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Spontaneous parametric down-conversion (SPDC) has been a reliable process for the generation of entangled
photon pairs. In this process, a nonlinear quadratic crystal is pumped by a laser field in order to convert (high-
energy) photons into correlated photon pairs whose efficient control plays an essential role in various applications
of quantum information processing. In particular, the amount of entanglement has been successfully controlled
by adjusting the spatial structure of the incident pump field. Here, we theoretically analyze how the entanglement
of the down-converted two-photon state can be further enhanced by using Ince-Gaussian beams with well-defined
ellipticity ε, i.e., solutions of the paraxial wave equation in elliptical coordinates. These spatially structured
beams are quite universal as they include both the Laguerre-Gaussian beams for ε → 0 as well as the Hermite-
Gaussian beams for ε → ∞. We demonstrate that the entanglement of the generated photon pairs in SPDC can
be maximized by a proper choice of ε and that such an enhanced entanglement can be observed experimentally
in terms of the Schmidt number.
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I. INTRODUCTION

Entangled quantum states have been a crucial resource for
various quantum applications, such as quantum cryptography
[1], quantum teleportation [2], or quantum computing [3].
Therefore, until the present, many theoretical and experimen-
tal studies aim to find optimal or, at least, improved techniques
to generate entangled states with high efficiency. Spontaneous
parametric down-conversion (SPDC) is a robust experimen-
tal technique to generate two- or high-dimensional entangled
states [4].

Indeed, SPDC is a widely applied nonlinear (optical)
process that converts high-energy photons by a nonlinear
birefringent crystal into entangled photon pairs. The down-
converted photons can hereby be entangled in either their
time bins [5], polarization [6,7], orbital angular momentum
(OAM) [8–10], or with regard to their radial wave vector
[11], in dependence of how the setup (geometry) is selected
in a given experiment. It is therefore natural to ask how the
state of the down-converted photons can be manipulated in
order to enhance their entanglement. Apart from adjusting
the properties of the crystal [11,12], the spatial structure of
the incident pump beam can shape the two-photon state. For
instance, an exponential pump beam has been used in order
to flatten the OAM spectrum (spiral bandwidth) [13] or a
superposition of Laguerre-Gaussian (LG) beams to generate
a complete high-dimensional Bell basis [14]. In Sec. VI, we
will discuss a few more articles in the context of our work.

In this article, we shall follow the last line and analyze
how the pump beam can be controlled in order to improve
the entanglement of the generated two-photon state. Along
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this line, previous works have considered as a pump beam, for
instance, the paraxial Hermite-Gaussian (HG) [15,16] beams,
Laguerre-Gaussian (LG) [17] beams, or a superposition of
LG and HG beams [18]. HG and LG beams are well known
as exact solutions for the free-space paraxial wave equation
(PWE) in Cartesian and cylindrical coordinates. Here, we in-
stead consider a more general paraxial pump field, also known
as the Ince-Gaussian (IG) beam [19,20].

IG beams represent the exact, complete, and orthogonal
solutions of the PWE in elliptical coordinates. Therefore, their
transverse field distribution possesses an inherent elliptical
symmetry. Experimentally, the IG beams appear naturally as
transverse eigenmodes of stable resonators [21] but have been
generated as well by means of liquid crystals [22]. The ellipti-
cal coordinates in the transverse plane z = 0 can be defined
as x = w0(ε/2)1/2 cosh ξ cos η, y = w0(ε/2)1/2 sinh ξ sin η,
where the parameter ε refers to the ellipticity and w0 to the
beam waist at the origin. The radial and angular elliptical
coordinates are defined in the intervals ξ ∈ [0,∞) and η ∈
[0, 2π ), respectively. For a given beam waist w0, each value of
ε then specifies a different set of coordinates and, accordingly,
different sets of IG modes. The elliptical coordinates (ξ, η)
also include the Cartesian coordinates for ε → 0 as well as
cylindrical coordinates for ε → ∞. Similarly, the IG beams
include the LG beams (ε → 0) as well as the HG beams
(ε → ∞). By just changing the ellipticity 0 � ε � ∞, one
is therefore able to explore a whole family of beams, from the
LG to the IG and up to the HG beams, respectively. We shall
analyze in detail this beam dependence on the parameter ε as
a technique for shaping the pump beam in the SPDC process.

In shaping the spatial structure of the incident beam, we
may aim to either enhance (optimize) the strength of entangle-
ment or the number of states (degrees of freedom), in which
the down-converted two-photon state is entangled. For pure
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down-converted two-photon states, the amount of entangle-
ment can be quantified in terms of the Schmidt number K
by performing a Schmidt decomposition [3,23–25]. This de-
composition naturally gives rise to a set of biorthogonal mode
pairs in the representation of the bipartite states [26], while
the Schmidt number refers to the average number of modes in
the given state. In general, various approaches have been de-
veloped to experimentally detect and certify high-dimensional
entangled states. For more details, we refer to a review
article [27].

