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Universal quantum computation is usually associated with interaction among two-level quantum subsystems,
as this interaction is commonly viewed as a necessity to achieve universal quantum computation. In this work we
show that, contrary to this intuition, universal quantum computation can be achieved without interaction among
initially independent two-level quantum subsystems. We call it counterfactual universal quantum computation.
As special cases, we show how to achieve counterfactual communication of quantum states, counterfactual
quantum swapping, and counterfactual quantum erasure codes. To ease practical implementation, we analyze
counterfactual universal quantum computation with realistic devices, including the effects of finite execution
time, photon loss, and atom missing. Besides the theoretical interest of illustrating the mysterious and counter-
intuitive nature of quantum physics, our work has practical applications to color imaging of ancient arts, upon
which light is forbidden to shine.
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I. INTRODUCTION

The term “counterfactual” was first coined to describe
the phenomenon of interaction-free measurement, where an
object is determined to be present or absent without inter-
action with any probing particle. The first interaction-free
measurement scheme [1,2] had a limited efficiency of 50%
and was subsequently improved to 100% efficiency [3] by
the quantum Zeno effect [4–6], an effect where a particle is
frequently weakly measured so that the state of the particle
stays unchanged with a high probability. The scheme was later
extended to the scenario of quantum cryptography [7–10],
quantum interrogation [11], and entanglement distribution
[12,13].

In this work we develop a counterfactual universal quan-
tum computation (CUQC) scheme that has the following
counterfactual property: It can accomplish universal quantum
computation with no interaction among initially independent
two-level quantum subsystems throughout the computation
process. This is counterintuitive as it seems impossible for
such a scheme to realize entanglement among two-level quan-
tum subsystems, which is a necessary condition for universal
quantum computation. In addition, so far, there has been no
scheme that can fulfill this counterfactual property. Note that
the term “counterfactual quantum computation” has had a
different meaning [14,15], which is that the quantum com-
putation itself is in a superposition of “run” and “not run,”
although the two-level quantum subsystems have notable in-
teractions. The correct outcome of the quantum computation
can be obtained with high probability even when the quan-

*caozhu@ecust.edu.cn

tum computation runs with negligible probability. The basic
ingredient is also the interaction-free measurement.

The CUQC scheme was motivated by the recent develop-
ment of counterfactual communication protocols, which starts
with the Salih et al. protocol for counterfactual communica-
tion of a classical bit [16], which was later experimentally
demonstrated [17]. The counterfactuality of this pioneering
scheme is however debatable [18–20]. The main opposing
argument is that, according to a stricter counterfactuality def-
inition [21], the scheme fails to be counterfactual. Recently,
Aharonov and Vaidman [22] provided another scheme for
the same task which is counterfactual even under the stricter
counterfactuality definition [21]. Their scheme can be seen as
a modification of the Salih et al. scheme, with the difference
that an additional double-sided mirror is added to the setup.

As special cases of the CUQC scheme, we can achieve
counterfactual communication of a quantum state, counterfac-
tual quantum swapping, and counterfactual quantum erasure
codes. In counterfactual communication of a quantum state, a
quantum state is transmitted counterfactually from one party
to another party. Note that a debatable scheme for counter-
factual communication of a quantum state was previously
proposed [23,24]. The opposing argument is also that the
scheme is not counterfactual under the stricter counterfactu-
ality definition [21]. Our result is counterfactual even under
the stricter counterfactuality definition [21] and can be seen as
a quantum generalization of Aharonov and Vaidman’s scheme
[22]. In counterfactual quantum swapping, two quantum states
are counterfactually swapped. This special case recovers a
recent result of Li et al. [25]. In counterfactual quantum era-
sure code, a highly entangled erasure code is prepared from
separable states counterfactually. The code ensures that even
if some of the qubits are erased, the correct logical quantum
state can still be recovered through error correction.
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For experimental implementations, we consider practical
aspects such as finite size and loss. In particular, we find
that the fidelity of the computation remains high under finite
execution time, but the efficiency of the computation has a
notable change under finite execution time. We also find that
the fidelity and the efficiency are both sensitive to a small
probability of photon loss but insensitive to a small proba-
bility of atom missing. Here photons and atoms are media
that are utilized in our CUQC scheme. We also discuss the
dependence of the efficiency and the fidelity on the size of
the quantum computation circuit. In particular, we show in
detail how the fidelity deteriorates with an increase of the
quantum circuit size if no error correction is performed. From
an orthogonal perspective, we analyze the performance of
the CUQC scheme between using a single atom and multiple
atoms and find that multiple atoms can significantly speed up
the computation process in certain cases.

The road map for the rest of the paper is as follows.
In Sec. II we review some definitions and theorems that
will be needed later in the paper. In Sec. III we present
the CUQC scheme. In Sec. IV we give three examples of
the CUQC scheme. In Sec. V we consider practical aspects
of the CUQC scheme. In Sec. VI we provide a summary and
show some promising future research directions.

II. PRELIMINARIES

The following is the definition of universal quantum com-
putation [26].

Definition 1. A universal quantum computation is an ar-
bitrary unitary transformation on a discrete Hilbert space
spanned by the set of all quantum states of a collection of
qubits.

We will use the following important property of universal
quantum computation.

Theorem 1. One-qubit gates and CNOT gates are universal
[27]. A universal quantum computation can be realized by a
set of one-qubit gates and CNOT gates.

Next is the definition of the presence of a quantum particle
[21].

Definition 2. A quantum particle is said to be present at a
point P if the weak value of the particle at P, measured by a
weak measurement, is nonzero. Otherwise, the particle is said
to be absent at P.

A simple method, called two-state vector formalism [21],
can be used to test whether the weak value is nonzero. It can
be stated as follows.

