
PHYSICAL REVIEW A 102, 052415 (2020)

Concatenated pieceable fault-tolerant scheme for universal quantum computation

Chen Lin and GuoWu Yang *

Big Data Research Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, People’s Republic of China

(Received 19 April 2020; accepted 30 October 2020; published 17 November 2020)

As existing approaches to get around the restriction of the no-go theorem generally exhibit high ancillary qubit
overhead costs, we propose a scheme for universal fault-tolerant quantum computation by using the pieceable
fault-tolerant protocol and code switching techniques. In additional, by utilizing the construction of the pieceable
fault-tolerant circuit, we adopt a decoding strategy based on a deep-neural-network algorithm to improve the
error threshold of the non-Clifford logical gate circuit. We describe our universal construction in detail with a
two-level nonuniform concatenated 25-qubit code and perform numerical simulations to analyze the depolarizing
noise threshold of a given universal gate set with this code. The resources required to implement this universal
gate set are also estimated to further demonstrate the efficiency of our scheme. We compare these results with
the existing universal concatenation methods and conclude that our method outperforms them in terms of the
lower bound of the error threshold and qubit resource overhead.
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I. INTRODUCTION

Quantum computers have generated great interest due to
their enormous potential for accelerating classical algorithms
and simulating physical phenomena that are intractable us-
ing classical computers [1–3]. It is hoped that a very large
quantum computer will be realized that shows performance
superior to that of classical computers for some problems
of intrinsic interest. Actually, practical quantum computa-
tion may become available soon [4,5], and intermediate-scale
quantum computers based on various quantum technologies,
such as ion traps [6–8] or superconducting qubits [8,9], have
already been established, providing the opportunity to im-
plement some simple quantum algorithms [10,11] with the
number of qubits ranging from 50 to a few hundred.

However, to protect the quantum information from envi-
ronmental noise and carry out large-scale computational tasks
with high fidelity, it is necessary to carefully choose an appro-
priate method to prevent multiplication and propagation of the
errors introduced by noise. For instance, when considering the
quantum circuits under a standard depolarization error model,
an error may occur on one of the two qubits, which will propa-
gate to another qubit after we apply a two-qubit coupling gate.
Such a single error will be multiplied through the subsequent
circuits until the first error-correction procedure and finally it
may lead to a logical error after the application of active error
correction.

In fact, most quantum algorithms are generally imple-
mented in terms of quantum circuits that decompose a com-
putational task into a sequence of elementary quantum gates
acting on qubits. A common strategy is to directly execute
a given set of quantum gates {Ui} on encoded logical qubits
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in a fault-tolerant manner [12–14], rather than performing
the risky physical operation on physical qubits. Meanwhile,
as there always exists a set of gates such that any quantum
circuit can be approximated with arbitrary precision by the
product of several elements in this set, it is necessary to
focus on the design of appropriate fault-tolerant protocols for
the gates in this specific set. This set is called the universal
quantum gate set and can be adopted to synthesize all other
quantum gates. A universal gate set can be implemented in a
fault-tolerant manner using different schemes. However, such
fault-tolerant design usually requires considerable additional
quantum resources due to the limitation of the no-go theorem
[15,16], such as in the preparation of the magical state and
its distillation procedure [17–19], or the combination of two
different codes with complementary transversal gate sets into
a single larger code with universal fault-tolerant gates but with
more ancillary resources consumed [20,21].

Some recent improvements have motivated efforts to
search for the optimal approach to reduce the resources of
fault-tolerant universal computation. Chao and Reichardt [22]
proposed a novel fault-tolerant scheme for extracting error
syndrome information, which significantly reduces the aux-
iliary qubit resources required in the active error-correction
process. By using the neural-network method, Chamberland
and Ronagh [23] designed several efficient decoding algo-
rithms and applied them to analyze several fault-tolerant
error-correction protocols; they pointed out that the ability
of noise resistance of fault-tolerant quantum circuits can be
improved. Nikahd et al. [24] focused on optimizing the qubit
overhead of concatenated code by combining two codes C1

and C2 in a nonuniform concatenated fashion.
In particular, Maslov and co-workers [25,26] have pointed

out that, for a given circuit, the quantum gates of different
Clifford hierarchy can be maximally gathered by using an
efficient synthesis algorithm that greatly reduces the gate
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depth of the non-Clifford gate. Moreover, for Calderbank-
Shor-Steane (CSS) codes [27,28], the Clifford group can be
implemented fault tolerantly with little cost. Therefore, we
can design an appropriate fault-tolerant structure for the dif-
ferent implementation steps of the non-Clifford circuit and the
encoded information can be exchanged locally through code
space conversion techniques [29–33]. More recent studies
[26,34–36] have proposed several synthesis algorithms that
can maximally parallelize the possible T gates of the circuit
G belonging to the circuit library {CNOT, T } and make other
moments of the application of G only contain controlled-NOT

(CNOT) gates, where T = diag(1, exp( π
4 i)). The CNOT gates

belonging to the Clifford group have a simple transversal
fault-tolerant structure in CSS codes and Reed-Muller codes
[37]. On the other hand, by fault-tolerantly exchanging en-
coded data between the two different codes C1 and C2, where
each nontransversal gate in C1 has a transversal implemen-
tation in C2 and vice versa, a given universal gate set can
be transversally implemented without magic state distillation.
However, the code conversion procedure usually contains
several rounds of ancillary preparation and error correction,
which makes it easier to cause a logical error than other
fault-tolerant quantum operations.

We also observed that some researchers try to use classical
machine learning algorithms to improve the fault tolerance
of encoded circuits [23,38,39]. These works have proposed
several efficient algorithms to optimize the decoding proce-
dure, and their numerical simulation has shown that these
adjusted decoding procedures can effectively suppress error
propagation.

These works inspired us to optimize the scheme of fault-
tolerant universal computation based on code concatenation,
that is, for each physical quantum gate in the logical non-
Clifford circuit G on a given code C1, different inner codes
can be selected to further protect it so that any quantum gate
in G is transversal in the current inner-layer code. Different
inner-layer codes can be locally switched between each other
by fault-tolerant code conversion techniques with neural-
network-based decoding scheme; such processing will obtain
a pieceable fault-tolerant [31] variant of G, and an appropriate
inner code will facilitate the reduction of qubit overhead.

Our fault-tolerant non-Clifford circuit structure ensures
that every single-qubit error in the inner code block will not
spread to form a globally logical error when compared with
the original concatenation strategy, which means that there is
no need to sacrifice the overall concatenation code distance to
realize fault-tolerant universal computation. Here we use the
term “globally” to refer to the entire two-level concatenation
code to distinguish it from the local logical qubit contained in
this code.

In this work, we first combine the nonuniform code con-
catenation and code conversion methods to design a universal
fault-tolerant quantum computation scheme. An example is
given to demonstrate the fault tolerance of this scheme, and
numerical simulation is also performed to further analyze the
performance in terms of the pseudothreshold and asymptotic
threshold. For the standard depolarizing error model, our sim-
ulated results show that a higher-threshold lower bound can be
obtained by our scheme. We further analyze the upper bounds
of the qubit resource based on our fault-tolerant scheme

for simulating quantum circuits in the library {CNOT, H, T },
We compare our results with the 49- and 105-qubit codes
proposed in Ref. [21] and show that our consumption of fault-
tolerant Clifford gates is lower than their scheme.

The rest of the paper is organized as follows. In Sec. II
we first introduce the basic concepts of quantum error cor-
rection and fault tolerance and then introduce the nonuniform
concatenation strategy and code conversion techniques. In
Sec. III we describe our fault-tolerant universal computation
scheme. In Sec. IV we provide a specific implementation
case to further explain our fault-tolerant scheme and analyze
the performance and resource consumption for our 25-qubit
code. In Sec. V we further consider the recursive simulation
method and provide an upper-bound analysis of qubit resource
consumption to implement the fault-tolerant circuit generated
by CNOT and H gates. We summarize in Sec. VI.