Below, we shall discuss both the numerical approach for
calculating the Schmidt number (Sec. IV) as well as the role
of Schmidt modes for the experiments. This includes a de-
tailed discussion of the IG beams in Sec. II and of the SPDC
state in Sec. III. Finally, an analysis is made for the Schmidt
decomposition of the SPDC state for IG beams of a different
kind in Sec. V.

II. INCE-GAUSSIAN BEAMS

An electromagnetic field is called paraxial if the ray in-
clination towards the optical axis is small. If a paraxial beam
propagates along the z direction, its wave is given by U =
�(r) exp (ikz) [28], and where the slowly varying amplitude
� satisfies the PWE,(

∇2
⊥ + 2ik

∂

∂z

)
�(r) = 0. (1)

Here, ∇2
⊥ is the transverse Laplacian, r is the position vec-

tor, and k is the wave vector. The PWE has been solved in
both Cartesian and cylindrical coordinates. We consider the
solution of the PWE in elliptical coordinates, which is more
general and includes the previously mentioned solutions in
Cartesian and cylindrical coordinates.

A. PWE in elliptical coordinates

To obtain a solution of the PWE (1) in elliptical coordi-
nates, let us consider an ansatz that is based on a lower-order
Gaussian beam (GB),

IG(r) = E (ξ )N (η) exp [iZ (z)]�G(r), (2)

where E (ξ ), N (η), and Z (z) are assumed to be real functions,
and where the GB itself satisfies the PWE,

�G(r) = w0

w(z)
exp

[ −r2

w2(z)
+ i

kr2

2R(z)
− iψ (z)

]
.

In this (standard) definition of a GB, w(z)2 = w2
0 (1 + z2/z2

R)
is the beam waist, zR = kw2

0/2 is the Rayleigh range, R(z) =
z + z2

R/z is the radius of curvature of the phase front, ψ (z) =
arctan(z/zR) is the Gouy shift, and w0 is the beam waist at
the origin z = 0. Furthermore, if we insert the ansatz (2) into
Eq. (1), one readily obtains three differential equations,

d2E

dξ 2
− ε sinh (2ξ )

dE

dξ
− [a − pε cosh (2ξ )]E = 0, (3)

d2N

dη2
+ ε sin (2η)

dN

dη
+ [a − pε cos (2η)]N = 0, (4)

−
(

z2 + z2
R

zR

)
dZ

dz
= p, (5)

with the two separation constants a and p, respectively. To-
gether with the definition of a GB, the solutions of Eqs. (3)–(5)
define the IG beams in elliptical coordinates. Indeed, Eq. (5)
has a very simple solution Z (z) = −p arctan (z/zR) that is
known also as the excess phase. In contrast, Eqs. (3) and (4)
require special care, as we shall briefly discuss below, and
where the solution of Eq. (3) is obtained from (4) by replacing
η with iξ .

Since Eq. (4) represents (so-called) periodic differential
equations, its solution must be also periodic. There are two in-
dependent solutions known as even and odd Ince polynomials
of order p and degree m, denoted respectively as Cm

p (η, ε) and
Sm

p (η, ε), where 0 � m � p for even, and 1 � m � p for odd
functions. In both cases, moreover, p and m should obey the
same parity rule: (−1)(p−m) = 1. In the intensity distribution
(cross section) of IG beams, the (quantum) number m refers
to the number of hyperbolic nodal lines, while (p − m)/2 is
the number of elliptic lines but without the line at ξ = 0 (see
Fig. 1). In (quantum-) optical experiments, these quantum
numbers are directly related to observables, such as the (pro-
jection of the) OAM and the radial wave vector (see Sec. II B).

The even and odd Ince polynomals are periodic and hence
they can be expanded as a sum of finite trigonometric func-
tions. There are four classes of Ince polynomials that are
distinguished owing to their (anti)symmetry at η = 0 and
η = π/2,

C2k
2n (η, ε) =

n∑
r=0

Ae
r cos 2rη, k = 0, . . . , n, (6)

C2k+1
2n+1 (η, ε) =

n∑
r=0

Ae
r cos (2r + 1)η, k = 0, . . . , n, (7)

S2k
2n (η, ε) =

n∑
r=1

Ao
r sin 2rη, k = 1, . . . , n, (8)

S2k+1
2n+1 (η, ε) =

n∑
r=0

Ao
r sin (2r + 1)η, k = 0, . . . , n, (9)

and where the superscripts e and o of the Fourier coefficients
Ae,o refer to even and odd Ince polynomials. By substituting
expressions (6) into Eq. (4), these Fourier coefficients must
obey the three-term recurrence relations

