
PHYSICAL REVIEW A 102, 052414 (2020)

Noise-resilient variational hybrid quantum-classical optimization

Laura Gentini ,1,2 Alessandro Cuccoli,1,2 Stefano Pirandola,3 Paola Verrucchi,4,1,2 and Leonardo Banchi 1,2

1Dipartimento di Fisica e Astronomia, Università di Firenze, I-50019, Sesto Fiorentino (FI), Italy
2INFN, Sezione di Firenze, I-50019, Sesto Fiorentino (FI), Italy

3Computer Science and York Centre for Quantum Technologies, University of York, York YO10 5GH, United Kingdom
4ISC-CNR, UOS Dipartimento di Fisica, Università di Firenze, I-50019, Sesto Fiorentino (FI), Italy

(Received 8 January 2020; accepted 12 October 2020; published 16 November 2020)

Variational hybrid quantum-classical optimization is one of the most promising avenues to show the
advantages of noisy intermediate-scale quantum computers in solving hard problems, such as finding the
minimum-energy state of a Hamiltonian or solving some machine-learning tasks. In these devices, noise is
unavoidable and impossible to error correct, yet its role in the optimization process is not well understood,
especially from the theoretical viewpoint. Here we consider a minimization problem with respect to a variational
state, iteratively obtained via a parametric quantum circuit, taking into account both the role of noise and the
stochastic nature of quantum measurement outcomes. We show that the accuracy of the result obtained for a
fixed number of iterations is bounded by a quantity related to the quantum Fisher information of the variational
state. Using this bound, we study the convergence property of the quantum approximate optimization algorithm
under realistic noise models, showing the robustness of the algorithm against different noise strengths.
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I. INTRODUCTION

Quantum computers are physical devices that are ex-
pected to perform calculations essentially impossible for our
best classical supercomputers [1], although the quantum ad-
vantage has been proven only for a specifically designed
problem whose practical application is unclear. As for the
hardware, the devices that are currently being built are noisy
intermediate-scale quantum (NISQ) ones [2], for which many
of the most promising uses consist of solving optimization
problems via hybrid quantum-classical algorithms that in-
clude parametric quantum circuits [3–10]. In these algorithms,
the manipulation of the quantum register is done via gates that
depend on some parameters: These are iteratively updated via
a feedback strategy, where the measurement outcomes of the
device are classically processed to propose better parameters,
in the spirit of a variational approach. In what follows, we
will refer to the above procedure as a “hybrid variational
optimization.”

There are various aspects that make a real quantum device
different from an ideal one, among which are the noise due
to any external environment and the stochasticity of outcomes
due to the probabilistic nature of the quantum measurement
process. Different authors (see, for instance, Refs. [10–13])
have studied the effect of noise (e.g., noisy gates, dephas-
ing etc.) in protocols designed for the noiseless case and
found that noise is usually detrimental. At the same time, the
role of stochasticity of outcomes has been described using
the stochastic gradient descent framework [14,15]. However,
how to tame the combined effect of noise and stochastic-
ity in hybrid variational optimization is still far from being
understood.

In this work, we analytically study the convergence proper-
ties of hybrid variational optimizations in terms of the number
of times, hereafter dubbed iterations, that the NISQ device
must be queried to find the optimal parameters with a desired
accuracy. We focus on the effects of noisy gates and stochas-
ticity of the measurement outcomes, without considering the
further problem of choosing the measured observable that is
best suited to extract information from the noisy process. We
show that the convergence speed is typically unaffected by the
presence of a small amount of noise, while the accuracy of the
solution typically deteriorates as the noise strength increases.
Moreover, we demonstrate that the attainable accuracy for a
fixed number of iterations is bounded by a quantity that plays
a very relevant role in quantum estimation theory, namely the
quantum Fisher information [16–18]. Our theoretical predic-
tion is corroborated by the results of numerical experiments.

The paper is structured as follows: In Sec. II, we introduce
the variational hybrid optimization procedure and describe
an algorithm that implements it. In Sec. III, we study the
role of noisy operations and demonstrate some general results
about their effects. Results of our numerical experiments are
presented and discussed in Sec. IV, while conclusions are
drawn in Sec. V.

II. VARIATIONAL HYBRID OPTIMIZATION

Consider the expectation value

C(θ) := 〈ψ (θ)| Ĥ |ψ (θ)〉 , (1)

where |ψ (θ)〉 is a quantum state of N qubits that depends
on P classical parameters θ = (θ1, . . . , θP ) ∈ RP, and Ĥ is a
Hermitian operator. Many optimization problems have their
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solution in the minimization of C(θ) with regard to the param-
eters θ. When this minimization is obtained via a variational
procedure, the state |ψ (θ)〉 is dubbed a “variational quantum
state.” As for the operator Ĥ , its explicit form depends on
the specific problem under analysis. In the variational quan-
tum eigensolver [3], for instance, Ĥ is the Hamiltonian of a
quantum many-body system and the task is that of finding
a good variational approximation of the ground state. In the
quantum approximate optimization algorithm (QAOA) [4],
the task is that of solving some combinatorial problem, with
Ĥ an Ising-like Hamiltonian whose ground state embodies the
solution of the problem [19]. Further, it is possible to express
in this language some machine learning applications, such as
quantum classifiers [10,20]. In all of these cases, the function
to be minimized, C(θ), is dubbed the “cost” function and only
needs to be bound from below, with a range of attainable val-
ues that depend on the actual physical status of the observable
represented by the operator Ĥ . There also exist optimization
instances where C(θ) can have a slightly different meaning.
In quantum control [21] and simulation [22], for example, the
goal is often that of obtaining a quantum state, or quantum
operation, that is as similar as possible to a given target one;
in this case, one can choose Ĥ = Û |ϕ〉〈ϕ| Û †, with Û a target
unitary and |ϕ〉 a reference state: The function (1) is then the
square of the fidelity of state preparation, ranging from 0 to
1 by definition, and 1 − C(θ) the function to be minimized.
In this work, we will not explicitly refer to this case, as done
elsewhere [23], but rather focus on problems where C(θ) is
the expectation value of some physical observable that needs
being minimized.

At the heart of many variational hybrid optimization pro-
cesses is the variational ansatz for the state |ψ (θ)〉 in (1). One
of the most popular choices is to take such state as the output
of a parametric quantum circuit

|ψ (θ)〉 = e−iθPX̂P . . . e−iθ1X̂1 |ψ0〉 , (2)

i.e., of a series of evolutions generated by different, and yet
fixed, Hamiltonian operators X̂ j , for times θ j representing the
variational parameters. The reason for this choice is that para-
metric quantum circuits are implementable in NISQ devices
[2] as long as X̂ j contains one- and two-local interactions only,
i.e., when the gates e−iθ j X̂ j act nontrivially on at most two
qubits. The state |ψ0〉 is chosen among states that are easy
to prepare and it is typically separable, |ψ0〉 ≡ ⊗N

j=1 |ψ ( j)
0 〉.