II. STABILIZER CODE AND FAULT-TOLERANT
COMPUTATION

We first describe the stabilizer formalism [14]. The quan-
tum symbol [[n; k; d]] usually refers to a stabilizer code space
Cn that consists of some physical n-qubit states that are
commonly +1 eigenstates of n − k given stabilizer operators
(generators). These operators typically belong to the n-qubit
Pauli group Pn, are independent of each other, and generate a
matrix product group called the stabilizer group S. The code
distance d describes the error-correction ability of the stabi-
lizer code and means that any Pauli error of weight w � � d−1

2 �
can be detected and corrected by syndrome measurements and
error-correction processes.

For a given computation task, how to perform operations
on a logical state without losing the code’s protection against
errors is a highly important topic. So the encoded information
should be handled in a fault-tolerant way. We say that t =
� d−1

2 �, a quantum operation which is protected by a code with
distance d , is t-fault tolerant if the following two conditions
are satisfied [23].

(i) For an input codeword with error of weight w1, if w2

single-qubit faults occur during the operation with w1 + w2 �
t , ideally decoding the output state gives the same codeword
as ideally decoding the input state.

(ii) For w single-qubit faults during the implementation of
a fault-tolerant operation with w � t , no matter how many
errors are present in the input state, the output state differs
from a codeword by an error with its weight no more than w.

Here we assert that ideally decoding is equivalent to per-
forming a round of noise-free error correction. Actually, this
noise-free process is mainly used to determine whether a
noncorrectable error has occurred in the error-correction pro-
cess during the application of a circuit. Both conditions are
required to ensure that correctable errors do not propagate
through the entire circuit and prevent the errors from accu-
mulating between the different error-correction rounds.

Following these two principles, several paradigms for
designing a fault-tolerant encoded operation have been pro-
posed. For most quantum error-correction codes, an efficient
fault-tolerant protocol for the operators belonging to the Clif-
ford group usually exists, such as transversality. The Clifford
group is a finite group of symmetries of the Pauli group [28]
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and can be generated by the CNOT, H , and P gates. For
instance, encoded Clifford operators can be implemented
transversally in the CSS code. However, universal quantum
computing cannot be realized with only the Clifford operators,
and non-Clifford fault-tolerant operations with low resource
overhead are highly desirable for achieving large-scale uni-
versal quantum computation

H = 1√
2

(
1 1
1 −1

)
, P =

(
1 0
0 i

)
,

CNOT =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠. (1)

By sacrificing the global code distance, the concatenated
quantum error-correction scheme can provide a universal
fault-tolerant encoded operation set for a given code. This
scheme requires that the outer code and the inner code have
complementary transversal encoded gates to form a glob-
ally fault-tolerant universal gate set. Meanwhile, the recovery
operations (stabilizer measurement and error-correction oper-
ations) for the two codes must be globally transversal in the
full concatenated code space. Recently, Chamberland et al.
[21] rigorously analyzed the numerical values of the threshold
of the concatenated 105-qubit code and the 49-qubit code in
a given error model. The choice for the inner code of their
concatenation scheme must be restricted to the 15-qubit Reed-
Muller (RM-15) code because of its transversal construction
for the T gate. However, this concatenation scheme for the
Hadamard gate is less fault tolerant for single-qubit error
because the encoded H gate for the RM-15 code is not 1-fault
tolerant, making its error threshold much lower. On the other
hand, the qubit overhead for the Clifford gate protected by
these two concatenated codes is very large.

It should be noted that for a given encoded circuit, the
code under this circuit will transfer to several intermediate
codes when applying this circuit; if each intermediate code
has a distance large enough to correct any correctable errors
that may have arisen or if we carefully design an appropriate
intermediate error-correction procedure to avoid possible er-
ror propagation, then the entire circuit can be pieceable fault
tolerant [31]. Actually, it would be convenient to intuitively
imagine that a certain encoded circuit C has the decomposition

C = CrCr−1 · · · C1, (2)

where r refers to the minimum number of circuit pieces into
which C can be divided under the premise of satisfying fault
tolerance.

We can obtain a fault-tolerant variant of circuit C if each
Ci is carefully designed such that error propagation can be
avoided. We now give the modified variant of C, denoted by
C̃, which can be fault tolerant,

C̃ = ErCrEr−1Cr−1 · · · E1C1, (3)

where Ei is an adapted error-correction process. In fact, by per-
forming the error correction after each Ci on the encoded data,
we obtain several fault-tolerant gadgets EiCi (i = 1, . . . , r).
This kind of design paradigm may broaden the choice of codes
for the concatenation scheme and provide an opportunity for

FIG. 1. Typical logical T gate for the CSS-7 code C7, where
qubits 0, 1, and 2 participate during the implementation of this logical
circuit. The other four physical qubits that comprise the logical qubit
are idle qubits, so they are not shown in this figure.

the reduction of the overall cost of concatenated fault-tolerant
universal quantum computation.

III. CONCATENATED PIECEABLE FAULT-TOLERANT
PROTOCOL FOR THE REALIZATION

OF NON-CLIFFORD GATES

Our method is based on the nonuniform code concatena-
tion scheme [24] in which a logical qubit is encoded by code
C1 at the first level of the encoding and only the active qubits
during the application of a nontransversal logical gate on C1

will be further encoded by code C2; then the qubit overhead
of this scheme will be lower than that of the uniform scheme
[20]. Generally, for the nonuniform concatenated code, we
note that each encoding level can employ more than one code
and this design can be used to efficiently construct a fault-
tolerant non-Clifford logical gate.

For example, we note that a logical T gate in the CSS-7
code can be implemented by a CNOT gate and a single-qubit
T gate, as shown in Fig. 1. We observe that the T gate is not
transversal, which makes the single-qubit error in this circuit
prone to spreading. Additional protection should be adopted
to suppress this kind of error. For the concatenation scheme,
a common strategy is that all of the individual qubits that
comprise the CSS-7 logical qubit can be further encoded by
the [[15; 1; 3]] quantum Reed-Muller code to obtain a 105-
concatenated code. Because both the CNOT gate and the T gate
are transversal on the inner code, the entire logical T gate can
be globally fault tolerant.

However, for a specific logical gate, not all physical qubits
interact during its application, i.e., the qubits under the outer
code C1 can be partitioned into the active qubit set Q1 and
the idle qubit set Q2. A natural idea is to only encode the
active qubits at the second encoding level, such as the 49- or
45-qubit code [24]. However, for the two-level concatenation
scheme, given a universal gate set, there always exists an
element that cannot be transversally applied on both the outer
and inner codes (no-go theorem), which reduces the effective
code distance of the concatenated code.

For example, the logical Hadamard gate in the RM-15 code
is not 1-fault tolerant, as shown in Fig. 2. Logical H for the
105-qubit code is implemented fault tolerantly by applying
each non-fault-tolerant logical H gate transversally. Assuming
that a single-qubit error occurs in any two inner code blocks,
the single-qubit error in these two inner code blocks may form
a logical error through propagation. Because the code distance

052415-3



CHEN LIN AND GUOWU YANG PHYSICAL REVIEW A 102, 052415 (2020)

FIG. 2. Logical H gate for the [15; 1; 3] Reed-Muller code C15;
there is a total of nine time steps for its implementation.

of the first encoding level is 3, two such single-logical-qubit
errors eventually may cause a global logical error in the 105-
qubit code.

Inspired by the idea of code conversion, we observe that
for a specific logical gate circuit, the inner code need not be
restricted to only one code during each time step the circuit is
applied. More specifically, the inner code should be further
adjusted to make the protected component at least 1-fault
tolerant. Therefore, the realization of this strategy depends on
the fault-tolerant conversion technology for the intermediate
code when we sequentially apply each component of a logical
circuit. We also call this scheme concatenated pieceable fault
tolerant (PFT). A similar idea is responsible for the success
of the code deformation approach [31] that changes the error-
correcting code such that a full cycle returning to the original
code implements a logical gate.

IV. NONUNIFORM CONCATENATED 25-QUBIT CODE
FOR UNIVERSAL FAULT-TOLERANT COMPUTATION

To further illustrate our fault-tolerant scheme, we first con-
struct a 25-qubit two-level nonuniform concatenated code in
order to prepare the T gate. Then we specifically demonstrate
that this logical T gate construction in this code can be at least
1-fault tolerant in each time step of its application. Finally,
with the addition of the transversal Clifford gates in this con-
catenated code, we give a fault-tolerant universal set known as
Clifford + T .