(p/2 + 1)εAe
1 = aAe

0,

(p/2 + 2)εAe
2 = −pεAe

0 − (4 − a)Ae
1,

(p/2 + r + 2)εAe
r+2 = [a − 4(r + 1)2]Ae

r+1 +
(

r − p

2

)
εAe

r,

with r = 1, 2, . . . , n. Similar three-term recurrence relations
can be obtained also for the series (7)–(9) (for details, we
refer to Ref. [20]). More generally, one should perform the
following steps, in order to calculate the Fourier coefficients
Ae,o

r : (i) Construct the coefficient matrix of the linear equation
system which follows directly from the recurrence relations
above. (ii) Find the real values of the parameter a, for which
the coefficient matrix has nontrivial solutions (zero determi-
nant): There are p such solutions for each m, am

p , and which
can be arranged as a0

p < a1
p < · · · < ap

p. (iii) For each value of
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FIG. 1. Intensity profiles of odd and even IG beams in the transverse plane at z = 0 and for an ellipticity ε = 2. The number of hyperbolic
and elliptic nodal lines correspond to m and (p − m)/2, respectively, and without counting the interfocal nodal line at ξ = 0 for the odd modes.

am
p , one can solve the system of linear equations and find the

corresponding set of coefficients Ae,o
r .

With these Fourier coefficients, we now can readily
construct the three-dimensional solution, which should be
continuous in the whole space. This continuity is ensured if
the products of functions E (ξ ) and N (η) in Eq. (2) have the
same parity in ξ and η,

IGe
p,m(r, ε) = Cw0

w(z)
Cm

p (iξ, ε)Cm
p (η, ε) exp

[ −r2

w2(z)

]

× exp

[
ikz + ikr2

2R(z)
− (p + 1)ψ (z)

]
, (10)

IGo
p,m(r, ε) = Sw0

w(z)
Sm

p (iξ, ε)Sm
p (η, ε) exp

[ −r2

w2(z)

]

× exp

[
ikz + ikr2

2R(z)
− (p + 1)ψ (z)

]
, (11)

where C and S are two normalization constants. Figure 1
presents several transverse distributions of IG beams for the
ellipticity ε = 2 at z = 0.

To summarize this section, we see that the transverse distri-
bution of IG beams at the beam waist plane is fully defined by
the (quantum) numbers p and m as well as by the ellipticity
ε and the beam waist w0. This is a quite general result that
each beam with well-defined spatial and spin properties can
be characterized by just four parameters (quantum numbers),
as all electrons or particles with well-defined spin; cf. the user
guide to Ref. [29].

B. Relation between IG, LG, and HG beams

The IG beams exhibit an interesting property that is essen-
tial for our work below, and which refers to their limits of
including both the LG or HG beams. Let us first write down
the explicit expressions of these LG and HG modes in order
to establish proper notations. The normalized LG modes are
described by the radial number n and the OAM or winding
number 	,

LGe,o
n,	(r, φ, z) =

[
4n!

(1 + δ0,	)π (n + 	)!

]1/2 1

w(z)

(
cos 	φ

sin 	φ

)

×
[ √

2r

w(z)

]	

L	
n

(
2r2

w(z)2

)
exp

[ −r2

w2(z)

]

× exp

{
i

[
kz+ kr2

2R(z)
−(2n + 	 + 1)ψ (z)

]}
,

FIG. 2. The limit of the odd IG beam with p = 5 and m = 3 to
the odd LG beam with n = 1 and 	 = 3 when the ellipticity goes to
zero, as well as the limit to the HG beam with nx = 2 and ny = 3
when the ellipticity goes to infinity in Eqs. (10) and (11).
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where L	
n(·) are the generalized Laguerre polynomials. The

normalized HG beams are instead described by the numbers
nx and ny and are given by

HGnx,ny (x, y, z) =
[

1

2nx+ny−1πnx!ny!

]1/2 1

w(z)
Hnx

(√
2x

w(z)

)

× Hny

( √
2y

w(z)

)
exp

[ −r2

w2(z)

]
exp

{
i

[
kz

+ kr2

2R(z)
− (nx + ny + 1)ψ (z)

]}
,

and where Hn(·) are the nth-order Hermite polynomials. The
IG beams behave as LG modes when the ellipticity goes to
zero, and where the following relations hold between the
quantum numbers of the IG and LG modes: m = 	, p =
2n + 	. Similarly, the IG beams behave as HG modes when
the ellipticity goes to infinity. In the limit to HG modes, the
conservation rules are denoted by nx = m − 1 and ny = p − m
for even, and by nx = m − 1 and ny = p − m + 1 for odd IG
beams; cf. Fig. 2.