Variational hybrid quantum-classical algorithms, schemat-
ically shown in Fig. 1, operate iteratively a quantum
device and a classical processor. At the ith iteration, the
quantum device generates the variational state |ψ (θ(i) )〉 =
e−iθ (i)

P X̂P . . . e−iθ (i)
1 X̂1 |ψ (θ(i−1))〉 and estimates the cost (1), and

possibly its derivatives ∂θ jC, via quantum measurements
[5,14,24] of the observable Ĥ . This is the computation-
ally hardest part, as it requires the manipulation of states
that belong to Hilbert spaces whose dimension exponentially
increases with the number of qubits N . Afterward, a clas-
sical algorithm processes the estimated values of C(θ(i) ), or
derivatives ∂θ jC, and proposes new parameters θ(i+1) that are
expected to flow toward the minimum of the cost function.
Classical optimization, quantum evolution, and quantum mea-
surements are thus performed iteratively until convergence.
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FIG. 1. Variationl hybrid quantum-classical optimization. A
quantum computer is used to prepare the variational state (2) by
sequentially applying some gates that depend on parameters θ j and
then measuring the observable Ĥ to estimate the cost (1). A classi-
cal algorithm iteratively processes these outcomes and updates the
parameters θ j to iteratively minimize the cost (1).

The advantage of this hybrid approach is that the quantum
computer is always reset after each iteration so that the co-
herence times required are just those necessary to operate a
circuit with depth O(P) and then perform a measurement.

The main difference with other common variational ap-
proaches used in quantum mechanics is that C(θ), or
derivatives ∂θ jC, are estimated from measurement outcomes
and, as such, are affected by uncertainty due to the proba-
bilistic nature of quantum measurements, even in the noiseless
case.

Having access to stochastic values of the cost function
dramatically changes the convergence time [25]. Algorithms
for stochastic optimization are classified as zeroth order, or
derivative free, when only C(θ) is measured; first order when
it is possible to directly measure the derivatives with regard
to θ j of the cost function; or, in general, kth order when
also kth-order derivatives are available. It has been recently
shown [14] that first-order methods can lead to substantially
faster convergence than zeroth-order methods. On the other
hand, the convergence time is not more strictly bounded when
using higher order derivatives, although some advantage may
be observed in practical implementations. Motivated by that
analysis, here we focus on the convergence of first-order
methods using the framework of stochastic optimization.

When dealing with stochastic optimization problems,
where only the stochastic outcomes f (θ, y) are directly mea-
surable by sampling different values of y that are distributed
according to a distribution p(y|θ), the cost function is usu-
ally written [14,25,26] as C(θ) = Ey∼p(y|θ)[ f (θ, y)], where
Ey∼p(y|θ)[ f (θ, y)] is the expectation value

∑
y p(y|θ) f (θ, y).

The cost function (1) can be written in the above form
by using the (possibly unknown) eigendecomposition of
Ĥ ≡ ∑

y Ey |y〉〈y|: The measurement outcomes y are dis-
tributed with probability p(y|θ) = 〈y| ρ̂(θ) |y〉, where ρ̂(θ) =
|ψ (θ)〉〈ψ (θ)| and f (θ, y) = Ey is the associated cost, which is
independent of θ.

When the eigendecomposition of Ĥ is not known, one
can still get C(θ) from Pauli measurements, namely by
decomposing Ĥ as Ĥ = ∑L

μ=1 hμσ̂μ, where each σ̂μ is a
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tensor product of Pauli matrices and hμ is the correspond-
ing coefficient, and then by independently estimating each
〈ψ (θ)|σ̂μ|ψ (θ)〉. Note that many σ̂μ typically commute with
each other, so the required number of independent measure-
ments can be smaller than L.

Suppose now that ∇C(θ) = Ez∼q(z|θ)[g(θ, z)], with ∇ j :=
∂

∂θ j
; i.e., that the gradient of C can be written as an expectation

of a vector-valued function g(θ, z) over some stochastic out-
comes z, distributed with a probability distribution q, possibly
different from p. The simplest first-order method for stochas-
tic optimization is stochastic gradient descent (SGD) that,
intuitively, acts as a gradient descent algorithm where ∇C is
substituted with an unbiased estimate g. If the parameters are
updated at each iteration i as θ(i+1) = θ(i) − αig(θ(i) ), then,
after I iterations, the algorithm converges [14,25,27,28] to a
local optimum θopt with

E[C(θ[1:I] )] − C(θopt ) � R
G√

I
. (3)

The left-hand side of (3), where θ[1:I] = 1
I

∑I
i=1 θ(i), formally

defines what we call “accuracy” in this work; in the right-hand
side of the inequality R is a constant that depends on the
function and on the parameter space, while G is an upper
bound on the norm of the gradient estimate, E[‖g(θ)‖2

2] � G2.
Such rate is achieved with αi ≡ α = RI−1/2/G. The inequal-
ity (3) means that a larger gradient variance implies slower
convergence. Note that, due to the stochastic nature of g, even
the parameters θ(i) are stochastic. On the other hand, Eq. (3)
shows that θ[1:I] is a good estimator of the optimal value θopt

in the limit of many iterations I and an arbitrarily small error
ε ∝ G/

√
I may be achieved. In other algorithms [14,25,26],

the convergence depends on the bound E[‖g(θ)‖2
∞] � G2

∞,
obtained with a different norm. Since norm inequalities imply
G �

√
PG∞, we can always focus on G∞. Although different

algorithms may have different convergence times, for instance
with adaptive αi and other definitions of θ[1:I], most upper
bounds have a form similar to (3). Faster convergence, ε ≈
G2/I , can be obtained when C(θ) satisfies extra properties
[14,25], such as strong convexity, with a slightly different
definition of θ[1:I]. The bound (3) assumes that the parameters
are updated after each query, namely after a single measure-
ment outcome g. An alternative is minibatch learning [25],
where M > 1 queries are used to better estimate the gradient.
Although this yields a less noisy gradient estimator, which, for
instance, provides better numerical results in training quantum
dynamical systems [29,30], the theoretical worst-case con-
vergence rate is similar to (3). Indeed, a bound like (3) can
be written with I = MNiter , with Niter being the number of
iterations and I being the total number of measurements.