Theorem 2. The weak value of a quantum particle is
nonzero at a point P if and only if both the forward- and
backward-evolving wave functions of the quantum particle do
not vanish at P.

As an example to illustrate this method and the concepts
of forward- and backward-evolving wave functions, consider
the quantum optical setup in Fig. 1(a), which is essentially
an interferometer. The transmission channel is depicted as
the region between two parallel blue lines. Alice is on the
left side of the channel and Bob is on the right side of the
channel. Given a source and a detector, the forward- and
backward-evolving wave functions can be defined as follows.
The forward-evolving wave function is defined as the wave

FIG. 1. Illustration of the two-state vector formalism. Consider a
photon that is emitted from a light source L and received by a detector
T. The forward-evolving (backward-evolving) wave function of this
photon is depicted by green dashed (red solid) lines. The region
between two parallel blue lines is the transmission channel. Alice
(Bob) is on the left (right) of the channel. Two cases are considered:
(a) Bob has a shutter S and (b) Bob has no shutter. (c) and (d) The
forward- and backward-evolving wave functions do not overlap. (e)
and (f) The forward- and backward-evolving wave functions overlap.
Here L denotes the light source, BS1 and BS2 are beam splitters,
SM1 and SM2 are single-sided mirrors, T is a single-photon detector,
and S is a shutter.

function that starts with the source and is depicted by green
dashed lines. In this setup, it starts with the light source L
and splits into two paths at the first beam splitter BS1. The
right path hits Bob’s shutter S. The left path is reflected by
the single-sided mirror SM1 and then splits into two paths at
BS2. The backward-evolving wave function is defined as the
wave function that starts with the detector and is depicted by
red solid lines. In the current setup, it starts with the detector T
and splits into two paths at BS2. The right path is first reflected
by the single-sided mirror SM2 and then hits Bob’s shutter
S. The left path is first reflected by the single-sided mirror
SM1 and then splits into two paths at BS1. It can be seen that
the forward- and backward-evolving wave functions do not
overlap in the transmission channel, as shown in Figs. 1(c) and
1(d), indicating there is no photon in the transmission channel.

Next we examine the opposite situation, as shown in
Fig. 1(b). The optical setup is almost the same as the pre-
vious setup, except that Bob’s shutter S is removed. The
forward-evolving wave function still starts at L and splits into
two paths at BS1. The left path is the same as the previous
situation. The right path is reflected by SM2 and splits into
two paths at BS2. The backward-evolving wave function still
starts at the detector T and splits into two paths at BS2. The
left path remains the same as the previous situation. The right
path is reflected by SM2 and then splits at BS1 into two paths.
It can be seen that the forward- and backward-evolving wave
functions overlap in the transmission channel, as shown in
Figs. 1(e) and 1(f); hence the photon is present in the channel.

III. COUNTERFACTUAL UNIVERSAL QUANTUM
COMPUTATION SCHEME

In this section we present our CUQC scheme. We begin
with the definition of counterfactuality for universal quantum
computation in Sec. III A. Then we build the CUQC scheme
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FIG. 2. Illustration of CUQC where there is no interaction
among the two-level quantum subsystems. Each two-level quantum
subsystem is confined in an isolated chamber (pink polygon). In
addition, no physical particles are present at any point outside the
chamber (white region) at any time during the computation.

in two steps. In the first step, we design a counterfactual
special CNOT gate. The exact definition of “special” is given
in Sec. III B. For now, we content ourselves by viewing a
special CNOT gate as a weakened version of a CNOT gate. In
the second step, given in Sec. III C, we show how to achieve
the CUQC scheme through the combination of single-qubit
operations and counterfactual special CNOT gates.

A. Definition of CUQC

A CUQC scheme has the following three properties.
(i) It can achieve universal quantum computation.
(ii) Initially, the two-level quantum subsystems are inde-

pendent.
(iii) There is no interaction among the two-level quantum

subsystems during the quantum computation.
The first two conditions are quite straightforward, but the

third condition has a few subtleties. As depicted in Fig. 2, no
interaction in this context means that every two-level quan-
tum subsystem is restricted in its isolated chamber and away
from other two-level quantum subsystems. In addition, there
is no physical particle, such as a photon or a phonon, that
can potentially carry information from one two-level quantum
subsystem to another two-level quantum subsystem, present
at any point out of the chambers during the computation. The
presence of a physical particle is defined by Definition 2.

B. Counterfactual special CNOT gate

In this section we design a counterfactual special CNOT

gate. This CNOT gate is special in that there is a constraint on
which qubit can be the control qubit and which qubit can be
the target qubit. More precisely, only qubits that are realized
by atoms can be the control qubits and only qubits that are
realized by photons can be the target qubits. This CNOT gate
is counterfactual in that there is no interaction between the
photon and the atom during this gate operation.

FIG. 3. (a) Quantum Zeno effect. For large M, if the upper
arms are blocked (unblocked), the photon always goes to D0 (D1).
(b) Chained quantum Zeno effect. The photon has zero probability
to be detected in the transmission channel for both the block and
unblock cases. (c) A double-sided mirror is added to eliminate the
presence of the photon in the transmission channel. Here BS denotes
a beam splitter, SM is a single-sided mirror, DM is a double-sided
mirror, D0 and D1 are single-photon detectors, and SW is Bob’s
switch.

Our counterfactual special CNOT gate is inspired by a recent
scheme that counterfactually communicates a classical bit
[22], which we now review. Counterfactuality here means that
no particle is present in the transmission channel during the
communication under Definition 2. This in particular implies
that the probability that a photon is detected by a photon
detector in the transmission channel at any time should be
zero. The scheme consists of three ingredients.