The IG, LG, and HG modes each form a complete set of
functions within the transverse plane and therefore can be
expressed by each other. For example, an IG beam can be
rewritten as a finite decomposition of LG beams as

IGσ
p,m(ξ, η, ε) =

∑
n,	

Dσ
n,	LGσ

n,	(r, φ), (12)

where σ refers either to the even or to the odd beams, σ =
{e, o}. Note that the expansion coefficients should be scaled
out in order to hold the normalization condition

∑
n,	 D2

n,	 =
1. We can obtain these coefficient by performing the overlap
integral between IG and LG beams,∫∫ ∞

−∞
LGσ

n,l IG
σ ′

p,mdS = δσ ′,σ δp,2n+	(−1)n+	+(p+m)/2

×√
(1 + δ0,	)(n + 	 + 1)n!

× Aσ
(	+δ0,σ )/2

(
am

p

)
,

where Aσ
(	+δ0,σ )/2(am

p ) are the Fourier coefficients from
Eqs. (6)–(9), dS is the differential surface element, δ is the
Kronecker delta function, and the overbar denotes the com-
plex conjugate. The finite summation (12) runs up to Np =
(p + 2δσ,e)/2 for even p, and up to Np = (p + 1)/2, for odd
p. Let us make it explicit on an example. An odd IG beam
with p = 5 and ellipticity ε = 2 can be represented as a sum
of three odd LG modes in the following way,

IGo
5,3 = −0.343 LGo

2,1 + 0.901 LGo
1,3 + 0.266 LGo

0,5. (13)

Such a representation of the IG beams as a finite sum of
LG modes has the great advantage that one can deal with
cylindrical instead of elliptical coordinates.

C. Helical IG

Helical LG beams have a phase that rotates circularly about
the propagation axis [30]. Similarly, one can also define heli-
cal IG (HIG) beams that exhibit elliptically rotating phases,

HIGp,m = IGe
p,m ± i IGo

p,m,

FIG. 3. The construction of the helical IG beam as a sum of even
and odd IG beams with ellipticity ε = 2. Obviously, the helical IG
beam shows an elliptic ring structure.

where the sign defines the direction of the phase rotation.
The HIG is defined only for m > 0 since odd IG beams are
not defined for m = 0. Figure 3 illustrates the generation of
a HIG beam as a linear sum of even and odd IG beams.
In general, the number of elliptical rings is given by 1 +
(p − m)/2, and a single ring just arises for p = m; cf. Fig. 3
with p = m = 5.

III. SPONTANEOUS PARAMETRIC DOWN-CONVERSION

In typical SPDC experiments, a short quadratic nonlinear
crystal is pumped with a strong (quasi)monochromatic laser
that is assumed to propagate along the z axis. The efficiency
for creating an SPDC pair of photons hereby depends on the
conservation of energy and momentum, and which needs to
be fulfilled for the SPDC process. While the energy conser-
vation can be ensured by choosing narrow-band interference
filters in front of the detectors, the momentum conserva-
tion is more difficult to fulfill with most materials. This
momentum conservation can be realized using birefringent
crystals that generally possess two or three different refractive
indices for any given wavelength. However, nonideal conser-
vation of the photon momenta should be taken into account
when one wishes to derive an expression for the two-photon
state.

For the sake of simplicity, we here assume the following
for this derivation: (i) that the material is homogeneous and
isotropic as justified for thin crystals; (ii) a collinear geometry
of the generated photon pair with zero transverse compo-
nent of the momentum vectors—this condition also ensures
perfect phase matching between momentum vectors of down-
converted photons; (iii) that the crystal is large enough in its
transverse extent to absorb the whole pump beam; and that
(iv) for a moderate pump laser, the (time) interval between
subsequent down-conversions is much larger than the interac-
tion time of the incident photon with the crystal and also when
compared to the detection time. All these conditions can be
readily fulfilled in experiments.

With these assumptions in mind, the generated two-photon
state can be written as [31]

|�SPDC〉 =
∫

dr⊥�(r⊥)â†
s (r⊥)â†

i (r⊥) |00〉 , (14)

where �(r⊥) is the spatial distribution of the pump beam at
the input face of the crystal, r⊥ is the radial coordinate in real
space, â†

s (r⊥) and â†
i (r⊥) are the creation operators for the sig-

nal and idler photons and, respectively, |00〉 the vacuum state.
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The subscripts s and i refer to the two down-converted signal
and idler photons, respectively. Although this expression (14)
appears to be quite simple, it has been found useful to describe
a good number of experimental results [32].