III. HYBRID OPTIMIZATION WITH NOISY OPERATIONS

Because of the unavoidable errors in their operation, NISQ
devices cannot exactly prepare the ideal variational state (2),
which must hence be substituted with ρ̂(θ) = E(θ)[ρ̂0], where
ρ̂0 is the noisy version of |ψ0〉 and E(θ) is the noisy dynam-
ical map. Although most of our theoretical bounds hold for
more complex noise models, for the sake of simplicity in the

following we use the decomposition

ρ̂(θ) = EθP
P ◦ · · · ◦ Eθ1

1 [ρ̂0], (4)

where ◦ indicates composition and Eθ j

j is the noisy version of

the ideal parametric unitary channel Uθ j

j [ρ̂] = e−iθ j X̂ j ρ̂eiθ j X̂ j

implemented by the jth parametric gate of the NISQ device.
In what follows, Cmin := minψ 〈ψ |H |ψ〉 is the exact minimum
of the cost function. Since ρ̂(θ) is a mixed state, the minimiza-
tion of the cost function Cnoisy(θ) := Tr[ρ̂(θ)Ĥ ] only provides
an approximation to the minimum C(θopt ) that can be obtained
in the noiseless case. Although not explicitly considered in
this paper, our analysis may be straightforwardly extended to
some cases where even the ideal target is a mixed state, e.g.,
the nonequilibrium steady state of a noisy evolution [31–33].

The convergence rate of stochastic optimization toward the
noisy minimum Cnoisy(ϑopt.), with optimal parameters ϑopt,
can be bounded as in Eq. (3). Considering both the error due
to the finite number of iterations and the error due to the
difference between C(θopt ) and Cnoisy(ϑopt ), we may write

Cnoisy(θ[1:I] ) − C(θopt ) � Err(θopt,ϑopt ) + R
Gnoisy

√
I

, (5)

where we define Err(θ,ϑ) as the difference between the noisy
and noiseless costs, namely

Err(θ,ϑ) := Cnoisy(ϑ) − C(θ). (6)

For some noise models, it can be shown that ϑopt = θopt,
namely that the optimal parameters in the noiseless and noisy
case are the same [13]. The inequality (5) shows a simple and
yet important aspect: After a fixed number of iterations I , our
best approximation to the noiseless variational minimum has
an error that is given by two different terms. The first one fol-
lows from the difference between the noiseless and noisy case,
while the second one depends on the gradient estimator and
always decreases for increasing I . To simplify our discussion
and provide a worst-case scenario, we assume that we know
how to choose an ideal variational ansatz (2) that provides
Cmin = C(θopt ) and consequently ensures Err(ϑopt, θopt ) � 0.
This is typically not the case, as variational ansatze are
normally chosen as simple circuits that are easy to imple-
ment on a NISQ device, for which one might get a negative
Err(ϑopt, θopt ). The worst-case error coming from the first
term in the right-hand side of (5) can be bounded by adapting
the “peeling” technique from Refs. [34,35]. Indeed, we show
in Appendix A that Err(θ,ϑ) � P‖Ĥ‖∞ maxk ‖Eϑk

k −Uθk
k ‖

so the error increases at most linearly with the depth P and
depends on the maximum distance, as measured by the dia-
mond norm [36,37], between the ideal gates and their noisy
implementations; see also Eq. (A4). An alternative inequality
Err(θ,ϑ) � 2‖Ĥ‖∞

√
1 − 〈ψ (θ)| ρ̂(ϑ) |ψ (θ)〉 shows that the

first error term is bounded by the fidelity between the optimal
pure state and its noisy version.

We now focus on Gnoisy in (5), which depends on the
procedure used to estimate the gradient from quantum mea-
surements. The measurement of an observable with associated
operator ĝ j provides an unbiased estimator of the gradient
if ∇ jC = Tr[ρ̂ĝ j] for each j. In this sense, we refer to the
observables ĝ j as estimators of the gradient. In the noiseless
case, different estimators have been proposed [5,14,20,24],
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based on either the Hadamard test or the so-called parameter-
shift rule. However, those estimators may be biased if only
noisy gates are available: Therefore, a rigorous generalization
to the noisy regime is still lacking. The convergence of SGD
with biased gradient estimators is not much understood, aside
from specific algorithms such as the simultaneous perturba-
tion stochastic approximation (SPSA) [38], where the bias can
be controlled. In order to define an unbiased estimator in the
general case, we use the geometry of quantum states, from
which we know that any derivative can be written as [17,39]

∇ j ρ̂ = L̂ j ρ̂ + ρ̂L̂ j

2
, (7)

where the operator L̂ j is called the symmetric logarithmic
derivative (SLD). The gradient of the cost C(θ) = Tr[ρ̂(θ)Ĥ ]
can hence be obtained by measuring observables with associ-
ated operators

ĝ j (θ) = L̂ j (θ)Ĥ + Ĥ L̂ j (θ)

2
+ λ j L̂ j (θ) (8)

for any λ j . The freedom in choosing λ j follows from
Eq. (7), as Tr[L̂ j ρ̂] = Tr[∇ j ρ̂] = ∇ jTr[ρ̂] = 0 implies that
the expectation value ∇ jC = Tr[ĝ j ρ̂] is independent of λ j .
Therefore, the free parameters λ j are analogous to the
so-called baselines, commonly employed in reinforcement
learning for variance reduction [40]. The optimal λ js are
discussed in Appendix B. The measurement of the gradient
operators provides stochastic outcomes gSLD

j (θ, γ ) with prob-
abilities 〈gγ , j |ρ̂|gγ , j〉, where we used the eigendecomposition
ĝ j=

∑
γ gSLD

j (θ, γ )|gγ , j〉〈gγ , j |. For pure states, the SLD oper-
ator has a simple form L̂ j = |ψ (θ)〉 〈∇ jψ (θ)| and the above
estimation strategy becomes equivalent to others, proposed in
the literature [5,14,20,24], which can be explicitly measured
using a generalization of the Hadamard test [14].

An alternative estimator can be obtained using the log-
derivative (LD) method [41], also called “reinforce” in the
machine learning literature [42], which consists in writ-
ing the gradient of the cost function ∇ jC = ∑

y Ey∇ j p(y|θ)
as en expectation value of gLD

j (θ, y) = Ey∇ j ln p(y|θ) over
the original distribution p(y|θ) = 〈y| ρ̂(θ) |y〉, where Ĥ =∑

y Ey |y〉〈y|.
In Appendix C, we show that all different estimators for

the gradient satisfy the upper bound

Gnoisy �
√

PGnoisy
∞ �

√
P‖Ĥ‖∞ max

j,θ

√
Fj (θ), (9)

where Fj is the Quantum Fisher Information (QFI),

Fj (θ) = Tr[ρ̂(θ)L̂ j (θ)2], (10)

a central quantity in quantum metrology [17] that is also
relevant for studying quantum phase transitions [33,43,44].