The first ingredient is the quantum Zeno effect. It is real-
ized by a tandem interferometer with M beam splitters (BSs)
of reflectivity cos2(π/2M ), as shown in Fig. 3(a). The trans-
mission channel cuts the interferometer into two halves. Alice
is on the left side and Bob is on the right side. Bob aims to
communicate a classical bit to Alice. All beam splitters are
on Alice’s side. Bob has a switch SW to determine whether
the upper arms of the cycles in the tandem interferometer
are blocked. Alice’s two detectors D0 and D1 are placed
after the last BS. Initially, a photon comes from the upper
left side of the first BS, as the arrow in Fig. 3(a) shows.
If the upper arms of the tandem interferometer are blocked,
for each cycle only the reflected component [with proportion
cos2(π/2M ) according to the property of the BS] survives to
the next cycle, and hence the photon goes to detector D0 with
probability

Prob(D0) =
[
cos2

( π

2M

)]M
≈

[
1 −

( π

2M

)2
/

2

]2M

≈ e−π2/4M . (1)

When M goes to infinity, this probability goes to 1. Con-
sequently, D0 always clicks while D1 never clicks. If the
upper arms are not blocked, the probability that the photon
goes across the transmission channel is sin2(iπ/2M ) for the
ith cycle, and hence the photon goes to detector D1 with
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FIG. 4. Forward- and backward-evolving wave functions of one
outer cycle (a) without Bob’s shutter or a double mirror, (b) without
Bob’s shutter but with a double mirror, and (c) with both Bob’s
shutter and a double mirror. The forward-evolving wave function is
represented by green dashed lines and the backward-evolving wave
function is shown by red solid lines. Here SM denotes a single-sided
mirror and DM a double-sided mirror.

probability

Prob(D1) = sin2

(
Mπ

2M

)
= 1. (2)

Hence, the block status of the upper arms (block or pass), a
classical bit of Bob, is transmitted to the click status of the
detectors (D0 clicks or D1 clicks), a classical bit of Alice.
If this communication is also counterfactual, then Bob’s goal
is achieved. However, when the upper arms are not blocked,
it can be shown that for the last cycle, the probability of
the photon to be detected in the transmission channel is
sin2[(M − 1)π/2M] ≈ 1 for large M. Hence, the communi-
cation is unfortunately not counterfactual.

To avoid a nonzero probability of photon detection in
the transmission channel, the second ingredient, the chained
quantum Zeno effect, is introduced. It is realized by nesting a
tandem interferometer inside each cycle of the outer tandem
interferometer (outer cycle for short), as shown in Fig. 3(b).
Each nested inner tandem interferometer consists of N beam
splitters with reflectivity cos2(π/2N ). Again, we assume N
goes to infinity. If the upper arms of all cycles of an inner
tandem interferometer (inner cycles for short) are blocked
(unblocked), the photon goes to the left (right) of the last BS
of the inner tandem interferometer, which is equivalent to a
pass (block) status of an outer cycle, and hence D1 (D0) will
click. The overall effect is that the block status of the inner
cycles (block or pass) corresponds to the click status of the
detectors (D1 clicks or D0 clicks) and therefore a classical bit
is communicated from Bob to Alice. For the block case, the
probability of photon detection in the transmission channel
is bounded by sin2(π/2N ), and for the nonblock case, it is
bounded by sin2(π/2M ). Therefore, the probabilities of the
photon passing through the channel for both the block case
and the nonblock case go to zero as M and N go to infinity.
However, for the nonblock case, the photon is still present in
the transmission channel and hence counterfactuality is not
achieved. This can be seen through Fig. 4(a), which depicts

FIG. 5. (a) Optical setup of a counterfactual special CNOT gate
(the detailed protocol is explained in the text): D, single-photon de-
tector; SM, switchable mirror; SPR, switchable polarization rotator;
MR, mirror; OD, optical delay; PBS, polarizing beam splitter; QSW,
quantum switch; and |g〉, |e〉, and |s〉, quantum states of an atom
qubit. (b) On-off states of switchable components. Here 0 denotes
the off state and 1 denotes the on state.

one outer cycle, in which the forward- and backward-evolving
wave functions overlap in the transmission channel, indicating
that the photon is present.

The critical idea of Ref. [22] is the third ingredient, which
joins two old outer cycles by a double-sided mirror to form a
new outer cycle, as shown in Fig. 3(c). A new outer cycle now
contains 2(N − 1) inner cycles and there are in total M − 1
new outer cycles. Note that this new setup still maintains
the property that the block status of the inner cycles (block
or pass) corresponds to the click status of the detectors (D1

clicks or D0 clicks). It remains to be shown that counter-
factuality holds for both the block case and the pass case.
The forward- and backward-evolving wave functions of one
outer cycle are shown in Figs. 4(b) and 4(c). In Fig. 4(b), the
upper arms are not blocked, while in Fig. 4(c), the upper arms
are blocked. It can be seen that for both cases, the forward-
and backward-evolving wave functions do not overlap in the
transmission channel, so the photon is not present by Theorem
2. Hence, this scheme achieves counterfactual communication
of a classical bit.

Our counterfactual special CNOT gate modifies the above
scheme in two aspects. The first modification replaces Bob’s
classical switch with a quantum switch. The quantum switch
can be realized by an atom that contains three energy levels
|e〉, |g〉, and |s〉 [23], as shown in the right panel of Fig. 5(a).
When the atom is in the ground state |g〉, it absorbs any
passing photon, changes its state to the second excited state
|s〉, and stays there. When the atom is in the first excited state
|e〉, it is unable to absorb photons. Hence, the ground state |g〉
acts as the block status and the first excited state |e〉 acts as the
pass status. The second modification replaces the beam split-
ters by polarization beam splitters and uses the polarization
encoding for the photons. The horizontal polarization |H〉 and
the vertical polarization |V 〉 stand for logical |0〉 and logical
|1〉, respectively.

