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Approximate quantum circuit synthesis using block encodings
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One of the challenges in quantum computing is the synthesis of unitary operators into quantum circuits with
polylogarithmic gate complexity. Exact synthesis of generic unitaries requires an exponential number of gates in
general. We propose a novel approximate quantum circuit synthesis technique by relaxing the unitary constraints
and interchanging them for ancilla qubits via block encodings. This approach combines smaller block encodings,
which are easier to synthesize, into quantum circuits for larger operators. Due to the use of block encodings, our
technique is not limited to unitary operators and can be applied for the synthesis of arbitrary operators. We show
that operators which can be approximated by a canonical polyadic expression with a polylogarithmic number of
terms can be synthesized with polylogarithmic gate complexity with respect to the matrix dimension.
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I. INTRODUCTION

Quantum computing holds the promise of speeding up
computations in a wide variety of fields [1]. After early
breakthroughs, such as Shor’s algorithm [2] for factoring and
Grover’s algorithm [3] for searching, there have been substan-
tial developments in various quantum algorithms over the past
two decades. Noteworthy are the quantum walk algorithm of
Szegedy [4,5], and the quantum linear systems algorithm by
Harrow et al. [6]. These developments have lead to quantum
linear systems [7] and Hamiltonian simulation [8] algorithms
inspired by quantum walks. A unifying framework called
the quantum singular value transformation, which combines
the notion of qubitization [9] and quantum signal processing
[10] by Low and Chuang, was recently proposed by Gilyén
et al. [11]. The quantum singular value transformation can
describe all aforementioned quantum algorithms except fac-
toring. Besides that, it has sparked an interest in the use of
block encodings since they can directly be used as input for
a quantum singular value transformation. A block encoding is
the embedding of a—not necessarily unitary—operator as the
leading principal block in a larger unitary,

U =
[

A/α ∗
∗ ∗

]
⇐⇒ A = α(〈0| ⊗ I )U (|0〉 ⊗ I ), (1)

where ∗’s indicate arbitrary matrix elements.
In this paper, we propose the use of block encodings not as

a building block for quantum algorithms but as a technique for
approximate quantum circuit synthesis and, more generally,
the synthesis of arbitrary operators into quantum circuits. One
of the major challenges on noisy intermediate-scale quantum
(NISQ) devices is the limited circuit depth [12]. In general,
exact synthesis of generic unitary operators requires expo-
nentially many quantum gates [13–15]. The noise in NISQ
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devices limits the circuit depth but also relaxes the need for
exact synthesis. In other words, we only need to approximate
the action of some n-qubit operator up to an error proportional
to the noise level. A polynomial dependence of the circuit
depth on n is necessary to obtain efficient quantum circuits.
Examples of other approximate synthesis approaches have
been proposed in Refs. [16–20].

We show that, under certain assumptions, an efficient
quantum circuit can be devised if the operator can be ε ap-
proximated by a canonical polyadic (CP) expression [21,22]
with a number of terms that depends polylogarithmically on
the operator dimension. We denote these by PLTCP matrices.
CP decompositions have found applications in many scientific
disciplines because they can often be computed approximately
using optimization algorithms. However, their calculation is
an NP-hard problem in general. We also demonstrate that
the class of operators that we can efficiently synthesize is a
linear combination of terms with Kronecker product structure,
which is more general than standard CP decompositions. We
call these CP-like decompositions.

The proposed technique uses two operations to efficiently
combine block encodings: the Kronecker product of block
encodings and a linear combination of block encodings. This
allows us to combine block encodings of small matrices into
quantum circuits for larger operators. We show that in practice
the scheme requires at most a logarithmic number of ancilla
qubits, study the relation between the errors on the individ-
ual encodings and the overall circuit, and analyze the CNOT

complexity of the circuits. Finally, we show three examples
of nonunitary operators that naturally have a CP-like structure
and can efficiently be encoded using the proposed technique.

II. BLOCK ENCODINGS

Since a n-qubit quantum circuit performs a unitary oper-
ation, nonunitary operations cannot directly be handled by
quantum computers. One way to overcome this limitation
is by encoding the nonunitary matrix into a larger unitary
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|0〉⊗a

|ψs〉
Un

0

Ãs |ψs〉

FIG. 1. Quantum circuit for Un. The thick quantum wire carries
the signal qubits, the others are the ancilla qubits. If the ancilla
register is measured in the zero state, the signal register is in the
desired state Ãs |ψs〉.

one, so-called block encoding [11]. We define an approximate
block encoding of an operator on s signal qubits As in a unitary
Un on n qubits as follows.

Definition 1. Let a, s, n ∈ N such that n = a + s, and ε ∈
R+. Then an n-qubit unitary Un is an (α, a, ε)-block encoding
of an s-qubit operator As if

Ãs = (〈0|⊗a ⊗ Is)Un(|0〉⊗a ⊗ Is), (2)

and ‖As − αÃs‖2 � ε.