Before proceeding further, let us briefly comment upon the
emergence of the QFI in this context. There are two slightly
different way of understanding the QFI. First, there is the
QFI of a state ρ̂ with respect to a certain observable X̂ :
This is FQ[ρ̂, X̂ ] := 2

∑
mn

(ρm−ρn )2

(ρm+ρn ) | 〈m| X̂ |n〉 |2, where ρ̂ =∑
n ρn |n〉〈n| is the eigendecomposition of ρ̂. When ρ̂ is a pure

state, the QFI is nothing but twice the expectation value of X̂
on such state. On the other hand, if a reference state ρ̂0 and a
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FIG. 2. Opposite behavior of the two sources of error: (a) the
square root of second statistical moment of the gradient estimator
maxθ

√
E[‖g(θ)‖2

2] � Gnoisy and (b) the excess cost Err(θopt, ϑopt ), as
a function of the depolarising noise strength η (see Sec. IV for the
definition of η). The variational circuit corresponds to a QAOA for
a ring of N = 6 qubits with 20 variational parameters. Different gra-
dient estimators are considered: The one based on the log-derivative
(LD) method and the one based on the symmetric logarithmic deriva-
tive (SLD). Those are plotted against the upper bound (9) based on
the quantum Fisher information (QFI).

real parameter θ (that we here take as one-dimensional for the
sake of clarity) exist such that ρ̂ = e−iθ X̂ ρ̂0eiθ X̂ = ρ̂(θ ), then
it is FQ[ρ̂, X̂ ] = FQ[ρ̂(θ )] = Tr[ρ̂(θ )L̂2], where L̂ is the SLD
we have encountered above, whose relation with the observ-
able X̂ is via i[ρ̂, X̂ ] = 1

2 (L̂ρ̂ + ρ̂L̂). The expression FQ[ρ̂(θ )]
is common in quantum metrology, where it quantifies the
sensitivity of the parametric state ρ̂(θ ) to the variations of θ

itself. In this respect, notice that if θ represents the classical
quantity to be measured via a quantum-metrology protocol, a
higher QFI guarantees a more precise result. The above com-
ments are easily generalized to the case of a multidimensional
parameter θ, as the one used elsewhere in this work.

Let us now get back to the bound (9) to underline a very
important aspect: While the first term in the right-hand side of
(5) increases as a function of the noise strength, the second
one can decrease. Indeed, it is known that noise is normally
detrimental for metrology, as it can reduce the QFI from
O(N2) (Heisenberg limit) to O(N ) (standard quantum limit)
[18,45]. Our analysis thus shows that the convergence accu-
racy, as defined by the left-hand side of (5), is bounded by the
sum of two terms that typically display opposite behaviors as
a function of the noise strength, with the first one increasing
and the second one decreasing, as shown in Fig. 2 for the
specific example that will be described in the following sec-
tion. From the physical point of view, this is due to how
the cost-function landscape is affected by noise. As shown
in Fig. 3 for strong noise, the landscape is “flattened” and
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FIG. 3. Typical form of the cost-function landscape in the noise-
less (left) to the noisy (right) regimes as a function of two parameters,
γ1 and β1; see Sec. IV for the model description. Costs 〈Ĥ〉 and
variances 〈Ĥ 2〉 − 〈Ĥ〉2 are respectively shown in the top and bottom
panels.

hence the minimum cost is higher, but so is the variance, and
hence the maximum variance is lower. Therefore, in the noisy
regime the number of operations needed to correctly find the
minimum may be reduced. Our analysis of Eq. (5) quantifies
this intuition: When the number of iterations I is small, we
may observe that noise is actually beneficial. However, due
to measurement uncertainty, the number of iterations required
for convergence is typically large and max j,θ Fj . In this regime
noise is always detrimental, as observed in some numerical
experiments [46,47].

The bound (5), together with the above analysis, shows that
the convergence speed is mostly unaffected by noise, while
the quality of the solution typically deteriorates due to the
error Err(θ,ϑ), which still increases at most linearly with the
depth P of the circuit. Therefore, we may expect that hybrid
variational optimization is robust against noise. In the next
section, we numerically study such robustness for a relevant
optimization problem.

IV. NUMERICAL EXAMPLES

QAOA [4] is a specific ansatz for variational hybrid op-
timization which consists in the repetition of two types of
parametric quantum evolutions generated by two different
noncommuting Hamiltonians, typically called Ĥγ and Ĥβ .
Here Ĥγ ≡ Ĥ is equal to the cost operator appearing in Eq. (1)
and is a function of the Pauli σ̂ z

l operators only, where the
indices l = 1, . . . , N refer to the different qubits. In the com-
putational basis defined by the eigenstates {|0〉 , |1〉} of σ̂ z

l , H
is diagonal. The other Hamiltonian is fixed as Ĥβ = −∑

l σ̂ x
l ,

where σ̂ x
l are other Pauli operators, which are not diagonal in

the computational basis. The QAOA evolution can be written
as in Eq. (2) with sequential applications of Ĥγ and Ĥβ

|ψ (γ,β)〉 = e−iβPĤβ e−iγPĤγ . . . e−iβ1Ĥβ e−iγ1Ĥγ |+〉⊗N . (11)

The parameters are then split as θ = (γ,β) and the total depth
of the circuit is P = 2P. The initial state |ψ0〉 = |+〉⊗N , where
|+〉 = (|0〉 + |1〉)/

√
2, is the ground state of Ĥβ . QAOA is a

universal model for quantum computation [48,49], meaning
that, with specific choices of Ĥγ , any state can be arbitrar-
ily well approximated by |ψ (γ,β)〉 with suitable parameters
γ j , β j , and P→ ∞. For the specific choice γ j ∝ j/P and
β j ∝ (1 − j/P), Eq. (11) can be interpreted as a discretization
of an adiabatic evolution [4,50] and QAOA is guaranteed to
perform well for large enough P. The QFI can be large when
the adiabatic evolution crosses a dynamical phase transition
[33,43,44] and the error from Gnoisy in (5) can be significant
when the Hamiltonian βĤβ + γ Ĥγ displays a quantum phase
transition for some choices of (β, γ ). One such example is
the Ising ring [51] studied below, where Ĥβ models the global
transverse field. In such a model, the QFI scales as O(N2) in
the translational invariant case, while for steady states of more
complex noisy evolution it can be as large as O(N6) [33].

Here we study QAOA applied to a translational invariant
antiferromagnetic ring with Ĥγ = ∑N

l=1 σ̂ z
l σ̂ z

l+1 and periodic
boundary conditions σ̂ z

N+1 ≡ σ̂ z
1 . QAOA with this model has

been studied in Refs. [11,12], using the exact mapping to a
free-fermion model. In particular, it has been proven [11] that
the ground state can be exactly expressed with the QAOA
ansatz (11) as long as P � N/2. The effect of noise in
an overparameterized QAOA is shown in Fig. 2, where we
consider the effect of a local depolarising error, as in (4)
with Eθ j

j [ρ̂] = D[e−iθ j X̂ j ρ̂eiθ j X̂ j ],D = ⊗N
l=1Dl , andDl (ρ) =

(1 − η)ρ̂ + ησ̂ z
l ρ̂σ̂ z

l . All bounds are computed by numerically
finding the operators L̂ j from Eq. (7). In Fig. 2, we see that
our theory predicts a decreasing Gnoisy in (5) as a function
of η. In Appendix D, we also study a different noise model,
where the NISQ computer implements noisy yet unitary gates
e−i(θ j+ηε j )Xj , where ε j ∼ N (0, 1) is a Gaussian random vari-
able. We found that also with this noise, the error terms
display the same behavior shown in Fig. 2.