The complete setup is shown in Fig. 5(a). Initially, all
switchable components are turned off. A switchable compo-
nent becomes a normal component when it is in the on state
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and disappears when it is in the off state. After an input photon
with polarization |H〉 passes a switchable mirror SM1, SM1 is
turned on for M − 1 outer cycles.

At the start of each outer cycle, a switchable polarization
rotator SPR1 is turned on, which rotates the polarization of
the photon with an angle β1 = π/2M. Here a rotation with an
angle β1 means that the quantum state of the photon evolves
as (

X
Y

)
→

(
cos β1 sin β1

− sin β1 cos β1

)(
X
Y

)
≡

(
X ′
Y ′

)
, (3)

where (X,Y )T denotes the quantum state X |H〉 + Y |V 〉. Then
SPR1 is turned off and remains off for the rest of this outer
cycle. The photon then splits into two components by a polar-
ization beam splitter PBS1, of which the vertical component
passes a switchable mirror SM2 and the horizontal component
is reflected by a mirror MR1. An optical delay OD1 is put on
the horizontal component so that both components return to
PBS1 at the same time. The switchable mirror SM2 is turned
on for N − 1 inner cycles. At the start of each inner cycle, a
switchable polarization rotator SPR2 is turned on, rotates the
polarization of the photon by an angle of β2 = π/2N , and is
then turned off. The photon then splits into two components
at a polarization beam splitter PBS2, of which the horizontal
component passes the transmission channel and the vertical
component is reflected by a mirror MR2. An optical delay
OD2 is put on the vertical component so that both components
return to PBS2 at the same time. After passing the transmis-
sion channel, the photon is either blocked by Bob’s atom or
reflected by a mirror MRB. After N − 1 inner cycles, SM2

is turned off to allow the photon to exit the inner cycle. The
switchable mirror SM1 then reflects the photon, with SPR1

remaining off this time so that no polarization rotation is
applied to the photon, mimicking the function of a double
mirror. After another N − 1 inner cycles, one outer cycle is
finished.

After M − 1 such outer cycles, SM1 is turned off so that
the output photon passes SM1. Figure 5(b) summarizes the
on-off states of SM1, SM2, SPR1, and SPR2. It is easy to show
that this optical setup is equivalent to Fig. 6, which, com-
pared to Fig. 3(c), replaces each biased BS by a polarization
beam splitter (PBS) together with two polarization rotators
(PRs) and each classical switch is replaced by a quantum
switch.

Suppose the quantum switch is initially in the pure state
Cg|g〉 + Ce|e〉, and hence the overall initial state is |ψ0〉 =
|H〉(Cg|g〉 + Ce|e〉). After the first PBS, the overall state be-
comes

|ψ1〉 = (cos β1|H〉 + sin β1|V 〉)(Cg|g〉 + Ce|e〉). (4)

At the end of the first outer cycle but before the second PBS
and its two preceding PRs, the overall state conditioned on the
photon not being absorbed by Bob’s atom becomes

|ψ ′
1〉 = Cg(cos β1|H〉 + sin β1 cos2N β2|V 〉)|g〉

+ Ce cos β1|H〉|e〉. (5)

When N goes to infinity, we have cos2N β2 = 1, and
hence the overall state can be simplified to Cg(cos β1|H〉 +
sin β1|V 〉)|g〉 + Ce cos β1|H〉|e〉. After the second PBS, the

FIG. 6. Equivalent optical setup of a counterfactual special CNOT

gate: SM, single-sided mirror; DM, double-sided mirror; PBS, po-
larization beam splitter; PR, polarization rotator; and QSW, quantum
switch.

overall state becomes

|ψ2〉 = Cg[cos(2β1)|H〉 + sin(2β1)|V 〉]|g〉
+Ce(cos2 β1|H〉 + cos β1 sin β1|V 〉)|e〉. (6)

After the Mth PBS, the overall state becomes

|ψM〉 = Cg[cos(Mβ1)|H〉 + sin(Mβ1)|V 〉]|g〉
+Ce(cosM β1|H〉 + cosM−1 β1 sin β1|V 〉)|e〉. (7)

When M goes to infinity, the state can be simplified to
Cg|V 〉|g〉 + Ce|H〉|e〉. Note that since |g〉 flips the photon state
and |e〉 keeps the photon state unchanged, we view |g〉 as
logical |1〉 and |e〉 as logical |0〉. In summary, a counterfactual
special CNOT gate performs a quantum transformation

P : (Cg|g〉 + Ce|e〉)|H〉 → Cg|g〉|V 〉 + Ce|e〉|H〉. (8)

During this transformation P , there is no interaction between
the atom and the photon. The proof is as follows. First we note
that the forward- and backward-evolving wave functions of P
are in a superposition of the ones in Figs. 4(b) and 4(c). In
addition, the forward- and backward-evolving wave functions
in Figs. 4(b) and 4(c) do not overlap in the transmission
channel. Hence, the forward- and backward-evolving wave
functions of P also do not overlap in the transmission channel.
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This implies that the photon is not present in the channel,
and hence there is no interaction between the atom and the
photon.

C. Reduction from a special CNOT gate to a generic CNOT gate

In this section we provide a CUQC scheme based on coun-
terfactual special CNOT gates. Here we restrict our attention to
using one atom qubit and multiple photon qubits. In Sec. V
we will discuss the case of multiple atom qubits.