To explore the spatial structure of the down-converted
state, we need to perform a mode decomposition of the joint
wave function (14). This is achieved by using a complete
and orthogonal basis of transverse optical modes, and has
been previously done by using Bessel [11], HG [15,25,33,34],
LG [35,36], or IG modes [37]. Here, we shall choose the
LG modes as a basis for this decomposition because of the
following two reasons: First, the down-converted photons
are naturally entangled in the arbitrary superpositions of the
OAM modes as it was demonstrated theoretically [8,9] and
experimentally [10]. Second, the spatial modes may carry
and are often classically correlated with regard to their radial
momentum vector [35,38]. Moreover, the first experimental
realization of high-dimensional entanglement consisting of
radial modes has been introduced in Ref. [39], where 100-
dimensional entanglement of a two-photon system has been
detected by utilizing a modified measurable witnesslike quan-
tity. The OAM and the radial momentum vector can be well
described by the discrete OAM and radial numbers of LG
modes. Therefore, the use of LG modes in the decomposition
above will simplify the mathematical treatment and calcula-
tion of the SPDC state.

A single photon in an LG mode can be written as

|n, 	〉 =
∫

dr⊥LGn,	(r⊥), â†(r⊥) |0〉 , (15)

where we use the helical LG modes in real space:

LGn,	(r, φ) =
√

2n!

π (n + |	|)
1

w

(
r
√

2

w

)|	|

× exp

(−r2

w2

)
L|	|

n

(
2r2

w2

)
exp (i	φ).

With this notation, the expansion of the SPDC state (14) in
terms of LG modes is then given by

|�SPDC〉 =
∑
ns,	s

∑
ni,	i

C	s,	i
ns,ni

|ns	s; ni	i〉 . (16)

Using Eqs. (14)–(16), the expansion coefficients are obtained
from

C	s,	i
ns,ni

=
∫

dr⊥�(r⊥)[LGns,	s (r⊥)]∗[LGni,	i (r⊥)]∗. (17)

If we substitute expression (12) of the IG beam for the pump
field �(r⊥), the expansion coefficients (17) can be evaluated
analytically. For an odd, even, and helical IG pump beam,
these coefficients read as

O	s,	i
ns,ni

=
∑
n,	

i

2
Do

n,	

(
δ−	,	s+	i − δ	,	s+	i

)
B	,	s,	i

n,ns,ni
, (18)

E 	s,	i
ns,ni

=
∑
n,	

1

2
De

n,	

(
δ−	,	s+	i + δ	,	s+	i

)
B	,	s,	i

n,ns,ni
, (19)

H 	s,	i
ns,ni

= E 	s,	i
ns,ni

+ iO	s,	i
ns,ni

, (20)

with

B	,	s,	i
n,ns,ni

=
√

2

πw2
p

2σ	+1γ |	s|+1
s γ

|	i|+1
i(

1 + γ 2
s + γ 2

i

)σ	+1

√
n!ns!ni!(|	| + n)!(|	s| + ns)!(|	i| + ni )!

×
n∑

k=0

ns∑
i=0

ni∑
j=0

(−2)k+i+ jγ 2i
s γ

2 j
i (σ	 + k + i + j)!(

1 + γ 2
s + γ 2

i

)k+i+ j
(n − k)!(|	| + k)!k!(ns − i)!(|	s| + i)!i!(ni − j)!(|	i| + j)! j!

,

and where we used the notation σl = (|	p| + |	s| + |	i|)/2.
Moreover, the ratios of the pump width to the signal and idler
widths are denoted by γs = wp/ws and γi = wp/wi.

IV. SCHMIDT BASES FOR THE
DOWN-CONVERTED PHOTONS

Let us first recall the Schmidt decomposition of an (entan-
gled) pure bipartite state from a mathematical viewpoint. If
we consider the two subsystems A and B with Hilbert spaces
HA and HB, any pure state of the composite system AB can be
written as

|ψ〉 =
∑
a,b

ψab |a〉 ⊗ |b〉 ∈ HA ⊗ HB, (21)

where the vectors {|a〉} and {|b〉} represent the bases for the
Hilbert spaces HA and HB, respectively. We can use the singu-
lar value decomposition (SVD) theorem in order to write the
coefficients matrix of the state |ψ〉 in the form

ψ = U�V †, (22)

where the matrices U and V have orthogonal columns, U †U =
1 and V †V = 1, and where the matrix � is diagonal with
entries �kk = λk . These diagonal (matrix) elements are also
known as the singular values of the matrix ψ , while the
number of nonzero singular values is called the Schmidt rank
of the matrix. From Eq. (22), it then follows that the state (21)
can be represented as [3]

ψab =
r∑
k

λkUakV
∗

bk, (23)

where r is the Schmidt rank. We can now insert the coeffi-
cients ψab back into Eq. (21),

|ψ〉 =
∑
a,b,k

λkUakV
∗

bk |a〉 ⊗ |b〉

=
∑

k

λk

[∑
a

Uak |a〉
]