We test our theoretical predictions using the QISKIT frame-
work [52] to simulate QAOA on a physical hardware by
numerical experiments. In these simulations, the error model
consists of single- and two-qubit gate errors, i.e., depolarizing
error followed by a thermal relaxation error, as discussed
in Appendix E. In Fig. 4, we show the optimization of the
cost function (1) using a simple gradient descend update,
where each gradient value is estimated by using a quantum
circuit followed by local measurements (see Appendix F for
details); these operations are repeated 200 times to estimate
a single value. Because of the stochastic measurement out-
comes, each optimization takes a different stochastic route.
Figure 4 is divided into three panels, differing from each
other only for noise strength. In fact, in order to study the
performance of QAOA in different noisy regimes, we progres-
sively increase noise strength in our simulations: In the results
reported in Fig. 4, noise strength has been progressively in-
creased by factors f = 2 [Fig. 4(a)], factor f = 4 [Fig. 4(b)],
and factor f = 10 [Fig. 4(c)]; namely gate errors and relax-
ation and decoherence rates are all increased by the factor f
compared to the typical values of noise parameters obtained
from IBM quantum processors (see Appendix E). Results ob-
tained without increase, namely with f = 1, are not reported,
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(a)

(b)

(c)

FIG. 4. Numerical results on the convergence of QAOA. We use
N = 8 and P = 3 in all panels (a), (b), and (c). Red and blue curves,
respectively, represent noiseless and noisy evolution. The noise pa-
rameters are taken from typical values of IBM quantum processors
(see Appendix E), yet increased by factors of 2 (a), 4 (b), and 10
(c). The convergence of the cost function (1) is shown during the
optimization procedure; faded thin lines are 10 trials of the same
realization of QAOA, while solid lines show the empirical average
evolution from the 10 trials. For more information, see the main text.

since they are basically indistinguishable from those obtained
in the noiseless case. We expect that noise effects can become
visible even with f = 1 when the number of qubits N and/or

circuit depth P are sensibly larger than those employed in our
simulations.

The following description holds for all three individual
panels regardless of the increase factor f of noise strength:
The fade thin lines correspond to 10 different trials of opti-
mization of the cost function in both noisy (blue) and noiseless
(red) cases with the same initial conditions. We observe that
the cost, estimated like the gradient, repeating 200 times the
quantum circuit and measurements, initially highly fluctuates
among different runs, but then all runs converge toward the
local minimum (since P < N/2 the global minimum cannot
be achieved). Higher accuracy in the convergence may be
obtained using more sophisticated first-order methods [26].
Optimizations starting from different initial parameters dis-
play similar behavior (not shown). Using Gaussian process
regression, we have also computed average “path-integral-
like” optimization curves, which are shown in the same graph
in Fig. 4 with solid lines for both the noiseless and noisy cases.
These lines show the empirical average evolution from the 10
trials, and colored zones represent 95% confidence intervals
associated with such average.

We observe that for small noise strength, e.g., Fig. 4(a), the
average optimization curves are basically indistinguishable
from the noisy ones, aside from finite-size effects due to the
finite number of measurements. For moderate noise values,
Fig. 4(b), as predicted by our theory, the final point in the
optimization is slightly higher in the noisy regime, but the
convergence speed is comparable. Moreover, at the initial
points, the average cost is smaller in the noisy case. Although
this prediction may be due to the finite number of curves,
it is consistent with our analysis from (5). For large noise
strengths, Fig. 4(c), we observe that the final cost significantly
deviates from the noiseless case, but the convergence speed is
again comparable.

Overall our analysis shows that the convergence speed of
hybrid variational optimization is not significantly affected by
noise, while the quality of the final solution is.

V. DISCUSSION

We have studied the convergence speed of variational hy-
brid quantum-classical optimization algorithms, showing that
the error after a finite number of steps can be upper bounded
by the sum of two terms: The first one is the difference
between the noisy and the noiseless result, and typically
increases for stronger noise; the second term, though, is pro-
portional to the square root of the quantum Fisher information
that usually decreases with noise. Because of the competition
between these two terms, depending on the noise strength,
different results can be observed. For small to intermediate
noise, we find that the convergence time is mostly unaffected
by the presence of noise. This said, for a number of iterations
such that the convergence time has not passed yet, the accu-
racy may actually be higher in some noisy regimes. On the
other hand, if the convergence time is reached, the error term
typically dominates, showing the foreseeable negative role of
noise.

Let us also comment upon the way QFI enters our results.
From the formal viewpoint, we understand its occurrence as
due to the use of stochastic optimization methods, which
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involve the gradient of the cost function with respect to the
variational parameters, and hence the operators L̂ j in (7) and
QFI via its definition (10). However, the substantial reason
for the QFI to appear in (9) in a somehow counterintuitive
way (the lower the better) can be explained as follows. In es-
timation theory, a larger FI guarantees a better determination
of the wanted parameter via the sampling of a function that
depends on it; this is because a larger FI follows from larger
local values of the derivatives and hence a higher sensitivity
of the overall estimation procedure. On the other hand, in
the scheme to which we are referring the role played by the
parameter and the sampled function is reversed: We input
different values of θ aiming at exploring the C(θ) landscape,
possibly locating its minimum; this exploration is more agile
if the above landscape is more level, which corresponds to a
lower FI. This general argument holds both in a classical and
in a quantum setting, and we think it lies underneath the result
Eq. (9) in the following sense: Noise can help an algorithmic
procedure to more easily explore the landscape of the cost
function one wants to minimize, thus increasing, at least as far
as its detrimental effect on the cost-function evaluation is not
too strong, the overall efficiency of the optimization scheme.