By Theorem 1, single-qubit operations and CNOT gates suf-
fice for universal quantum computation. Here the single-qubit
operations are local and do not involve interaction among
two-level quantum subsystems. A normal CNOT gate, however,
requires two quantum subsystems to interact. One quantum
subsystem acts as the control qubit and the other acts as the
target qubit. The control qubit controls the target qubit. In
addition, a normal CNOT gate can be performed on any two
qubits and the control qubit can be either of the two qubits.
However, a counterfactual special CNOT gate can only be
between the atom qubit and the photon qubit, where the atom
qubit must be the control qubit.

We show here that by several suitable transformations,
any circuits with normal CNOT gates can be transformed to
an equivalent circuit with counterfactual special CNOT gates
where the control qubits are all atom qubits and the target
qubits are all photon qubits. There are three steps. In the first
step, we show that the control qubit and the target qubit can be
switched by adding four Hadamard gates. The transformation

is illustrated by

(9)

In the second step, we show that if neither the control qubit
nor the target qubit is the atom qubit, we can transform the
control qubit to the atom qubit as follows (assume the top line
is the atom qubit):

(10)

The first CNOT gate and the third CNOT gate can be further
transformed such that the control qubit is switched to the first
qubit.

In the third step, to ensure that the atom qubit always
stays at the initial state |0〉, we can add the atom qubit as
an additional qubit to the original circuit. Each time a CNOT

gate needs to be performed, the atom qubit goes through the
second transformation (10) and returns to |0〉 at the end of the
transformation, as shown by

(11)

By these transformations, the control qubits of all CNOT

gates can be concentrated to one qubit. Implementing this
qubit with an atom qubit and all other qubits with photons
and changing all CNOT gates to counterfactual special CNOT

gates, universal quantum computation can be realized by
single-qubit operations and counterfactual special CNOT gates.
Since both single-qubit operations and counterfactual special
CNOT gates require no interaction among two-level quantum
subsystems, a CUQC scheme is achieved.

IV. EXAMPLES

In this section we illustrate the power of the CUQC scheme
through three examples. All can be viewed as special cases
of our CUQC scheme and may be of independent interest.
After presenting each example, we will partially demonstrate
it on the IBM Q platform [28], which contains some small-
scale superconducting quantum computers. Note that a full
demonstration is left as future work and additionally requires
faithful implementation of counterfactual special CNOT gates.

The IBM Q platform provides several processor options, from
which we choose ibmqx5 for our demonstration purpose. The
option ibmqx5 features a quantum computer with 16 qubits.
The connectivity of these 16 qubits is shown in Fig. 7. The
symbol a → b means that a is the control qubit and b is the
target qubit. The quantum circuit given by the user is compiled
by the IBM Q compiler so that the circuit can be simulated on
IBM’s quantum computer.

FIG. 7. Connectivity diagram of ibmqx5. Here Q0, Q1, . . . , Q15

denote the 16 qubits in ibmqx5. An arrow between two qubits shows
that these two qubits have control relations. The direction of each
arrow is from the control qubit to the target qubit.
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A. Example 1: Genuine counterfactual communication
of a quantum state

In the first example, we present the protocol of gen-
uine counterfactual communication of a quantum state. We
start with counterfactually communicating a pure qubit. By
applying the counterfactual CNOT gate twice, together with
some local operations, the quantum state is transferred from
the atom to the photon. The detailed quantum circuit design is
shown as follows:

(12)

Here we note that although the goal of counterfactual com-
munication of a quantum state is similar to that of quantum
teleportation, in that a quantum state is transferred from
one party to another, the two subjects also differ in sev-
eral important ways. First, in quantum teleportation, it is
necessary that the two parties share a Bell state for each
qubit to be teleported, while there is no such restriction in
counterfactual communication of a quantum state. Second, in
quantum teleportation, the two parties need to perform classi-
cal communication for a successful teleportation, while in our
example, such classical communication is not needed. There-
fore, we avoid calling our protocol counterfactual quantum
teleportation to emphasize the difference. In the Appendix
we extend our protocol to counterfactual communication of
mixed qubits and higher-dimensional quantum states.

We then partially demonstrate the protocol on the IBM
Q platform. For simplicity, we test the following quantum
circuit, where we make the assumption that this circuit is
compiled into the circuit C in Eq. (12) and the CNOT gates in
this circuit are realized by counterfactual special CNOT gates:

After inputting the states |00〉 and |10〉, the returned results
of ibmqx5 are |00〉 and |01〉. This shows that the first qubit
is counterfactually communicated to the second qubit. This
example can enable grayscale imaging, by taking Bob’s state
to be a mixed quantum state.

B. Example 2: Quantum swapping

In the second example, we consider quantum swapping,
which transforms |x〉|y〉 to |y〉|x〉. We design the quantum
swap gate as follows:

Recall that by the definition of the quantum swap gate, it
keeps |00〉 and |11〉 unchanged and swaps |01〉 and |10〉. After
going through the three CNOT gates shown above, the four

states become

|00〉 → |00〉 → |00〉 → |00〉,
|01〉 → |11〉 → |10〉 → |10〉,
|10〉 → |10〉 → |11〉 → |01〉,
|11〉 → |01〉 → |01〉 → |11〉. (13)

Hence the circuit faithfully implements the quantum swap
gate.

By switching the control qubit and the target qubit of the
second CNOT gate, the circuit can be transformed to

By viewing the first qubit as the atom qubit and the second
qubit as the photon qubit, such a circuit can be realized using
counterfactual special CNOT gates. This example recovers the
result of a recent counterfactual protocol of a quantum swap
gate [25].