A. Logical construction of non-Clifford gate T

In the construction of the 25-qubit code, the outer code C1

and inner code C2 are selected as the CSS-7 code; its stabilizer
generators are listed in Table I. Since any gate in the Clifford
group has transversal logical construction in this code [28], we
can focus our attention on the non-Clifford gate T . Following
the paradigm of the concatenated PFT scheme, the selection
of the inner code is related to the construction of a logical T
circuit, as shown in Fig. 3.

TABLE I. Generators of the stabilizer S and logical Pauli opera-
tors of the CSS-7 Steane code.

Stabilizer generators Logical Pauli operator

X0X2X4X6

X1X2X5X6

X3X4X5X6

Z0Z2Z4Z6

Z1Z2Z5Z6 X̄ = X0X1X2

Z3Z4Z5Z6 Z̄ = Z0Z1Z2

It can be observed that in the first and fifth stages, we
only need to guarantee that the inner code has a transversal
logical CNOT gate, so we first choose the CSS-7 code as the
inner-layer code. Meanwhile, with the nonuniform scheme,
only the active qubits (qubits 0–2) are protected. In the third
stage, we find that only the second active logical qubit should
be transformed into some code that has a transversal logical T
gate and such a code can be selected as the Reed-Muller code.
Therefore, an additional fault-tolerant conversion procedure
for the code under the second logical qubit should be added
so that the second and fourth stages actually complete the
transformation between the CSS-7 code and the RM-15 code.
We note that such a code transformation is only restricted on
the second active logical qubit and such a procedure can also
be considered as a global conversion between the 25-qubit
code and the 33-qubit code.

B. Pieceable fault tolerance of the logical T gate
of the 25-qubit code

From Fig. 3 we noted that the logical component in the
first, third, and fifth stages is transversal in the current in-
ner code and the transversal structure is automatically fault
tolerant. Therefore, we only need to guarantee that the code
conversion procedure in the second and fourth stages is fault

FIG. 3. Concatenated PFT T gate in the 25-qubit two-level con-
catenation code. The active qubit set Q1 and idle qubit set Q2 are
marked in the figure. We partition the logical T circuit into five
stages, and only the active qubits (0–2) are further protected by the
inner code C2. The circuit G1 is used to fault-tolerantly convert CSS-7
code to RM-15 code, and G2 is the opposite conversion. In stage 3,
we only implement a transversal logical T gate on the second logical
qubit, which is encoded by the RM-15 code. Therefore, the CNOT

and T gates in this circuit are all at least 1-fault tolerant under the
intermediate inner code, as required by our design guidelines.
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FIG. 4. Steane method for stabilizer measurement and error cor-
rection. We denote by |ψ̄〉 the encoded data logical qubit. Note that
the error-correction process includes two verification subcircuits for
preparation of ancillary |0̄〉 and |+̄〉.

tolerant. In the construction of our concatenated code, for
the H and CNOT gates, we use Steane’s method for the fault-
tolerant stabilizer measurement proposed in Ref. [13], with its
details shown in Fig. 4. For G1 and G2, we use the Schrödinger
cat state for the fault-tolerant stabilizer measurement.

For the construction of G1 and G2, we follow the method
in Ref. [30], where a general method for fault-tolerant switch-
ing between different Reed-Muller codes was proposed. The
circuit G1 that convert CSS-7 to RM-15 is shown in Fig. 5
and the reversed transformation G2 is shown in Fig. 13 in
Appendix A.

From the description of Fig. 5, we conclude that the con-
version process is fault tolerant. Moreover, because the other
two logical qubits (qubits 0 and 2) do not interact with other
inner code blocks or physical qubits, they can be regarded as
a waiting gate during the conversion process. Therefore, we
model this process as fault-tolerant idle 1-Rec [13]; this kind
of model is detailed in Fig. 6.

We have guaranteed the fault tolerance of the logical T gate
in the 25-qubit code, but, similar to other code conversion

TABLE II. Stabilizers of the intermediate codes during the fault-
tolerant conversion procedure from the CSS-7 to the RM-15 code.
More specifically, in the measurement of the stabilizers Z5Z6Z13Z14,
Z4Z6Z12Z14, and Z2Z6Z10Z14, these Pauli operators are always the
stabilizer of the intermediate code until we finally obtain the RM-15
logical state.

X -type stabilizers Z-type stabilizers

X7X8X9X10X11X12X13X14 Z7Z8Z9Z10Z11Z12Z13Z14

X3X4X5X6X11X12X13X14 Z3Z4Z5Z6Z11Z12Z13Z14

X1X2X5X6X9X10X13X14 Z1Z2Z5Z6Z9Z10Z13Z14

X0X2X4X6X8X10X12X14 Z0Z2Z4Z6Z8Z10Z12Z14

methods, the circuits G1 and G2 also need to perform long
quantum computations (ancillary preparation and stabilizer
measurement). In fact, to ensure that single fault does not
spread, Gi (i = 1, 2) is usually divided into several pieces
such that each piece that contains an adapted error-correction
process is fault tolerant. According to Eq. (2) and the descrip-
tion in Fig. 5, it can be seen that Gi is actually a pieceable
fault-tolerant circuit. Furthermore, since each piece of Gi is at
least 1-fault tolerant, with the consideration of possible error
propagation, we claim that Gi is only a 1-fault-tolerant circuit.

However, the syndrome extraction needs to apply many
two-qubit control gates and the error probability of the double-
qubit gate is the same as that of the single-qubit gate for
the standard depolarization noise model, which increases the
possibility of the occurrence of weight-2 Pauli error and
eventually makes the error threshold of Gi much lower com-
pared to other fault-tolerant components in the T -gate circuit.
Specifically, we use the Monte Carlo method to analyze the
fraction of malignant locations [21] of Gi with the restric-
tion that only one component has an error. Here we denote
this fraction by f1,Gi , and from numerical simulation we find
that max{ f1,G1 , f1,G2} = 0.079 ± 0.0014. In summary, the low
fault tolerance of Gi greatly reduces the error threshold of the
T gate.

We observe that the syndrome information of each piece is
related to the syndrome of the previous one. For example, as
shown in Fig. 7, some weight-2 Pauli errors caused by a two-
qubit coupling gate cannot be corrected in a single piece of
Gi, but taking into consideration that the errors occurring after
different quantum gates are independent and the physical error
probability p is very small (usually 10−4–10−3), if a stabilizer
of a single piece of Gi is triggered, then the possibility that the
next circuit piece also has an error is considerably low.

Therefore, we have reason to believe that the occurrence of
such error configurations discussed in Fig. 7 is more often than
the case in which two errors occurred independently at differ-
ent circuit pieces. In conclusion, by combining the syndrome
data of different pieces, we can use a pattern recognition
algorithm to infer these weight-2 errors. Next we introduce
the deep-neural-network method to improve the performance
of Gi.

C. Deep-neural-network model

Generally, a typical error-correction process can be de-
scribed by matching the syndrome vector s with the most
likely recovery operator Rs and applying this operator to the
logical state. For a pieceable fault-tolerant circuit composed
of r pieces, we define its final recovery operator as

R =
r∏

i=1

Rsi (i = 1, . . . , r), (4)

where si is the syndrome vector obtained by the error-
correction process of circuit piece Ci and Rsi is the correspond-
ing recovery operator.

Next we will construct an adjusted decoding procedure
based on the deep-learning multiclassification technique.
More details can be found in [40,41].
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FIG. 5. Subcircuit G1 that realizes fault-tolerant conversion from CSS-7 code to RM-15 code. We denote by |A〉 the CSS-7 encoded
|+̄〉 prepared by the Steane method that interacts with the physical state |0〉 through the transversal CNOT gate. Then we divide the entire
conversion process into three pieces: (1) Add the ancillary state |A〉 = |0̄〉|0〉+|1̄〉|1〉√

2
to the system, with the CSS-7 data encoding state |ψ̄〉CSS-7

constituting a new physical system |ψ̄〉CSS-7 ⊗ |A 〉; project this code state with stabilizer Z5Z6Z13Z14 and perform a round of error correction.
Here the operator U1 = X0X2X4X6. (2) Project the code state with stabilizer Z4Z6Z12Z14 and perform a round of error correction. The operator
U2 = X1X2X5X6. (3) Project the code state with stabilizer Z2Z6Z10Z14 and perform a round of error correction. The operator U3 = X3X4X5X6.
Table II shows the stabilizers used in E1 and E2. After step 3 we obtain the RM-15 encoded state |ψ̄〉RM-15.