We finally underline that QFI enters our analysis by only
providing a theoretical upper bound that never needs being
evaluated. In fact, should the QFI be efficiently measurable,
one could use more sophisticated stochastic algorithms, such
as Amari’s natural gradient [53]; this has been recently applied
to noiseless parametric quantum circuits [54] based on the
fact that, when C = − ln p(x, θ), the natural gradient is Fisher
efficient, i.e., such that the variance of the estimator θ[1:I]

asimptotically meets the Cramér-Rao lower bound. However,
such a result does not hold for more general cost functions
like (1). Furthermore, no efficient method [e.g., poly(N )] for
estimating the QFI from measurements is currently available
in the noisy regime and, even if it existed, estimating the QFI
at each step would require further quantum measurements that
would increase the query complexity. In fact, understanding
whether one can obtain Fisher efficient estimators of the opti-
mal parameters is currently an open question.
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APPENDIX A: BOUND ON Err(θ, ϑ)

Many of our results hold irrespective of assumption (4),
and are valid for any error model

ρ̂(θ) = E(θ1, . . . , θP )[ρ̂0]. (A1)

Indeed, all results that we derive in Appendixes B and C do
not depend on the assumption (4) and are valid for any noise
model as in (A1). Here we show, on the other hand, that when
the local error model (4) is assumed, then the error Err(θ,ϑ)
grows at most linearly with the number of parameters. We
study an upper bound to the first error in (5), which is clearly
valid irrespective of the sign of Err(θ,ϑ)

Err(θ,ϑ) := Tr[Ĥ (ρ̂(ϑ) − |ψ (θ)〉〈ψ (θ)|)]
(a)
� ‖Ĥ‖∞ ‖ρ̂(ϑ) − |ψ (θ)〉〈ψ (θ)| ‖1

(b)
� ‖Ĥ‖∞ ‖E(ϑ) −U(θ)‖, (A2)

where ‖X̂‖∞ is the maximum singular value of X̂ , namely
the maximum absolute value |x j | where x j are the eigenvalues

of X̂ , ‖X̂‖1 = Tr[
√

X̂ X̂ †] is the trace norm, and ‖X‖ is the
diamond norm for quantum channels [36,37]. In the last line,
it is

U(θ) := UθP
P ◦ · · · ◦Uθ1

1 , (A3)

and

ρ̂(ϑ) = E(ϑ)[|ψ0〉〈ψ0|], |ψ (θ)〉〈ψ (θ)| = U(θ)[|ψ0〉〈ψ0|],
where for simplicity we have absorbed the noisy preparation
of |ψ0〉 into E1. To derive (A2), in (a) we used the Hölder
inequality and in (b) we used the distance induced by the
diamond norm

‖E−U‖ = max
ρ

‖I⊗ E(ρ) − I⊗U(ρ)‖1, (A4)

where I is the identity channel. We can now apply the “peel-
ing” technique from Refs. [34,35] to bound the error in the
diamond distance. To this aim, we now use the decomposition
from Eq. (4) from the main text, and let δP = ‖E1:P −U1:P‖,
where the 1:k refers to the composition of the first k channels.
Then, using the monotonicity of the diamond norm over CPTP
maps and the triangle inequality, we may write

δP = ‖EP ◦ E1:P−1 − EP ◦U1:P−1 + EP ◦U1:P−1

−UP ◦U1:P−1‖
� ‖EP ◦ E1:P−1 − EP ◦U1:P−1‖

+‖EP ◦U1:P−1 −UP ◦U1:P−1‖
� δP−1 + ‖EP −UP‖.

Iteratively applying the above inequality, one gets

δP �
P∑

k=1

‖Ek −Uk‖ � P max
k

‖Ek −Uk‖. (A5)

Combining (A5) and (A2), we find that the error increases at
most linearly with P, according to

Err(θ,ϑ) � P‖Ĥ‖∞ max
k

‖Ek −Uk‖. (A6)

An alternative bound can be obtained from (A2) via the
Fuchs–van de Graaf inequality [55]

Err(θ,ϑ) � 2‖Ĥ‖∞
√

1 − 〈ψ (θ)| ρ̂(ϑ) |ψ (θ)〉. (A7)
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APPENDIX B: OPTIMAL BASELINES

We discuss the role of the free parameters λ j , dubbed
“baselines,” in the optimization. In principle, such parameters
should be chosen to minimize E[g2

j]. We may write

E
[
g2

j

] ≡
〈( {Ĥ, L̂ j}

2
+ λ j L̂ j

)2〉
ρ̂(θ)

=
〈( {Ĥ, L̂ j}

2

)2

+ λ j
{L̂ j, {Ĥ , L̂ j}}

2
+ λ2

j L̂
2
j

〉
ρ̂(θ)

=
〈( {Ĥ, L̂ j}

2

)2

+ λ j
{L̂ j, {Ĥ , L̂ j}}

2

〉
ρ̂(θ)

+ λ2
jFj,

(B1)

where {Â, B̂} = ÂB̂ + B̂Â. Since QFI is always positive, the
optimal value of the “baseline” λ j is the vertex of the above
parabola, namely

λ
opt
j = −

〈{L̂ j, {Ĥ , L̂ j}}〉ρ̂(θ)

4Fj
. (B2)

We note that the bound (C11) continues to hold even
when the optimal baseline is used, as by definition E[g2

j]
with the optimal baseline is smaller than E[g2

j] for the
nonoptimal λ j = 0.

APPENDIX C: BOUND ON Gnoisy

We first focus on the estimator based on the log-derivative
trick. We write the cost function as C = ∑

y Ey p(y|θ), where

p(y|θ) = 〈y| ρ̂(θ) |y〉, Ĥ = ∑
y Ey�̂y is the possibly unknown

eigendecomposition of H and �̂y = |y〉〈y|. Then

∇ jC = Ey∼p(y|θ)[Ey∇ j ln p(y|θ)]. (C1)

From the above, we find that gj = Ey∇ j ln p(y|θ) is an un-
biased estimator of ∇ jC. We recall the definition of the
constants Gnoisy and G∞ such that

E

[∑
j

g2
j

]
� G2

noisy, max
j

E
[
g2

j

]
� G2

∞. (C2)

To get those constants, we need to find upper bounds for
E[g2

j]. By explicit calculation, following a similar derivation
of Ref. [17] we find

E[g2
j] =

∑
y

E2
y p(y|θ)[∇ j ln p(y|θ)]2 (C3)

=
∑

y

E2
y

[∇ j p(y|θ)]2

p(y|θ)
(C4)

(a)=
∑

y

E2
y

[Tr�̂y(ρ̂L̂ j + L̂ j ρ̂ )/2]2

Tr[�̂yρ̂]
(C5)

=
∑

y

E2
y

[�Tr(�̂yρ̂L̂ j )]2

Tr[�̂yρ̂]
(C6)

�
∑

y

E2
y

∣∣Tr(�̂yρ̂L̂ j )
∣∣2

Tr[�̂yρ̂]
(C7)

=
∑

y

E2
y

∣∣∣∣∣∣Tr

⎛
⎝

√
�̂y

√
ρ̂√

Tr[�̂yρ̂]

√
ρ̂L̂ j

√
�̂y

⎞
⎠

∣∣∣∣∣∣
2

(C8)

(b)
�

∑
y

E2
y Tr

(
�̂yL̂ j ρ̂L̂ j

)
(C9)

= Tr
(
Ĥ2L̂ j ρ̂L̂ j

)
, (C10)

where we used in (a) the definition of the SLD (7) and in
(b) the Cauchy-Schwartz inequality. Using then the Hölder
inequality and the fact that L̂ j ρ̂L̂ j is a positive operator, we
find then