⊗
[∑

b

V ∗
bk |b〉

]
,
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FIG. 4. Correlation between the OAMs 	s and 	i of signal and idler photons for an IG pump beams with p = 5, m = 3, wp = 1, and
ellipticities, ε = 0, 3, and ∞. Here, we assume that the pump, signal, and idler beams all have the same widths, γs = γi = 1. For an IG pump
beam with p = 5, one generally expects six lines with total OAM 	s + 	i = ±1, ±3, ±5. In the limit of a helical LG beam, the pump beam
possesses a well-defined OAM. Therefore, one expects only a single line with 	 = m = 3. All figures are calculated for the fundamental modes
ps = pi = 0, while the normalization is done for each graph individually.

and introduce the two bases, |uk〉a = ∑
a Uak |a〉 and |uk〉b =∑

b V ∗
bk |b〉, to finally obtain

|ψ〉 =
∑

k

λk |uk〉a |uk〉b . (24)

Expression (24) is known in the literature as the Schmidt
decomposition of the initial state (21) with |uk〉a and |uk〉b
being the Schmidt modes and λk the corresponding eigen-
values. The Schmidt decomposition of pure bipartite states
has several interesting properties that make it an attractive
tool for both experimental and theoretical investigations:
(i) The Schmidt modes form a complete and orthogonal
basis. (ii) The Schmidt modes provide a discrete single-
sum representation, independent of the particular state. (iii)
The Schmidt number K = 1/

∑
k λ4

k quantifies the amount
of entanglement if the state |ψ〉 is normalized:

∑
k λ2

k = 1.
The more the probabilities λk are distributed, the more is

the state entangled. In particular, the state |ψ〉 is separable
for the Schmidt number K = 1 and is called entangled for
K > 1. The Schmidt number is generally not bounded from
above.

There are noticeable differences for the decomposition of
the SPDC state |�SPDC〉 in terms of LG and Schmidt modes.
In particular, the LG modes (16) are not suitable as a mea-
surement basis since each LG mode of one of the photons
is generally correlated with several radial modes of the other
photon. Such correlations are very different for the Schmidt
decomposition (24) for which a postmeasurement state |uk〉a
of subsystem A implies (ideally) to find subsystem B in the
state |uk〉b. In the Schmidt basis, therefore, all measurements
on A and B are perfectly correlated. Moreover, if the mea-
surement basis differs from the Schmidt basis, the obtained
(effective) Schmidt number will always be smaller than those
in the Schmidt basis.
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FIG. 5. Spiral bandwidth of the SPDC state if the pump field is an
odd IG beam with p = 5, m = 5, and ε = 3. Each point correspond
to superposition of all states with fixes 	s.

V. INVESTIGATION OF THE SPDC STATE

Expressions (18)–(20) describe the spatial structure of the
SPDC state in terms of LG modes for different kinds of IG
pump fields (beams). These decompositions of the pump field
depend, of course, on the particular parameters of the incident
beam, such as its ellipticity, width, and quantum numbers, as
well as on the widths of the signal and idler beams. Below,
we shall explore (incident) paraxial pump beams with differ-
ent ellipticities, including LG, IG, and HG beams. We shall
also discuss how (entanglement) measurements can be imple-
mented experimentally and which correlation distributions we
expect for the different input beams.

A. Correlation between OAM of signal and idler photons

The SPDC process generally conserves the OAM of the
incident beam as known from theory and experiments. If a
nonlinear crystal is pumped by a pure helical LG beam with
OAM 	p, the output state has a total OAM 	s + 	i = 	p with
the OAMs of the signal (	s) and idler photons (	i), respec-
tively. Let us start with an odd LG pump beam. Since an
odd LG beam can be represented as a sum of two helical LG
beams, the generated photon pair will have a total OAM either
	p or −	p with the same probability, 	s + 	i = ±	p. Espe-
cially, an odd IG pump beam with p = 5 can be expressed
as the sum of three LG beams with OAMs 	 = 1, 3, and 5
[see Eq. (13)], which implies that the down-converted photons
can possess a total OAM of 	s + 	i = ±1,±3,±5. Figure 4
shows the conservation of the OAM in the SPDC process if
the crystal is pumped by an IG beam with p = 5 and m = 3.
As expected, an IG pump beam (middle column) shows six
lines with total OAM 	s + 	i = ±1 ± 3 ± 5. From these lines,
only two remain for all even and odd IG beams in the limit
ε → 0, while just a single line remains for a helical LG beam
with 	 = m = 3. The helical HG modes are obtained from the
HIG beams in the limit ε → ∞. In general, the modes with
a negative total OAM are suppressed for the helical beams
(lower panel of Fig. 4). In addition, the correlation between
the OAMs 	s and 	i also depends on the width ratios γs and γi

FIG. 6. Dependence of the Schmidt number on the ellipticity of
the incident IG beam. The two-photon state has been constructed by
considering the significant terms of the sum (16). Odd, even, and
helical IG pump beams are denoted by red, dashed blue, and black
lines, respectively.

as well as the mode number m, though this dependence is not
shown here.