1. Data set and labels

First we consider G1. After its implementation in the initial
CSS-7 encoded state, we collect all of the syndrome vec-
tors generated by its leading error-correction circuit (LEC)

FIG. 6. For a given error-correction code, any physical quantum
circuit has its corresponding logical variant in this code, also called
rectangle (Rec). A 1-exRec is a level-one Rec along with its leading
error-correction circuit (LEC) and trailing error-correction circuit
(TEC).

and trailing error-correction circuit (TEC) as input data. The
syndrome vectors in the LEC come from the fault-tolerant
preparation of |ψ̄〉CSS-7 and the auxiliary state |A〉 and the
error correction of the initial input state |ψ̄〉CSS-7 ⊗ |A〉. The
syndrome vectors in the TEC come from Ei (i = 1, 2, 3). We
then combine these syndrome data as s := sLEC×s1×s2×s3

and redefine the recovery operator of G1 as

RG1 = X gX (s)
L ZgZ (s)

L

3∏
i=1

Rsi , (5)

where XL and ZL are logical Pauli operators and gX (s), gZ (s) ∈
Z2. So after applying

∏3
i=1 Rsi according to the error-

syndrome lookup table, the two functions are actually reused
syndrome data to further predict the logical error in the final
output state. Therefore, the next work is to find these two
functions gX and gZ .

We define the data set as D ⊆ {s}×L and any element of
D can be represented by the form (s, l ), where l labels the
class. Here we use the one-hot encoded label for k classes,
i.e., l ∈ L = {l : l ∈ {0, 1}k, 1T l = 1}.
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FIG. 7. For conversion circuit G1, we first assume that there is no
error in the input state. Then we consider the measurement of stabi-
lizer X7X8X9X10X11X12X13X14 at E1. If a weight-2 error X ⊗ Z occurs
after the second CNOT gate, with the premise that no error occurs
in the rest of G1, we would obtain a syndrome vector (00010000).
Then we can take one of the following error-correction schemes: (1)
We only refer to the lookup table of E1 and use the minimal weight
decoding scheme to apply a recovery operator Z0, which will cause
an uncorrectable error Z0Z8, or (2) we still execute process (1), but
after finish the application of G1; with the syndrome (10000000) of
E2 and the previous syndrome of E1, we can infer that a logical error
Z0Z7Z8 has occurred. The other seven physical qubits that belong to
the logical qubit are idle, so they are not shown in this figure.

From Eq. (5), the output of our model functions needs
to give the predicted value (gX (s), gZ (s)) based on the syn-
drome information obtained by the measurement. So we take
different predicted values as classification labels correspond-
ing to logical recovery operators and denote these labels by
{l I , lX , lY , lZ}.

The data we use to train the deep-network model are gen-
erated as follows.

(i) Fault-tolerantly prepare the CSS-7 code initial state
|ψ̄〉CSS-7 and |A〉, perform the leading error correction for the
input state |ψ̄〉CSS-7 ⊗ |A〉 before it is applied by Gi, and col-
lect the error-correction syndrome sLEC , where its dimension
is 14.

(ii) Apply G1 to the input state and collect the syndrome
vectors s1, s2, and s3 obtained during its application, where
the dimension of s1 and s2 is 8 and that of s3 is 14.

(iii) Perform a round of noise-free projection after E3,
which aims to make the uncorrectable error in the conversion
circuit become a logical error, and then perform noise-free
logical Z-based or X -based measurement to detect the logical
error on the output state. Finally, we obtain the class label
value.

We choose a particular physical error rate p and apply the
depolarizing channel to G1. All-zero data are excluded in the
data set. Then we continue the simulation until N = 2×107

nonzero training data are gathered.

2. Objective function

In machine learning, the data set D can be seen as a set of
points that are produced by the real function of the data model
and our goal is to use neural networks to approximate this
function. The neural network can be determined by the param-
eter ω and then the problem of finding the optimal coefficients
of the functions gX and gZ is transformed into finding the

FIG. 8. Typical feedforward neural-network structure diagram.

optimal parameter ω. The objective function L(D,ω) usually
is taken as the goal of optimization:

min
ω

L(D,ω). (6)

The objective function is the quantification of the difference
between the model output and the observation result. It can be
described as

L(D,ω) = −
∑

s

k∑
j=1

l ( j)
s ln P̂j (s,ω) + λ

M∑
m=0

‖ω(m)‖2, (7)

where l ( j)
s is the binary indicator if the jth class label is the

correct classification for the measured syndrome s, M is the
number of layers for the network, and P̂j is the model pre-
dicted probability that s belong to the jth class. Our network
structure is shown in Fig. 8. The syndrome vector s as the
input data of the network is first sent to M hidden layers and
the hidden layer function is

Hm = f (ω(m−1)Hm−1 + b(m−1)), m = 1, . . . , M. (8)

Here we take the rectified linear unit as the active function
f , i.e., f (x) = max{0, x}. Then we pass the output of the last
hidden layer to the softmax layer to calculate the probability
that s belong to the jth category. We define P̂ = (P̂1, . . . , P̂k )
and to obtain this adapt the equation

P̂j = eVj∑k
j=1 eVj

, j = 1, . . . , k, (9)

where V = (V1, . . . ,Vk ) = ω(M )HM + b(M ). Finally, we pre-
dict the class label vector l̂ = (l̂ (1), . . . , l̂ (k) ) of s by

l̂ (i)
s =

{
1 for i = argmax

j
{P̂j}

0 otherwise.

In contrast, reducing the empirical error usually makes the
model overfit the training data and gives a more complicated
model function. Such a case will greatly damage the general-
ization of the model and cause additional time consumption.
Therefore, it is usually necessary to add an extra term to the
objective function to reduce the structural error of the model;
this term is called regularization. Commonly used regular-
ization methods are L1 regularization and L2 regularization.
Here we use L2 regularization in Eq. (7), which will limit the
coefficient ω in the model function to reduce the complexity of
the model. A hyperparameter λ is also introduced to balance
the loss function and regularized weight.
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FIG. 9. (a) Simulation curve of the logical Pauli-Z error rate for G1 and the corresponding curve for G1 with adjusted decoder. (b) Simula-
tion curve of the sum of logical Pauli errors rate for G1 and the corresponding curve for G1 with the adjusted decoder. (c) Simulation curve of
the logical Pauli-Z error rate for G2 and the corresponding curve for G2 with the adjusted decoder. (d) Simulation curve of the sum of logical
Pauli errors rate for G2 and the corresponding curve for G2 with the adjusted decoder.

For the conversion circuit G1, we construct two binary
classification models for the two types of data labeled gX (s)
and gZ (s). We set the input layer with 44 dimensions, and the
numbers of hidden layer nodes are 256, 512, 1024, and 256.
We set the batch size as 10; the learning rate is 1×10−4. We
train our models on PYTORCH.

In order to test this neural-network-based decoder, we fix
a sequence of physical error rates ranging from 10−4 to 10−3.
For each physical error rate p, we use our simulation scheme
introduced in Sec. IV D to display the logical error rate of
G1 and G2, as shown in Fig. 9. We compare the results with
the decoder based on the lookup table. The simulation results
show that our neural-network decoder can make the failure
probability of the code conversion circuit lower.

D. Nonuniform concatenated 25-qubit code thresholds

We next analyze the performance of the 25-qubit logical H ,
CNOT, and T gates through simulation algorithms [42]. Our
simulation experiments are executed by the platform called
LIQUI|〉 [43].

For our numerical simulation scheme, we assess the per-
formance of a fault-tolerant quantum operation in terms of
a pseudothreshold and an asymptotic threshold. The pseu-
dothreshold corresponds to the value εth such that when the
physical error value satisfies p < εth, the logical error rate
of the fault-tolerant structure is lower than its corresponding
physical operation value, that is, the physical operation can
be effectively simulated by this fault-tolerant structure. In
contrast, asymptotic thresholds correspond to the value εasy

such that when the physical error value satisfies p < εasy, the
logical error rate can drop to any given accuracy if we keep
increasing the concatenation level.

