general extensions of the PW formulation, allowing for
mixed states of the system-clock compound having a nonvan-
ishing dispersion of the total energy. These lines of inquiry, in
turn, may be enriched by including relativistic effects, along
the lines pioneered in Refs. [17,18].
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