We then partially demonstrate the above protocol on the
IBM Q platform. We again assume that each CNOT gate in
the circuit is realized by a counterfactual CNOT gate. After
inputting the states |00〉, |10〉, |01〉, and |11〉, the returned
results are |00〉, |01〉, |10〉, and |11〉, respectively. This verifies
that such a circuit can counterfactually swap two qubits.

C. Example 3: Quantum error erasure code

In the third example, we consider quantum error erasure
codes. A quantum error erasure code is a type of error cor-
rection code that focuses on recovering erasure errors. The
smallest quantum error erasure code contains four qubits. The
encodings of logic 0 and logic 1 are

|0L〉 = |0000〉 + |1111〉,
|1L〉 = |1001〉 + |0110〉. (14)

To prove that this code can correct erasure errors, it suffices
to prove that it can correct bit flip errors in two bases that
can be transformed by Hadamard gates [29]. The base that is
transformed from the encoding basis with Hadamard gates is

|0⊥〉 = |0000〉 + |0011〉 + |0101〉 + |0110〉
+ |1001〉 + |1010〉 + |1100〉 + |1111〉,

|1⊥〉 = |0000〉 − |0011〉 − |0101〉 + |0110〉
+ |1001〉 − |1010〉 − |1100〉 + |1111〉. (15)

In the error erasure channel, the position of the error is
known but the correct value is unknown. Note that the parity
is even in the logic encoding; hence an odd encoding indi-
cates an error and this error can be corrected by properly
choosing the bit value on the erroneous qubit so that the
parity is restored. In terms of quantum circuit design, one can
design the following circuit to encrypt |ψ〉 = α|0〉 + β|1〉 to
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α|0L〉 + β|1L〉:

After the first gate, |0〉 becomes |0000〉 and |1〉 becomes
|1001〉. After the second gate, |0000〉 becomes |0〉 ⊗ (|0〉 +
|1〉) ⊗ |00〉 and |1001〉 becomes |1〉 ⊗ (|0〉 + |1〉) ⊗ |01〉.
After the third, fourth, and fifth gates, |0〉 ⊗ (|0〉 + |1〉) ⊗
|00〉 becomes |0000〉 + |1111〉 and |1〉 ⊗ (|0〉 + |1〉) ⊗ |01〉
becomes |1001〉 + |0110〉. This shows that the encoding by
the circuit achieves the logic encoding.

By the second transformation (10) and taking the second
qubit to be the atom qubit, the circuit is turned into

The first and third CNOT gates can be further transformed using
the first transformation (9), after which all the control qubits
are set to the second qubit. Hence, the logic encoding of a
quantum erasure code can be counterfactually prepared.

We then partially demonstrate this example on the IBM
Q platform. We make the same assumption that the CNOT

gates are realized by counterfactual special CNOT gates. When
inputting the states |0000〉 and |1000〉, the returned results are
|0000〉 + |1111〉 and |0110〉 + |1001〉. This verifies that the
encodings of the logical 0 and 1 are counterfactually prepared.

V. PRACTICAL ISSUES

In this section we consider some practical aspects of the
CUQC scheme. In particular, we give some variants of CUQC
that address practical issues such as efficiency improvement
and device imperfections. We first replace the single atom
in the standard CUQC by multiple atoms and show to what
extent such a modification improves the overall system effi-
ciency. Next we show the effect of device imperfections on the
performance of the CUQC scheme. The device imperfections
include finite M, finite N , photon loss, and atom missing.

A. CUQC with multiple atoms

In this section we show that multiple atoms can signifi-
cantly reduce the circuit depth in some cases.

Suppose a circuit contains n qubits and these n qubits are
grouped into n/2 pairs of qubits. For each pair of qubits, there
is a CNOT gate from one of the qubits to the other qubit in the

circuit. In total, there are n/2 pairs of parallel CNOT gates in
this circuit and there are no other gates.

Now we consider the implementation of this circuit. In
the case that there is only one atom qubit, by the second
transformation (10), this atom qubit needs to process 3n/2
CNOT gates and hence the circuit depth is �(n). In contrast, if
there are n/2 atom qubits, the circuit depth can be significantly
reduced to at most 3 (each atom qubit handles one CNOT gate).

Note that the total gate number of the circuit remains simi-
lar regardless of the number of atoms. This type of speedup is
in the same vein as parallel computing. The atom qubits here
take the place of central processing units in parallel computing
architecture.

B. Error analysis

In previous sections, we have assumed ideal devices and
infinite cycles. In this section, we consider various practical
aspects, including finite M, finite N , photon loss, and atom
missing.

We consider two figures of merits: the efficiency of the
computation and the fidelity of the computed result. Since
these two figures depend strongly on the number of coun-
terfactual special CNOT gates in the circuit, we first analyze
the case where the circuit consists of a single counterfactual
special CNOT gate. After that, we discuss quantum circuits that
contain multiple counterfactual special CNOT gates.

For the first part, we consider a single counterfactual
special CNOT gate in the case of practical devices. Recall
that in our setup, the outer cycle rotates the polarization by
β1 = π/2M and the inner cycle rotates the polarization by
β2 = π/2N . There are M − 1 outer cycles and for each outer
cycle there are 2(N − 1) inner cycles.