Our experiment has the following two basic assumptions.
First, since the error rate in classical computers is usually very

low (per operation), we assume that classical information can
be ideally protected and do not consider errors in classical
computers in our simulation experiments. Second, to ensure
the full use of resources, we assume that in every single logical
qubit, the auxiliary state that passes the verification can be
reused before it is measured to be a classical bit.

We construct an error model for the 25-code noise thresh-
old calculation as a depolarization noise model, that is, we
apply the following noise channel to each physical component
in a 1-exRec:

ε(ρ) =
(

1 − 3p

4

)
ρ + p

4
(XρX + ZρZ + Y ρY ). (10)

The primary noise components in our simulation are listed in
Table III. We only consider the case in which the physical
error rates of a two-qubit gate and a one-qubit gate are the
same.

Furthermore, following the decoding scheme of Ref. [21],
we design an adjusted decoding procedure for the H 1-exRec
and CNOT 1-exRec.

(i) Implement error correction on the three inner code
blocks (logical qubits 0–2) of the 25-qubit concatenated code
and record the error position and type of each code block.

TABLE III. Types of physical noisy components present in the
1-exRec considered.

No. Component type

1 basic state |0〉 preparation
2 basic state |+〉 preparation
3 X -basis measurement or Z-basis measurement
4 two-qubit quantum gate
5 single-qubit quantum gate (including waiting gate)
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FIG. 10. (a) Rate of logical error Z for a 25-qubit H circuit under the standard depolarizing error model. The dashed lines represent the
physical Z error rate of a single physical H gate. (b) Pseudothreshold for a 25-qubit H circuit under the standard depolarizing error model. The
dashed line represents the physical error rate.

(ii) Perform error detection on the entire 25-qubit code to
obtain a global syndrome vector.

(iii) Update the global syndrome vector based on the syn-
drome information from the three inner code blocks. For
example, if the first two of the three inner code blocks detect
a single-qubit Pauli-X -type error and independently perform
the error correction, then during the global stabilizer measure-
ment, a single logical X error is found in the third code block
from the global syndrome vector. We point out that this is not
the situation in which the third code block is error triggered,
but rather two logical errors occur during the error-correction
process of the first two code blocks. Therefore, the detected
error is actually X̄0X̄1 rather than the complementary error X̄2

(where X̄0X̄1X̄2 is the logical X error on the 25-qubit code).
Therefore, the global syndrome vector should be updated in
this case.

(iv) If none of the inner code block stabilizer measurements
are triggered, then perform a canonical global error correction.

With the decoding procedure and error model described
above, we then design the following simulation scheme to
calculate the logical failure rate for a 1-exRec.

(i) Given a 1-exRec, we fix a sequence of physical error
rates, and for the physical error rate p, we fix an integer N ,
where N corresponds to the total number of iterations in which
the depolarizing channel is applied to the 1-exRec and the
ancillary block passes verification. Thus, we actually calculate
the probability of the logical error rate conditioned on the
acceptance of all ancillary states.

(ii) When a noisy logical 1-exRec fails, such as a CNOT, it
applies the ideal CNOT gate followed by one of the 15 nontriv-
ial two-qubit logical Pauli operators. Thus, for each possible
logical error E , we prepare an appropriate initial encoded state
and use the Monte Carlo method to estimate its conditional
probability when the physical error rate is fixed. Here we set

the iteration number N = 106 and define the logical error rate
as P (E |CNOT, p) = n/N , where n is the number of logical
errors E occurring after N iterations.

For an effective fault-tolerant quantum operation, its log-
ical error rate should be smaller than the error rate of the
unprotected operation. It also has been proved that if the error
propagation is limited and a good decoder is used, then the
logical error rate should exhibit power-law scaling [44], im-
plying that code concatenation techniques [21] can be adopted
to exponentially reduce the logical error rate. Our simulation
results have been collected and are presented in Table IV.
Figures 10–12 show the simulation curves of the logical
error.

E. Discussion

From our numerical simulation results, we get the
pseudothreshold value of 4.08×10−4 for CNOT 1-exRec,
7.21×10−4 for H , and 3.93×10−4 for T . We think these are

TABLE IV. Pseudothreshold and asymptotic threshold results for
the CNOT, H , and T gates of 105-, 49-, and 25-qubit codes. The
results of the 105- and 49-qubit codes can be found in Ref. [21].

Code and gate Pseudothreshold Asymptotic threshold

105-qubit CNOT 2.11×10−3 1.95×10−3

105-qubit Hadamard 4.47×10−5 1.28×10−3

105-qubit T 4.89×10−4 1.58×10−3

49-qubit CNOT 1.21×10−3 1.10×10−3

49-qubit Hadamard 7.76×10−5 9.69×10−4

49-qubit T 4.18×10−4 1.03×10−3

25-qubit CNOT 4.08×10−4 4.09×10−4

25-qubit Hadamard 7.21×10−4 4.05×10−4

25-qubit T 3.93×10−4 3.94×10−4
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FIG. 11. (a) Rate of logical error IZ for a 25-qubit CNOT circuit under the standard depolarizing error model. The dashed lines represent
the physical I ⊗ Z error rate of a single physical CNOT gate. (b) Pseudothreshold for a 25-qubit CNOT circuit under the standard depolarizing
error model. The dashed line represents the physical error rate.

reasonable results. First, for the error correction based on the
method shown in Fig. 4, its auxiliary state preparation only
includes a single verification process, which may make some
verified auxiliary states introduce new errors to the data state.
For example, after verifying the encoded state |0̄〉 with no
Pauli-X error, we then immediately use it to detect possible
Pauli-Z error in the data state. However, if there already exists
a Z error in the auxiliary state and there is no Z error in

the data state, then the measurement of the ancillary block
would produce wrong syndrome information. Therefore, the
upper bound of the pseudothreshold of our universal scheme is
reduced. Second, for the 25-qubit code, the Clifford quantum
gate circuits are transversal on the inner and outer codes, so
a single-qubit error introduced by the ancillary state will not
spread in encoded information, which effectively improves the
pseudothreshold of the H 1-exRec.

FIG. 12. (a) Rate of logical error Z for a 25-qubit T circuit under the standard depolarizing error model. The dashed lines represent the
physical Z error rate of a single physical T gate. (b) Pseudothreshold for a 25-qubit T circuit under the standard depolarizing error model. The
dashed line represents the physical error rate.
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Adding more verification processes can effectively re-
duce the possibility of errors introduced by the auxiliary
state, but it also significantly increases the scale of the
auxiliary preparation circuit and reduces the magnitude of
the decrease of the logical error rate as the physical error
rate decreases.

Our decoding strategy effectively reduces the logical error
rate of the T gate, which also implies that the neural-
network-based decoding algorithm can effectively improve
the antinoise ability of the pieceable fault-tolerant circuit.
An efficient but higher-resource-consumption code conver-
sion circuit [31] with our neural-network decoding scheme
might be taken as an alternative to be applied in our logical
T gate.

V. ESTIMATION OF PHYSICAL QUBIT RESOURCES
FOR UNIVERSAL QUANTUM COMPUTING

In the numerical simulation of the H , CNOT, and T gates,
we want to estimate the qubit resource consumption when our
logical gate error rate is less than a specified accuracy. In addi-
tion, we prove that our scheme to implement the fault-tolerant
T gate consumes fewer qubit resources than the 49-qubit
concatenation code. Here we use the following measure, also
called raw qubit overhead [21], which is given to measure
how many physical qubits are needed in the logical circuit
with a logical error rate less than a given accuracy. Recalling
the settings in our simulation experiments, we first assume
that only when the auxiliary block passes verification can it
be accepted for error detection. Therefore, the ancillary state
preparation is a majority selection process that is performed
asynchronously and it can be repeated until a passed ancillary
block is obtained. This makes the number of qubits used to
prepare an accepted block obey the binomial distribution. So
the qubit overhead of a k-Rec can be estimated by calculating
the expected value of the auxiliary state resources. Second,
following the method in Ref. [21], we also assume that the
auxiliary state that passes the verification can be reused before
it is measured to be a classical bit.

We argue that the above two basic assumptions are
also adopted for the resource analysis of the 105- and 49-
qubit codes, so we can fairly compare resources under the
same calculation method. Finally, in the kth encoding level,
the TEC process of a k-Rec is also the LEC process of
the next one. These overlapping error-correction circuits
should be noted so that repeated resource estimation can
be avoided.