E
[
g2

j

]
� ‖Ĥ‖2

∞‖L̂ j ρ̂L̂ j‖1 � ‖Ĥ‖2
∞Fj, (C11)

where QFI j is the quantum Fisher information (10). The upper
bounds (C2) then follow with

G = ‖Ĥ‖∞
√

P
(

max
j

Fj
)
, (C12)

G∞ = ‖Ĥ‖∞
√

max
j

Fj . (C13)

A similar bound is obtained with another unbiased estima-
tor of the gradient. Here we set λ j = 0, while the general case
is studied in the next section. Using the SLD, we note that

∇ jC = Tr[Ĥ (ρ̂L̂ j + L̂ j ρ̂)/2] = 1
2 〈Ĥ L̂ j + L̂ jĤ〉

ρ̂(θ) (C14)

≡ 〈Re(Ĥ L̂ j )〉ρ̂(θ), (C15)

where 〈Â〉ρ̂ = Tr[ρ̂Â], Re[Â] := (Â + Â†)/2, so the gradient
can be estimated by quantum measurements of the operator
Re(Ĥ L̂ j ). An upper bound is then obtained as

E
[
g2

j

] ≡ 〈Re(Ĥ L̂ j )
2〉ρ̂(θ) (C16)

� 〈Re(Ĥ L̂ j )
2 + Im(Ĥ L̂ j )

2〉ρ̂(θ) (C17)

= 1
2 Tr

[
ρ̂
(
L̂ jĤ

2L̂ j + Ĥ L̂2
j Ĥ

)]
(C18)

= 1
2 Tr

[
L̂ j ρ̂L̂ j

(
Ĥ2 + L̂−1

j Ĥ L̂2
j Ĥ L̂−1

j

)]
, (C19)

where we have assumed that L̂−1
j exists. Using again the

Hölder inequality, we get

E
[
g2

j

]
� 1

2‖L̂ j ρ̂L̂ j‖1(‖Ĥ‖2
∞ + ‖L̂−1

j Ĥ L̂ j‖2
∞) (C20)

� ‖Ĥ‖2
∞Fj, (C21)

which is equivalent to Eq. (C11).

APPENDIX D: FLUCTUATING PARAMETERS

We consider an experimentally motivated noise model
where the parameters θ j cannot be tuned exactly. The lack of
exact accuracy is modeled by a Gaussian noise with variance
σ 2

j . This corresponds to the following substitution,

θ j → N (θ j, σ
2
j ), (D1)

namely that the parameters are normally distributed around
a mean value θ j with variance σ 2

j . In the limit σ j → 0, we
recover the deterministic unitary operation (2). For σ j �= 0,
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we show that the above noise can be expressed into the form
of Eq. (4). We first note that

Eθ j

j [ρ̂] =
∫

dϑ
e
− (ϑ−θ j )2

2σ2
j√

2πσ 2
j

e−iϑX̂ j ρ̂eiϑX̂ j (D2)

= D j ◦Uθ j

j [ρ̂] ≡ Uθ j

j ◦D j[ρ̂], (D3)

whereUθ j

j [ρ̂] = e−iθ j X̂ j ρ̂eiθ j X̂ j is the noiseless gate and

D j[ρ̂] =
∫

dϑ
e
− ϑ2

2σ2
j√

2πσ 2
j

e−iϑX̂ j ρ̂eiϑX̂ j , (D4)

is independent on θ j . To simplify our discussion, we assume
that X̂ 2

j = 1. Although a more general form can also be ob-
tained in other cases, any tensor product of Pauli matrices
satisfies the constraint X̂ 2

j = 1, so we believe that this restric-
tion covers the most common gates that can be implemented
in current NISQ devices. From series expansion, it is simple
to show that

e−iϑX̂ j [ρ̂]eiϑX̂ j = ρ̂ + sin2(ϑ )(X̂ j ρ̂X̂ j −ρ̂ )− i

2
sin(2ϑ )[X̂ j, ρ̂].

(D5)

Performing the integration in (D4), we get a dephasing-like
channel, but with more general operators X̂ j

D j[ρ̂] = (1 − η j )ρ̂ + η j X̂ j ρ̂X̂ j, (D6)

where

η j = 1 − e−2σ 2
j

2
. (D7)

For σ j → 0, we see that η j → 0 and D j reduces to the iden-
tity channel.

We have studied the effect of Gaussian fluctuations in the
parameters of a QAOA as a function of the noise rate η j ≡ η.
We found that the two terms in the bound (5) display the same
behavior as observed in Fig. 2.

APPENDIX E: NOISE MODEL AND PARAMETERS

In our numerical simulations, we have used a custom noise
model built up applying a depolarizing channel and thermal
relaxation errors after each gate. For each of them, three pa-
rameters have to be set: a dimensionless gate error, connected
with the parameter of the depolarizing channel that follows
every single- and two-qubit gate, and the relaxation and deco-
herence times. In order to have a realistic noise model, in our
numerical experiments relaxation and decoherence times are
chosen to be different for each qubit, and gate error varies
not only among qubits but also with the specific gate it is
associated to. Indeed, all these parameters are taken from the
available current calibration data of the various IBM quantum
processors: After obtaining them, we have constructed the
noise model using the class NoiseModel available at the mo-
ment of writing in the Aer library of QISKIT [52], the quantum
computing software development framework from IBM.

As we are interested in analyzing how the algorithm
performance depends on noise “strength,” in our numerical

TABLE I. Gate error rates.

Gate Gate error

U1 0 (virtual gate)
U2 1 × 10−3

U3 3 × 10−3

CNOT 4 × 10−2

experiments we have simulated an increasing noise strength
by multiplying every gate error value originally obtained
querying IBM calibration data by a factor f = 2, 4, 10, at the
same time decreasing by the same factor f every relaxation
and decoherence time value (we remark that we scale up
the full collection of original parameters obtained from the
calibration data, so that a realistic noise model is preserved).

An additional set of parameters appearing in the noise
model are gate times, i.e., the time required to apply the
desired gate, during which relaxation and decoherence phe-
nomena take place. Even gate time depends on the specific
type of gate and on the qubit they are applied to: In all our
simulations, we left them unchanged, using the original values
provided by IBM calibration data sets.

In Tables I and II, we report as a reference the average
values for the IBMQ-16-Melbourne processor at the time of
writing and running our simulations. The reader may refer to
the QISKIT documentation [52] for the explanation of the noise
model and how it affects the different elementary gates.

APPENDIX F: ANALYTIC GRADIENT EVALUATION

We use a classical gradient descent algorithm to minimize
the cost function (1). The information about the gradient of
the cost function can be directly extracted by measuring the
corresponding quantum observables: This procedure is often
referred to as analytically evaluated gradient, in the sense that
we can analytically define a quantum circuit to estimate the
gradient value for fixed parameters. Here we focus on the
Hadamard test [14].