B. Spiral bandwidth of the SPDC state

The spiral bandwidth has been used in the literature to
describe the degree of entanglement, namely the number of
OAM modes that contribute to the state. The spiral bandwidth
is therefore directly related to the number of entangled modes.
If, moreover, this bandwidth describes an equally distributed
multimode expansion, the corresponding state is maximally
entangled. Therefore, an interesting question of current re-
search is how these spiral bandwidths can be manipulated.
Figure 5 shows the spiral bandwidth for an odd IG pump beam
with p = 5, m = 3, and ε = 3. Each point in Fig. 5 represents
the sum over all possible OAM states for a fixed 	s and for the
fundamental modes with ns = ni = 0 from expression (16).

In a series of test computations, we also analyzed how
the spiral bandwidth depends on the ellipticity parameter. In
practice, however, this dependence is difficult to interpret and
will not be shown explicitly. Instead, we here display how
the Schmidt number as one observable of SPDC experiments
depends on the ellipticity of the incident beam.

C. Schmidt number of the SPDC state

As mentioned before, the Schmidt number characterizes
the amount of entanglement. Here, we shall therefore in-
vestigate how this number depends on the ellipticity of
the (incident) IG beam. A full representation of the down-
converted photon state is obtained in expression (16) when 	s,i

run overall integers, while ns,i only over the positive integers.
For the sake of simplicity, we here considered only the most
significant terms in the sum (16), i.e., we restrict ourselves
to the radial numbers n = 0, 1, . . . , 10 and to the OAM 	 =
−25,−24, . . . , 24, 25. This restriction is still a very good
approximation to the real photon state since all higher-order
coefficients (17) are significantly smaller. We used the method
from Sec. IV and constructed a coefficient matrix similar to
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FIG. 7. The same as Fig. 6 but for different ratios of the widths of the pump, signal, and idler beams, γ = γs = γi = 1 and 4, as well as for
different mode numbers m of IG pump beams of different kinds with p = 5. The curves of helical and even beams behave similarly for γ = 1:
The maximum Schmidt number is reached in the limit of a pure LG beam, and it decreases when the ellipticity increases up to the limit of an
HG beam. The curve for an even beam with m = 1 shows a maximum for an IG mode between LG and HG modes. Depending on the incident
light’s mode number, the curves can have a maximum in the limit of HG beams if the ratio of the beam widths becomes larger than one, γ > 1.
Although all curves have been calculated for the fundamental modes n = 0, their dependence on the ellipticity ε will remain unchanged if we
also consider the radial modes.

Eq. (23). The Schmidt number has been calculated by using
the SVD method described in Sec. IV.

Figure 6 shows the dependence of the Schmidt number
on the ellipticity, when the pump beam is an IG with p = 5
and m = 3 and where beam widths are chosen to be equal,
γs = γi = γ = 1. The proper choice of the kind (odd, even,
or helical) and ellipticity can maximize the amount of entan-
glement. While Fig. 6 implies only a rather weak dependence
on the ellipticity, this changes if we consider the full state for
which the differences between the maximum and minimum
become significant.

We also investigated the Schmidt number for pure OAM
modes with fixed radial modes, ns = ni = 0. Figure 7 shows
the dependence of the Schmidt number on the ellipticity
parameter; in particular, we here fixed the order p = 5 of
the pump beam and varied the mode number m as well as
the ratios of the pump-to-signal and pump-to-idler widths.

Obviously, the curves behave quite differently for different
sets of beam parameters. The maximum Schmidt number is
achieved in the LG limit (ε → 0), if the pump beam is an odd
or helical IG beam, and if all three beams are equal: γs = γi =
1. We can see from Fig. 7 that a maximum can be reached
also for an IG beam with finite ε > 0 but only for particular
parameters. We realize from the comparison of Fig. 6 with its
analog from Fig. 7, that the curve’s behavior is independent
of how many radial modes are involved in the state, i.e., the
ellipticity dependence is relevant only for OAM modes.