For Steane’s method, there are two types of auxiliary state
preparation processes, as shown in Fig. 4, so the auxiliary
block acceptance probability should be introduced to facili-
tate the subsequent calculation of resource consumption. We
consider the level-k n-qubit concatenation code and define
P(k)

|0〉 as the probability that the level-k auxiliary encoded

state |0〉 passes verification, while P(k)
|+〉 corresponds to the

encoded state |+〉 and N (k)
L corresponds to the number of phys-

ical qubits comprising an level-k encoded state. These two
probabilities can be estimated by the Monte Carlo method.
Therefore, the mathematical expectation of the auxiliary state

qubit resource consumption used in the level-k error correc-
tion of a code block is

N (k)
|0〉 =

∞∑
m=1

2mN (k−1)
L P(k)

|0〉
(
1 − P(k)

|0〉
)m = 2N (k−1)

L

P(k)
|0〉

, (11)

N (k)
|+〉 =

∞∑
m=1

2mN (k−1)
L P(k)

|+〉
(
1 − P(k)

|+〉
)m = 2N (k−1)

L

P(k)
|+〉

. (12)

So we can get the total number of auxiliary quantum states
required to implement a level-k fault-tolerant logical qubit as

N (k)
L = N (k)

E + nk (13)

= N (k)
|0〉 + N (k)

|+〉 + nk, (14)

where we have set N (0)
L = 1.

According to the above recursive calculation method, we
can obtain the level-k quantum state resource estimation of the
transversal H gate and CNOT gate on the n-qubit concatenation
quantum code:

N (k)
H = N (k)

E + nk, (15)

N (k)
CNOT = 2N (k)

E + 2nk . (16)

We then provide an estimation of the raw qubit overhead for
the T gate. We first propose a method for computing the
consumption of ancillary qubits of a pieceable fault-tolerant
logical gate C̃. According to Eq. (2), we should note that for
this kind of circuit, the auxiliary qubit consumption values of
Ei (i = 1, 2, . . . , r) may be different, such as the controlled-Z
gate in the five-qubit code [31]. The auxiliary states used in
each of the Ei are restored to classical bits. So the ancillary
resources required by C̃ are actually the sum of auxiliary
resources consumed by each circuit piece. Consequently, the
raw qubit overhead needed for error correction for the entire
C̃ at level-k encoding hierarchy can be defined as

N (k)
C̃ =

r∑
i=1

N (k)
Ei

+ nk . (17)

Then, for the 25-qubit pieceable fault-tolerant T gate, we first
calculate the level-1 ancillary resource of the error-correction
procedure in each of the five stages.

The first stage is a sequence of two CNOT 1-Rec in the inner
CSS-7 code. We use the Steane method for error detection
and similarly define P(1)

|0〉inner1
as the probability that the level-1

auxiliary inner-layer encoded state |0〉 passes verification, etc.
So we give the ancillary qubit overhead as

N (1)
stage1 = 4 × 2ninner1N (0)

L

⎛
⎝ 1

P(1)
|0〉inner1

+ 1

P(1)
|+〉inner1

⎞
⎠. (18)

Here we use ninner1 to denote the number of qubits needed for
the first inner code; for our T gate, we set ninner1 = 7.

The second stage mainly includes the conversion process
G1 in the 1th logical qubit. Because the 0th and 2th logical
qubits are not applied in any quantum operation until the fifth
stage, we delay the error-correction process of these idle inner
code blocks until the final stage. The ancillary consumption
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FIG. 13. Subcircuit G2 that realizes fault-tolerant conversion from RM-15 code to CSS-7 code. We can divided this circuit into three pieces:
(1) Project the initial code state with stabilizer X3X4X5X6 and perform a round of error correction. The operator U1 = Z2Z6Z10Z14. (2) Project
the code state with stabilizer X1X2X5X6 and perform a round of error correction. The operator U2 = Z4Z6Z12Z14. (3) Project the code state with
stabilizer X0X2X4X6 and perform a round of error correction. The operator U3 = Z5Z6Z13Z14. Table II shows the stabilizers used in E1 and E2.
After E3 we obtain the output state |ψ̄〉CSS-7 ⊗ |A〉.

of G1 is due to two processes: the fault-tolerant preparation
of ancillary state |A〉 and projection of three weight-4 sta-
bilizers. We use Shor’s method in E1 and E2, and after the
fault-tolerant measurement of the last stabilizer Z2Z6Z10Z14,
we can use Steane’s method in E3. We denote the auxiliary
resource consumption of the above two processes by Nslice1

and Nslice2, so the entire ancillary qubit overhead is given by

N (1)
stage2 = N (1)

slice1 + N (1)
slice2, (19)

where

N (1)
slice1 =

[
2ninner1N (0)

L

(
1

P(1)
|0〉inner1

+ 1

P(1)
|+〉inner1

)

+ ninner1N (0)
L

]
1

1 − ε
(1)
|+〉inner1

+ N (0)
L

+ 8
8N (0)

L + 7N (0)
L

P(1)
weight-8 cat state

, (20)

N (1)
slice2 = 3

(
4N (0)

L + 3N (0)
L

P(1)
weight-4 cat state

)
+ 2

(
8

8N (0)
L + 7N (0)

L

P(1)
weight-8 cat state

)

+ 2ninner2N (0)
L

(
1

P(1)
|0〉inner2

+ 1

P(1)
|+〉inner2

)
. (21)

Here we use P(1)
weight-t cat state to denote the probability that a

level-1 weight-t cat state passes verification, ε
(1)
|+〉inner1

to denote

the probability that a level-1 CSS-7 |+〉 state is unsuccessfully
prepared, and ninner2 to denote the number of qubits needed
for the second inner-layer code; for our example, we set
ninner2 = 15.

The third stage only includes a transversal T gate on the
1th logical qubit with Steane’s error-correction method, so we
have

N (1)
stage3 = 2ninner2N (0)

L

(
1

P(1)
|0〉inner2

+ 1

P(1)
|+〉inner2

)
. (22)

The fourth stage includes the conversion process G2 in
the 1th logical qubit and the waiting process of the 0th and
2th logical qubits. Similar to the second stage, we only con-
sider the auxiliary quantum state resources consumed by G2.
In the process of converting the RM-15 code to the CSS-7
code, we only need to perform three fault-tolerant stabilizer
measurements to obtain the state |ψ̄〉CSS-7 ⊗ |A〉. After the
implementation of G2, we can use Steane’s method to correct
the errors in |ψ̄〉CSS-7, as shown in Fig. 13. For G2, we include
the ancillary consumption of E3 in the fifth stage. So we have

N (1)
stage4 = 3

4N (0)
L + 3N (0)

L

P(1)
weight-4 cat state

+ 2
8N (0)

L + 7N (0)
L

P(1)
weight-8 cat state

. (23)
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The fifth stage is also a sequence of two CNOT 1-Rec on the
inner CSS-7 code. We put the process E3 of G2 in this stage,
which makes the number of error-correction processes of the
inner code 4, so the ancillary consumption of this stage is the
same as the first stage:

N (1)
stage5 = 4×2ninner1N (0)

L

(
1

P(1)
|0〉inner1

+ 1

P(1)
|+〉inner1

)
. (24)

Finally, we obtain the auxiliary state resource consumption
of all the inner logical gate circuits of the pieceable fault-
tolerant T gate. In addition, we still have to apply global
error correction of the 25-qubit code after the application of
T gates. In this process, we use the Steane method. From
Eq. (13) we can obtain the auxiliary state resource consump-
tion of the level-1 25-qubit T as follows:

N (1)
T =

5∑
j=1

N (1)
stagej

+ N (1)
E + n. (25)

Then the level-k raw qubit overhead estimation of the T gate
on the 25-qubit concatenation quantum code is

N (k)
T =

5∑
j=1

N (k)
stagej

+ N (k)
E + nk . (26)

To compare the qubit consumption of the 25- and 49-qubit
T gates, we first estimate the resource upper bound of the 25-
qubit T gate and give the lower bound of resources of the 49-
qubit T gate. Then we illustrate that our construction costs
fewer resources than the 49-qubit code.