Let PD denote the probability that the photon passes the
transmission channel. The efficiency is defined as E = 1 −
PD. The unnormalized output state of the circuit is defined by

|ψfinal〉 = C1|H〉|g〉 + C2|V 〉|g〉 + C3|H〉|e〉 + C4|V 〉|e〉.
(16)

The efficiency E can be represented as

E =
4∑

i=1

|Ci|2. (17)

Since the ideal output is |ψideal〉 = Ce|H〉|e〉 + Cg|V 〉|g〉, the
fidelity is

F = |C∗
e C3 + C∗

gC2|2/E. (18)

We proceed by first analyzing the final state of the photon
when the atom is in the state |e〉 under finite M and N . In this
case, the initial photon state |H〉 will become cosM β1|H〉 at
the end. Now we analyze the more complicated case that the
atom is in the state |g〉. Let (X,Y )T denote the quantum state
X |H〉 + Y |V 〉. For each outer cycle, the state of the photon
evolves as

(
Xi

Yi

)
=

(
1 0

0 cos2N β2

)(
cos β1 sin β1

− sin β1 cos β1

)(
Xi−1

Yi−1

)
. (19)
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FIG. 8. (a) Efficiency of the circuit under various M and N . The
efficiency is almost the same for the same ratio of N to M and
becomes higher when the ratio of N to M increases. However, for
a N/M ratio of 20, the efficiency is still low (below 0.9). (b) Fidelity
of the circuit output under various M and N . The fidelity is approx-
imately the same for the same ratio of N to M and becomes higher
when the ratio of N to M increases. When the N/M ratio is above 5,
the fidelity is close to unity.

The initial conditions are X0 = 1 and Y0 = 0 since the initial
photon state is |H〉. Hence, for an initial state

|ψinitial〉 = |H〉(Ce|e〉 + Cg|g〉), (20)

the final state becomes

|ψfinal〉 = Ce cosM β1|H〉|e〉 + CgXM |H〉|g〉 + CgYM |V 〉|g〉.
(21)

The efficiency and the fidelity are then calculated according
to Eqs. (17) and (18).

For an initial atom state (|g〉 + |e〉)/
√

2, we plot the effi-
ciency against different M and N in Fig. 8(a) and the fidelity
against different M and N in Fig. 8(b). It can be seen that
the fidelity approaches one when N is over five times M. The
efficiency is more stringent for the ratio of N to M. Even when
the ratio of N to M is 20, the efficiency is still below 0.9.

Hereafter, we set M = 10 and N = 200 and consider the
effect of photon loss and atom missing. We let γ denote the
probability of photon loss in the transmission channel and let
η denote the probability of atom missing.

We first analyze the effect of photon loss and assume there
is no atom missing. If the atom is in the ground state, the
transmission is always blocked; hence whether the photon is
lost in the transmission channel does not make any difference.
Therefore, we only need to consider the case that the atom is in
the state |e〉. After N − 1 inner cycles, some proportion of the
vertical component will go into the next N − 1 inner cycles.
The proportion is given by W , the first entry of the vector

(
W

∗
)

=
(

cos β2 sin β2

−(1 − γ ) sin β2 (1 − γ ) cos β2

)N(
1

0

)
. (22)

After being reflected by the double-sided mirror, this vertical
component goes through another N − 1 inner cycles before
reaching the end of one outer cycle, and hence the W 2 propor-
tion of the vertical component remains after each outer cycle.
The state change for each outer cycle becomes

(
Ui

Vi

)
=

(
1 0

0 W 2

)(
cos β1 sin β1

− sin β1 cos β1

)(
Ui−1

Vi−1

)
. (23)

FIG. 9. (a) Efficiency (blue solid line) and fidelity (red dashed
line) vs the photon loss probability γ . When γ increases in the range
0 < γ < 0.1, the efficiency and the fidelity decrease rapidly. This
shows that the efficiency and the fidelity are quite sensitive to a small
probability of photon loss. (b) Efficiency and fidelity vs the atom
missing probability η. When η increases in the region 0 < η < 0.1,
the efficiency and the fidelity degrade slowly. This shows that the
protocol is resilient to infrequent block failure of the atom.

The initial conditions are U0 = 1 and V0 = 0. After M − 1
outer cycles, the final state becomes

|ψfinal〉 = CeUM |H〉|e〉 + CeVM |V 〉|e〉 + CgXM |H〉|g〉
+ CgYM |V 〉|g〉. (24)

We plot the efficiency and fidelity as a function of the photon
loss probability γ in Fig. 9(a). It can be seen that the fidelity
steadily decreases, while the efficiency initially declines and
then slowly increases. When the photon loss is small, both the
fidelity and the efficiency decrease significantly as the photon
loss increases.

Now we analyze the effect of atom missing and assume
that there is no photon loss. In the atom missing case, the atom
may fail to block the photon and let the photon pass through.
Apparently, if the atom is in the state |e〉, whether the atom
blocks does not make any difference. When the atom is in the
state |g〉, the vertical component no longer decays with a decay
rate cos2N β2 for each outer cycle.

After N − 1 inner cycles, the vertical component decays as
the first entry Z in the vector

(
Z

∗
)

=
(

cos β2 sin β2

−η sin β2 η cos β2

)N(
1

0

)
. (25)

After being reflected by the double-sided mirror and going
through another N − 1 inner cycles, the vertical component
decays with the same proportion, so the overall decay for one
outer cycle is Z2.

When η = 0, this first entry is Z = cosN β2, recovering the
ideal case. The state change for each outer cycle becomes

(
X ′

i

Y ′
i

)
=

(
1 0

0 Z2

)(
cos β1 sin β1

− sin β1 cos β1

)(
X ′

i−1

Y ′
i−1

)
. (26)

The initial conditions are X ′
0 = 1 and Y ′

0 = 0. After M − 1
outer cycles, the final state becomes

|ψfinal〉 = Ce cosM β1|H〉|e〉 + CgX ′
M |H〉|g〉 + CgY

′
M |V 〉|g〉.

(27)
We plot the efficiency and the fidelity as a function of the
atom missing probability η in Fig. 9(b). It can be seen that the
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efficiency and the fidelity both decrease slowly as η increases
in the range 0 < η < 0.1.