To find the analytic gradient, we first denote with Ûm:n, with
m, n ∈ {1, . . . , P}, m � n, the unitary operator that applies
the gates from the mth to the nth steps in the variational
ansatz (2):

Ûm:n = e−iθmX̂m . . . e−iθnX̂n . (F1)

By deriving the cost function with respect to the kth parame-
ter, θk , k ∈ {1, . . . , P}, we obtain

∂C(θ)

∂θk
= 〈ψ0| ∂θkÛ

†
1:PĤÛ1:P |ψ0〉 + 〈ψ0| Û †

1:PĤ∂θkÛ1:P |ψ0〉

= −2Im 〈ψ0| Û †
1:kX̂kÛ

†
k+1:PĤÛ1:P |ψ0〉 , (F2)

TABLE II. Parameters of the noise model.

Parameters Value

Relaxation time 55 μs
Decoherence time 68 μs

Single-qubit gate time 0.08 μs
Two-qubit gate time 0.7 μs
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where the last equality is obtained by using the definition (F1).
Using the Pauli decompositions for both X̂k and Ĥ ,{

X̂k = ∑
μ β (k)

μ Q̂(k)
μ

Ĥ = ∑
ν αν P̂ν ,

(F3)

where Q̂(k)
μ and P̂ν are Pauli operators, we can write the above

derivative as

∂C(θ)

∂θk
= − 2

∑
μ

∑
ν

β (k)
μ ανIm 〈ψ0| Û †

1:kQ(k)
μ Û †

k+1:P

× P̂ν̂̂U1:P |ψ0〉 . (F4)

Every term in the sum (F4) can be evaluated with a gen-
eralized Hadamard test, that requires an additional ancilla
qubit. The Hadamard test is performed with the following
steps:

(1) Initialize the ancilla qubit in the state |+〉A and the
principal register in the state |ψ0〉.

(2) Apply Û1:k to the principal register.
(3) Apply Q̂(k)

μ to the principal register, controlled by the
ancilla.

(4) Apply Ûk+1:P to the principal register.
(5) Apply P̂ν to the principal register, controlled by the

ancilla.
(6) Apply a π/2 rotation around the x axis to the ancilla

and measure the latter on the computational basis.
The probability of getting the outcome 0 after the above

steps is proportional to Im 〈ψ0| Û †
1:kQ̂(k)

μ Û †
k+1:PP̂νÛ1:P |ψ0〉. Re-

peating the Hadamard test for all l and all j, and performing
the sum expressed in (F4), we can obtain an estimation of the
analytic expression (F4) of the kth derivative, so repeating all
these steps for k ∈ {1 . . . P} we can evaluate the gradient.

[1] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R.
Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell
et al., Nature (London) 574, 505 (2019).

[2] J. Preskill, Quantum 2, 79 (2018).
[3] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou,

P. J. Love, A. Aspuru-Guzik, and J. L. O’brien, Nat. Commun.
5, 4213 (2014).

[4] E. Farhi, J. Goldstone, and S. Gutmann, arXiv:1411.4028.
[5] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Phys. Rev.

A 98, 032309 (2018).
[6] M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, Quantum

Sci. Technol. 4, 043001 (2020).
[7] R. LaRose, A. Tikku, É. O’Neel-Judy, L. Cincio, and P. J. Coles,

npj Quantum Inf. 5, 8 (2019).
[8] S. Khatri, R. LaRose, A. Poremba, L. Cincio, A. T. Sornborger,

and P. J. Coles, Quantum 3, 140 (2019).
[9] X. Yuan, S. Endo, Q. Zhao, Y. Li, and S. C. Benjamin, Quantum

3, 191 (2019).
[10] M. Schuld, A. Bocharov, K. Svore, and N. Wiebe, Phys. Rev. A

101, 032308 (2020).
[11] Z. Wang, S. Hadfield, Z. Jiang, and E. G. Rieffel, Phys. Rev. A

97, 022304 (2018).
[12] G. B. Mbeng, R. Fazio, and G. Santoro, arXiv:1906.08948.
[13] K. Sharma, S. Khatri, M. Cerezo, and P. J. Coles, New J. Phys.

22, 043006 (2020).
[14] A. Harrow and J. Napp, arXiv:1901.05374.
[15] R. Sweke, F. Wilde, J. Meyer, M. Schuld, P. K. Fährmann, B.

Meynard-Piganeau, and J. Eisert, Quantum 4, 314 (2020).
[16] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439

(1994).
[17] M. G. Paris, Int. J. Quantum. Inform. 7, 125 (2009).
[18] V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photon. 5, 222

(2011).
[19] A. Lucas, Front. Phys. 2, 5 (2014).
[20] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and

H. Neven, Nat. Commun. 9, 4812 (2018).
[21] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and

S. J. Glaser, J. Magn. Reson. 172, 296 (2005).
[22] I. M. Georgescu, S. Ashhab, and F. Nori, Rev. Mod. Phys. 86,

153 (2014).

[23] K. Beer, D. Bondarenko, T. Farrelly, T. J. Osborne, R.
Salzmann, and R. Wolf, Nat. Commun. 11, 808 (2020).

[24] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran,
Phys. Rev. A 99, 032331 (2019).

[25] S. Bubeck, Found. Trends Machine Learn. 8, 231
(2015).

[26] D. P. Kingma and J. Ba, arXiv:1412.6980.
[27] D. Ruppert, Efficient estimations from a slowly convergent

Robbins-Monro process, Tech. Rep., Cornell University Oper-
ations Research and Industrial Engineering, Ithaca, NY, 1988
(unpublished).

[28] B. T. Polyak and A. B. Juditsky, SIAM J. Control Optim. 30,
838 (1992).

[29] L. Banchi, N. Pancotti, and S. Bose, npj Quantum Inf. 2, 16019
(2016).

[30] L. Innocenti, L. Banchi, A. Ferraro, S. Bose, and M.
Paternostro, New J. Phys. 22, 065001 (2019).

[31] N. Yoshioka, Y. O. Nakagawa, K. Mitarai, and K. Fujii,
arXiv:1908.09836.

[32] A. Carollo, B. Spagnolo, A. A. Dubkov, and D. Valenti, J. Stat.
Mech.: Theory Exp. (2019) 094010.

[33] L. Banchi, P. Giorda, and P. Zanardi, Phys. Rev. E 89, 022102
(2014).

[34] S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, Nat.
Commun. 8, 15043 (2017).

[35] S. Pirandola, S. L. Braunstein, R. Laurenza, C. Ottaviani, T. P.
Cope, G. Spedalieri, and L. Banchi, Quantum Sci. Technol. 3,
035009 (2018).

[36] A. Y. Kitaev, Usp. Mat. Nauk 52, 53 (1997).
[37] J. Watrous, The Theory of Quantum Information (Cambridge

University Press, Cambridge, UK, 2018).
[38] J. C. Spall, IEEE Trans. Automatic Control 37, 332

(1992).
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