We denote by P(k)
A the probability that a level-k ancillary

block is accepted and by N (k)
A the number of (k − 1)-exRec

in the preparation and verification circuits of this ancillary
block. For a level-k ancilla to be rejected, the previous prepa-
ration and verification circuits must contain at least one fault
(k − 1)-exRec, but not all fault components in the preparation
circuit will cause the auxiliary state to be rejected. Therefore,
we can give the upper and lower bounds of P(k)

A as

1 − ε (k) � P(k)
A � 1 − N (k)

A ε (k), (27)

where ε (k) is the upper bound of the failure rate for all level-
(k − 1) components.

Following Eq. (27), we get the upper bound of the qubit
overhead of the level-k 25-qubit T gate as 1057N (k−1)

25,L + 25k

and the lower bound of the corresponding 49-qubit T gate is
1112N (k−1)

49,L + 49k ; here we use the notation N (k−1)
25,L to denote

the qubit overhead of a level-k logical qubit with the 25-qubit
code as its top encoding layer, similar to N (k−1)

49,L . So we claim
that our qubit resource overhead of the T gate is lower than
that in the 49-qubit code. The details of our proof are left to
Appendix B.

Because the physical error rate of a single quantum oper-
ation on a general quantum physical computing experimental
platform is usually 10−3–10−4 and the error rate of a classical
computer is generally less than 10−15, we calculated the qubit
resources consumed by the logical circuit under this constraint
and show the results in Table V.

TABLE V. Overhead estimation for the 105-, 49-, and 25-qubit
codes at concatenation level 3; the estimation of 105- and 49-qubit
codes can be found in Ref. [21]. The first column indicates the
code and corresponding logical gate for which the overhead is com-
puted. The second column indicates the largest physical error rate
that should be achieved such that the logical error rate is below
p = 10−15. The third column gives the qubit overhead for the given
logical error rate.

Code and gate Physical error rate Qubit overhead

105-qubit CNOT 1.39×10−3 6.01×109

105-qubit Hadamard 1.60×10−5 3.00×109

49-qubit CNOT 3.92×10−4 1.94×108

49-qubit Hadamard 8.47×10−5 7.33×107

25-qubit CNOT 2.78×10−4 2.54×106

25-qubit Hadamard 3.46×10−4 1.27×106

VI. CONCLUSION

In this paper, the code conversion technique was adopted
to optimize the resource overhead of a universal concatenated
scheme. In addition, a neural-network-based decoder algo-
rithm was proposed to improve the performance of a logical
circuit with pieceable fault-tolerant protocol.

Following the simulation scheme of calculating the fail-
ure rate of a logical circuit by the Monte Carlo method in
Ref. [21], we designed the same experimental process and
calculated the lower bound of a pseudothreshold for a logical
universal gate set in a 25-qubit nonuniform concatenated code
and found it to be 3.93×10−4. By utilizing the CSS code struc-
ture of the 7- and 15-qubit codes, the estimation of the qubit
overhead of multilevel concatenation can be simplified as a
recursive computation process. Different from the existing
concatenation approaches, such as 49- and 105-qubit codes,
which exhibit high overhead costs, we obtained a raw qubit
overhead for our level-3 non-Clifford T gate of 1.34×109

when the logical error rate was below 10−15; the qubit over-
head for the Clifford gate under a given logical accuracy was
also greatly reduced, as shown in Table V.

As realistic error models become increasingly more rele-
vant, the development of environment-specific fault-tolerant
logical gates will become increasingly important. How to
optimize the decoder to effectively suppress the propagation
of errors under a complex error model is indeed a chal-
lenge. In addition, optimization of ancillary resources and
measurement times must be achieved to realize large-scale
quantum computation. A natural direction of future work is to
study a better decoding method and combine with a synthesis
algorithm to obtain more practical fault-tolerant logical non-
Clifford circuits.
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FIG. 14. Preparing weight-4 cat state |0000〉+|1111〉√
2

. Note that all
seven physical qubits are initialized as |0〉.

APPENDIX A: CONVERSION CIRCUITS
AND ENCODING CIRCUITS

We describe the conversion circuit G2 in Fig. 13. The aux-
iliary state used in stabilizer projection is a weight-4 cat state,
as shown in Fig. 14. The encoding circuits of the 25-qubit
code used in our simulation experiment are shown in Figs. 15
and 16.

APPENDIX B: BOUND OF QUBIT RESOURCES
OF The T GATE FOR 25- AND 49-QUBIT CODEs

According to Eq. (27), we first estimate the upper bound of
qubit resources for every stage of the level-k 25-qubit T gate
as follows:

N (k)
stage1 �

112N (k−1)
25,L

1 − 59ε (k−1)
,

FIG. 15. Encoding |0̄〉 circuits for the nonuniform 25-qubit con-
catenation code, where only qubits 0, 1, and 2 are replaced with the
CSS-7 logical qubit.

FIG. 16. Encoding |+̄〉 circuits for the nonuniform 25-qubit con-
catenation code, where only qubits 0, 1, and 2 are replaced with the
CSS-7 logical qubit.

N (k)
stage2 �

[
28

1−59ε (k−1) + 7

1 − ε
(k−1)
|+̄〉inner1

+ 1 + 120

1 − 56ε (k−1)

+ 21

1 − 19ε (k−1)
+ 240

1 − 56ε (k−1)

+ 60

1 − 72ε (k−1)

]
N (k−1)

25,L ,

N (k)
stage3 �

60N (k−1)
25,L

1 − 72ε (k−1)
,

N (k)
stage4 � 21

1 − 19ε (k−1)
+ 240

1 − 56ε (k−1)
,

N (k)
stage5 �

112N (k−1)
25,L

1 − 59ε (k−1)
.

In fact, the pseudothreshold of several concatenation codes
is usually on the order of 10−4. Therefore, when we only
consider the validity of the encoded logical circuit, the ε (k−1)

in the above resource upper bound estimation can be strictly
smaller than 10−3, so we can get

N (k)
25,T � 1057N (k−1)

25,L + 25k .

For the 49-qubit level-k T gate [21], we use the same method
to estimate its lower bound of qubit resources. Actually, with
Eq. (27), we give the computation process as

N (k)
49,T = N (k)

inner E + N (k)
E + 49k .

Because the 49-qubit concatenation code only adapts RM-15
as its inner layer code, all its inner error correction can use
Steane’s method. Following the ancillary verification process,
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we have

N (k)
inner E = 6

⎡
⎢⎢⎢⎣

2ninnerN
(k−1)
49,L

(
1

P(k)

|0〉1inner

+ 1
P(k)

|0〉2inner

)

P(k)

|0〉3
inner

+
2ninnerN

(k)
49,L

(
1

P(k)

|+〉1inner

+ 1
P(k)

|+〉2inner

)

P(k)

|+〉3
inner

⎤
⎥⎥⎥⎦ �

⎛
⎝ 360

P(k)

|0〉3
inner

+ 360

P(k)

|+〉3
inner

⎞
⎠N (k−1)

49,L � 720N (k−1)
49,L

and

N (k)
E = 2×49

⎡
⎢⎣

1
P(k)

|0〉1global

+ 1
P(k)

|0〉2global

P(k)

|0〉3
global

+
1

P(k)

|+〉1global

+ 1
P(k)

|+〉2global

P(k)

|+〉3
global

⎤
⎥⎦N (k−1)

49,L � 392N (k−1)
49,L .

So the lower bound of the corresponding 49-qubit T gate is 1112N (k−1)
49,L + 49k .

[1] P. W. Shor, Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer, SIAM Rev. 41,
303 (1999).

[2] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum Algorithm
for Linear Systems of Equations, Phys. Rev. Lett. 103, 150502
(2009).

[3] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,
and S. Lloyd, Quantum machine learning, Nature (London)
549, 195 (2017).

[4] J. Preskill, Quantum computing in the NISQ era and beyond,
Quantum 2, 79 (2018).

[5] C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V. Isakov, V.
Smelyanskiy, A. Megrant, B. Chiaro, A. Dunsworth, K. Arya
et al., A blueprint for demonstrating quantum supremacy with
superconducting qubits, Science 360, 195 (2018).

[6] H. Häffner, C. F. Roos, and R. Blatt, Quantum computing with
trapped ions, Phys. Rep. 469, 155 (2008).