D. Experimental model

Spatial light modulators (SLMs) are often used to generate
or detect the spatial modes of light beams. Such SLMs can
readily transform a particular spatial mode into a fundamen-
tal Gaussian mode, and which can then be coupled into the
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FIG. 8. The same as Fig. 4 but for γs = γi = γ0 = 2, where γ0

is the ratio of the pump width to the single-mode fiber width, γ0 =
wp/w0. A realistic single-mode fiber affects the spiral bandwidths;
since these fibers have a finite size, not all generated Gaussian modes
can be coupled into it equally.

single-mode fiber. These SLMs can be applied also in order
to perform coincidence detections of down-converted photons
[10,11]. Since the single-mode fibers have a finite size, they
cannot couple all Gaussian modes. Therefore, one may better
consider an additional Gaussian mode in Eq. (14) in order to
model such an experiment [32],

|�SPDC〉 =
∫

dr⊥�(r⊥)â†
s (r⊥)â†

i (r⊥)G2(r⊥) |00〉 , (25)

where the Gaussian mode of a single-mode fiber with a radius
w0 can be written as

G(r⊥) =
(

2

π

)1/2 1

w0
exp

(
− r2

⊥
w2

0

)
.

Here, the additional term in Eq. (25) can be interpreted as
an adjustment of the beam waist of the pump beam. From
Eqs. (10) or (11), we see indeed that the beam waist can be
adjusted in the following way,

1

(w′
p)2

= 1

w2
p

+ 2

w2
0

,

where w′
p is the effective beam width. Figure 8 presents

the differences of the spiral bandwidths and the Schmidt
number distributions, if one considers the effective beam
waist. From Fig. 8, we finally see that the spiral bandwidths
decrease because not all modes can be coupled into the
single-mode fiber. This also affects the Schmidt number dis-
tributions from Figs. 6 and 7, which are not presented here,
but should be considered for modeling the real experiment
outcomes.

VI. COMPARISON WITH PREVIOUS WORKS

A superposition of LG beams has been used as a pump
beam in order to generate high-dimensional entangled states
[40,41]. In these works, for instance, a superposition of three
LG beams has been utilized to generate three-dimensional
maximally entangled states. Analogously, IG beams can be
utilized to generate high-dimensional entangled states by ad-
justing the ellipticity. Such an IG beam with quantum numbers
p = 5 and m = 1 generates a four-dimensional maximally
entangled state for ellipticity, ε = 1.08 in the subspace 	 =

FIG. 9. Generation of a four-dimensional maximally entangled
state in the subspace 	 = 0, ±1, ±2 and n = 0. The pump beam is a
helical IG beam with p = 5 and m = 1 and with ellipticity ε = 1.08.

0,±1,±2 and n = 0 (see Fig. 9). On the other hand, IG
beams can be also represented as a superposition of LG beams
[see Eq. (13)], which implies that our approach is similar
to the methods from Refs. [40,41]. The crucial difference is
that this superposition refers to a certain ellipticity parame-
ter, which is a unique feature of IG beams. Moreover, this
additional information regarding the ellipticity can be trans-
ferred in the SPDC process to the state of down-converted
photons. In order to verify this, we consider an IG pump
beam with ellipticity, ε = 2, and analyze the correlation be-
tween two down-converted photons when projected onto IG
modes with the same mode numbers. Figure 10 shows the
correlation strength depending on the ellipticity of down-
converted photons. As we can see, the correlation reaches
the maximum value when the ellipticities of the pump and
down-converted beams are equal, otherwise, the correlation
is reduced. Hence, the ellipticity can be used for extensions
of quantum communication protocols such as the Bennett-
Brassard protocol of 1984 (BB84) or the Ekert protocol of
1991 (Ekert91), for instance, as an encoded parameter. With

FIG. 10. Strength of correlation depending on the ellipticity of
the idler beam, when the pump beam is an IG beam with ε = 2. Idler
and signal beams are projected into IG modes with the same mode
numbers. The maximum correlation is reached when the ellipticities
of the pump and down-converted beams are equal.
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this in mind, the ellipticity of IG beams gives a different
physical meaning to the superposition of LG beams used
in SPDC.

VII. CONCLUSION

In this article, we explore the state of (spontaneous
parametric) down-converted photons |�SPDC〉 for different
Ince-Gaussian (IG) pump beams and their different limits. Our
goal was to investigate the SPDC process for general paraxial
pump fields, the (so-called) IG beam from which both the

paraxial LG are obtained for a zero ellipticity ε → 0 as well as
the HG beams for ε → ∞. Therefore, the shape of the pump
beam is easily controlled using the ellipticity parameter. We
show how the entanglement of the SPDC two-photon states
can be maximized by a proper choice of the ellipticity ε. We
also show how the Schmidt number as an observable of such
SPDC experiments can be utilized to better understand the
amount of (generated) entanglement. The smooth transition
of IG beams into LG beams has been analyzed in terms of the
spiral bandwidth and the conservation (rule) of the OAM in
the SPDC process.
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