For the second part, we show how the composition of
the CNOT gates affects the transfer efficiency and the fidelity
of a circuit with multiple counterfactual special CNOT gates.
Suppose there are K CNOT gates in a circuit CIRC. The transfer
efficiency and the fidelity for a single CNOT gate are denoted
by E(CNOT) and F(CNOT), respectively.

Since CIRC gets an output if and only if all CNOT gates in
CIRC succeed, the efficiency of CIRC is

E(CIRC) = E(CNOT)K . (28)

For the fidelity part, we can view each quantum state as a
vector and the deviation can be characterized by the angle
θ between the ideal vector and the actual vector. By the
definition of fidelity, we have

F(CNOT) = cos2 θ. (29)

In the worst case, the deviation happens in the same direction
for all K CNOT gates. In that case, the final vector deviates
from the original vector by an angle of Kθ . Combined with
Eq. (29), the fidelity of CIRC is lower bounded by

F(CIRC) � cos2[K arccos
√

F(CNOT)]. (30)

VI. CONCLUSION

In summary, we have shown a CUQC scheme of which the
two-level quantum subsystems have no interaction with each
other during the computation. The CUQC scheme is based on
counterfactual special CNOT gates together with appropriate
circuit transformations. On a physical level, the scheme is
based on an atom qubit and an arbitrary number of pho-
ton qubits. As special cases, we have shown counterfactual
communication of a quantum state, counterfactual quantum
state swapping, and counterfactual quantum erasure code. The
CUQC scheme has been extended to the multiple atom qubit
case, the case of a finite round number, and the case of imper-
fect devices such as photon loss and atom missing.

The CUQC scheme illustrates again the mysterious nature
of quantum physics. In addition to its theoretical interest, this
scheme also has some practical applications. In particular, the
scheme enables grayscale imaging, by taking the atom state in
Sec. IV A to be pi|0〉〈0| + (1 − pi )|1〉〈1|, where 0 � pi � 1
characterizes the grayness of the image. By combining the
grayscale images of three primary colors, we recover the full
color image. The imaging method we propose here has the
notable feature that no photon touches the image. This is
especially important for the imaging of ancient arts, to which
even faint light can potentially cause significant damage.

As future directions, it would be interesting to explore
optical elements that can split into more than two paths. In
that case, a qutrit or a qudit, for example, can be counter-
factually transmitted with the same number of rounds as a
qubit. Another direction is to design passive substitutes for
the switchable components of a counterfactual special CNOT

gate, as this part is quite difficult to realize in laboratories. A
third direction is to find other physical platforms to realize the
CUQC scheme, in addition to the hybrid system of atoms and

photons. For example, one can consider whether an all-optical
system can realize the CUQC scheme. As a fourth direction,
a full experimental realization of the CUQC scheme and its
special cases presented in this work is of great interest.
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APPENDIX: GENUINE COUNTERFACTUAL
COMMUNICATION OF MIXED QUBITS AND
HIGHER-DIMENSIONAL QUANTUM STATES

In this Appendix, we generalize our counterfactual com-
munication result first to transmitting a mixed qubit and then
to transmitting higher-dimensional quantum states.

Note that a mixed qubit can be represented by
{(p1, |ψ1A〉), (p2, |ψ2A〉), . . . , (pk, |ψkA〉)}, where pi is the
probability of the state |ψiA〉 and the subscript A means that
this is an atom qubit. During the protocol, the whole system
evolves as

{(p1, |ψ1A〉), . . . , (pk, |ψkA〉)}|H〉
= {(p1, |ψ1A〉|H〉), . . . , (pk, |ψkA〉|H〉)}
P→ {(p1, |e〉|ψ1P〉), . . . , (pk, |e〉|ψkP〉)}
= |e〉{(p1, |ψ1P〉), . . . , (pk, |ψkP〉)}, (A1)

where |ψiA〉 = |ψiP〉, P is the action of the protocol, and the
subscript P in |ψiP〉 means that this is a photon qubit. Hence,
by applying the quantum protocol, the state of the photon
becomes {(p1, |ψ1P〉), (p2, |ψ2P〉), . . . , (pk, |ψkP〉)). In other
words, the mixed quantum state from the atom has transmitted
to the photon faithfully.

Next we generalize the qubit result to higher dimen-
sions. We note that higher-dimensional quantum states can be
viewed as multiple qubit states that are entangled. For simplic-
ity, we show that two entangled qubits can be counterfactually
communicated. The case of more than two qubits is similar.
Two entangled qubits can be represented in the computational
basis as

Cee|ee〉 + Ceg|eg〉 + Cge|ge〉 + Cgg|gg〉. (A2)

During the protocol, the whole system evolves as

(Cee|ee〉 + Ceg|eg〉 + Cge|ge〉 + Cgg|gg〉)|HH〉
= Cee|ee〉|HH〉 + Ceg|eg〉|HH〉 + Cge|ge〉|HH〉 + Cgg|gg〉|HH〉
P→ Cee|ee〉|HH〉 + Ceg|ee〉|HV 〉 + Cge|ee〉|V H〉 + Cgg|ee〉|VV 〉
= |ee〉(Cee|HH〉 + Ceg|HV 〉 + Cge|V H〉 + Cgg|VV 〉), (A3)

where P is the action of the protocol. In other words, after the
protocol, the state of the atoms is transferred to the photons
faithfully and turns the state of the photons to Cee|HH〉 +
Ceg|HV 〉 + Cge|V H〉 + Cgg|VV 〉. Similar to the previous anal-
ysis that extends pure qubits to mixed qubits, the analysis of
high-dimensional pure quantum states can also be extended to
that of high-dimensional mixed quantum states.
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