[7] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol,
and D. M. Lucas, High-Fidelity Quantum Logic Gates Using
Trapped-Ion Hyperfine Qubits, Phys. Rev. Lett. 117, 060504
(2016).

[8] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman,
K. Wright, and C. Monroe, Demonstration of a small pro-
grammable quantum computer with atomic qubits, Nature
(London) 536, 63 (2016).

[9] M. H. Devoret and R. J. Schoelkopf, Superconducting cir-
cuits for quantum information: An outlook, Science 339, 1169
(2013).

[10] A. M. Childs, R. Kothari, and R. D. Somma, Quantum al-
gorithm for systems of linear equations with exponentially
improved dependence on precision, SIAM J. Comput. 46, 1920
(2017).

[11] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N.
Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven,
Characterizing quantum supremacy in near-term devices,
Nat. Phys. 14, 595 (2018).

[12] P. W. Shor, in Proceedings of the 37th Conference on Founda-
tions of Computer Science, Burlington, 1996 (IEEE, Piscataway,
1996), pp. 56–65.

[13] P. Aliferis, D. Gottesman, and J. Preskill, Quantum accuracy
threshold for concatenated distance-3 codes, Quantum Inf.
Comput. 6, 97 (2006).

[14] D. Gottesman, Quantum information science and its contribu-
tions to mathematics, in Proceedings of Symposia in Applied
Mathematics (AMS, Providence, 2010), Vol. 68, pp. 13–58.

[15] B. Eastin and E. Knill, Restrictions on Transversal Encoded
Quantum Gate Sets, Phys. Rev. Lett. 102, 110502 (2009).

[16] B. Zeng, A. Cross, and I. L. Chuang, Transversality versus uni-
versality for additive quantum codes, IEEE Trans. Inf. Theory
57, 6272 (2011).

[17] S. Bravyi and A. Kitaev, Universal quantum computation with
ideal Clifford gates and noisy ancillas, Phys. Rev. A 71, 022316
(2005).

[18] A. G. Fowler, S. J. Devitt, and C. Jones, Surface code imple-
mentation of block code state distillation, Sci. Rep. 3, 1939
(2013).

[19] J. O’Gorman and E. T. Campbell, Quantum computation
with realistic magic-state factories, Phys. Rev. A 95, 032338
(2017).

[20] T. Jochym-O’Connor and R. Laflamme, Using Concatenated
Quantum Codes for Universal Fault-Tolerant Quantum Gates,
Phys. Rev. Lett. 112, 010505 (2014).

[21] C. Chamberland, T. Jochym-O’Connor, and R. Laflamme,
Overhead analysis of universal concatenated quantum codes,
Phys. Rev. A 95, 022313 (2017).

[22] R. Chao and B. W. Reichardt, Fault-tolerant quantum computa-
tion with few qubits, npj Quantum Inf. 4, 42 (2018).

[23] C. Chamberland and P. Ronagh, Deep neural decoders for
near term fault-tolerant experiments, Quantum Sci. Technol. 3,
044002 (2018).

[24] E. Nikahd, M. Sedighi, and M. Saheb Zamani, Nonuniform
code concatenation for universal fault-tolerant quantum com-
puting, Phys. Rev. A 96, 032337 (2017).

[25] V. Kliuchnikov, D. Maslov, and M. Mosca, Fast and efficient
exact synthesis of single-qubit unitaries generated by clifford
and T gates, Quantum Inf. Comput. 13, 607 (2013).

[26] M. Amy, D. Maslov, and M. Mosca, Polynomial-time T-depth
optimization of Clifford+T circuits via matroid partitioning,
IEEE Trans. Comput.-Aid. Des. 33, 1476 (2014).

[27] A. M. Steane, Enlargement of Calderbank-Shor-Steane quan-
tum codes, IEEE Trans. Inf. Theory 45, 2492 (1999).

[28] M. A. Nielsen and I. L. Chuang, Quantum Computa-
tion and Quantum Information (Cambridge University Press,
Cambridge, 2000).

052415-15

https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1038/nature23474
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1126/science.aao4309
https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1103/PhysRevLett.117.060504
https://doi.org/10.1038/nature18648
https://doi.org/10.1126/science.1231930
https://doi.org/10.1137/16M1087072
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1103/PhysRevLett.102.110502
https://doi.org/10.1109/TIT.2011.2161917
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1038/srep01939
https://doi.org/10.1103/PhysRevA.95.032338
https://doi.org/10.1103/PhysRevLett.112.010505
https://doi.org/10.1103/PhysRevA.95.022313
https://doi.org/10.1038/s41534-018-0085-z
https://doi.org/10.1088/2058-9565/aad1f7
https://doi.org/10.1103/PhysRevA.96.032337
https://doi.org/10.1109/TCAD.2014.2341953
https://doi.org/10.1109/18.796388


CHEN LIN AND GUOWU YANG PHYSICAL REVIEW A 102, 052415 (2020)

[29] H. Bombin, Clifford gates by code deformation, New J. Phys.
13, 043005 (2011).

[30] J. T. Anderson, G. Duclos-Cianci, and D. Poulin, Fault-Tolerant
Conversion Between the Steane and Reed-Muller Quantum
Codes, Phys. Rev. Lett. 113, 080501 (2014).

[31] T. J. Yoder, R. Takagi, and I. L. Chuang, Universal Fault-
Tolerant Gates on Concatenated Stabilizer Codes, Phys. Rev.
X 6, 031039 (2016).

[32] K. R. Colladay and E. J. Mueller, Rewiring stabilizer codes,
New J. Phys. 20, 083030 (2018).

[33] D.-X. Quan, L.-L. Zhu, C.-X. Pei, and B. C. Sanders, Fault-
tolerant conversion between adjacent Reed-Muller quantum
codes based on gauge fixing, J. Phys. A: Math. Theor. 51,
115305 (2018).

[34] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, A meet-
in-the-middle algorithm for fast synthesis of depth-optimal
quantum circuits, IEEE Trans. Comput.-Aid. Des. 32, 818
(2013).

[35] D. Maslov, Advantages of using relative-phase Toffoli gates
with an application to multiple control Toffoli optimization,
Phys. Rev. A 93, 022311 (2016).

[36] M. Amy and M. Mosca, T-count optimization and Reed-Muller
codes, IEEE Trans. Inf. Theory 65, 4771 (2019).

[37] A. M. Steane, Quantum Reed-Muller codes, IEEE Trans. Inf.
Theory 45, 1701 (1999).

[38] R. Sweke, M. Kesselring, E. van Nieuwenburg, and J. Eisert,
Reinforcement learning decoders for fault-tolerant quantum
computation, Mach. Learn.: Sci. Technol. (2020).

[39] G. Torlai and R. G. Melko, Neural Decoder for Topological
Codes, Phys. Rev. Lett. 119, 030501 (2017).

[40] C. M. Bishop, Pattern Recognition and Machine Learning (In-
formation Science and Statistics) (Springer, New York, 2006).

[41] Y. Lecun, Y. Bengio, and G. Hinton, Deep learning,
Nature (London) 521, 436 (2015).

[42] S. Aaronson and D. Gottesman, Improved simulation of stabi-
lizer circuits, Phys. Rev. A 70, 052328 (2004).

[43] D. Wecker and K. M. Svore, LIQUi|〉: A software design archi-
tecture and domain-specific language for quantum computing,
arXiv:1402.4467.

[44] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland,
Surface codes: Towards practical large-scale quantum computa-
tion, Phys. Rev. A 86, 032324 (2012).

052415-16

https://doi.org/10.1088/1367-2630/13/4/043005
https://doi.org/10.1103/PhysRevLett.113.080501
https://doi.org/10.1103/PhysRevX.6.031039
https://doi.org/10.1088/1367-2630/aad8dd
https://doi.org/10.1088/1751-8121/aaad13
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1103/PhysRevA.93.022311
https://doi.org/10.1109/TIT.2019.2906374
https://doi.org/10.1109/18.771249
https://doi.org/10.1088/2632-2153/abc609
https://doi.org/10.1103/PhysRevLett.119.030501
https://doi.org/10.1038/nature14539
https://doi.org/10.1103/PhysRevA.70.052328
http://arxiv.org/abs/arXiv:1402.4467
https://doi.org/10.1103/PhysRevA.86.032324