The parameters (α, a, ε) of the block encoding are, re-
spectively, the subnormalization factor to encode matrices of
arbitrary norm, the number of ancilla qubits, and the error of
the block encoding. Since ‖Un‖2 = 1, we have that ‖Ãs‖2 � 1
and ‖As‖2 � α + ε. Note that every unitary Us is already a
(1,0,0)-block encoding of itself and every nonunitary matrix
As can be embedded in a (‖As‖2, 1, 0)-block encoding [23].
This does not guarantee the existence of an efficient quantum
circuit.

An equivalent interpretation of Definition 1 is that Ãs is
the partial trace of Un over the zero state of the ancilla space.
This naturally partitions the Hilbert space Hn into Ha ⊗ Hs.
Given an s-qubit signal state |ψs〉 ∈ Hs, the action of Un on
|ψn〉 = |0〉⊗a ⊗ |ψs〉 ∈ Hn becomes

Un |ψn〉 = |0〉⊗a ⊗ Ãs |ψs〉 +
√

1 − ‖Ãs |ψs〉‖2
2 |φ⊥

n 〉 , (3)

with

(〈0|⊗a ⊗ Is) |φ⊥
n 〉 = 0, ‖|φ⊥

n 〉‖2 = 1, (4)

and |φ⊥
n 〉 as the normalized state for which the ancilla register

has a state orthogonal to |0〉⊗a. By construction, we see that a
partial measurement of the ancilla register projects out |φ⊥

n 〉
and results in (|0〉⊗a ⊗ Ãs |ψs〉)/‖Ãs |ψs〉‖2 with probability
‖Ãs |ψs〉‖2

2. In this case, the ancilla register is measured in the
zero state, and the signal register is in the target state Ãs |ψs〉,
see Fig. 1. An inadmissible state orthogonal to the desired
outcome is obtained with probability 1 − ‖Ãs |ψs〉‖2

2.
Using amplitude amplification, the process must be re-

peated 1/‖Ãs |ψs〉‖2 times for success on average. This makes
our proposed synthesis technique probabilistic.

III. COMBINING BLOCK ENCODINGS

We introduce two operations on block encodings that in
combination allow us to build encodings of larger operators
from encodings of small operators. The first operation creates
a block encoding of a Kronecker product of two matrices from
the block encodings of the individual matrices. We denote a
SWAP gate on the ith and jth qubits as SWAPi

j .
Lemma 1. Let Un and Um be (α, a, ε1)- and (β, b, ε2)-

block encodings of As and At , respectively, and define Sn+m =

Un

Um

a

s

b

t

(a)

a + b

s + t
Up

(b)

FIG. 2. Block encoding of the Kronecker product of 2 block-
encoded matrices: (a) quantum circuit for a = 3, s = 3, b = 2, t =
2, and (b) equivalent multiqubit gate Up with p = n + m.

∏s
i=1 SWAPa+i

a+b+i. Then,

Sn+m(Un ⊗ Um)S†
n+m (5)

is a (αβ, a + b, αε2 + βε1 + ε1ε2)-block encoding of As⊗At .
The proof of Lemma 1 is given in Appendix A. This lemma

shows how two individual block encodings can be combined
to encode the Kronecker product of two matrices. The method
requires no additional ancilla qubits and the approximation
error scales as a weighted sum of the individual errors up
to first order. The operation requires only 2s additional SWAP

operations.
Figure 2 shows the quantum circuit for a Kronecker prod-

uct of block encodings. This reveals the observation that in
order to combine block encodings into Kronecker products,
the signal qubits of the leading block encoding have to be
swapped with the ancilla qubits of the second block encoding
in such a way that the s + t signal qubits become the least-
significant qubits in the combined circuit and that the mutual
ordering of the signal qubits is preserved.

Lemma 1 trivially extends to Kronecker products of more
than two block encodings. Let Uni be (αi, ai, εi )-block encod-
ings of Asi for i ∈ {1, . . . , d}. Define n = ∑

i ni, and Sn as a
SWAP register that swaps all signal qubits of each block en-
coding Uni to the least-significant qubits of the n-qubit unitary
whereas preserving the mutual ordering between the signal
qubits. Then, ignoring the second-order error terms,

Sn
(
Un1 ⊗ Un2 ⊗ · · · ⊗ Und

)
S†

n (6)

is an (
∏

i αi,
∑

i ai,
∑

i εi
∏

k �=i αk )-block encoding of As1 ⊗
As2 ⊗ · · · ⊗ Asd . In order for the subnormalization factor and
approximation error on the Kronecker product not to grow
too large, the subnormalization factors of the individual block
encodings should be small enough.

The second operation used in the proposed technique con-
structs a block encoding of a linear combination of block
encodings. To this end, we review the notion of a state prepa-
ration pair of unitaries [11].

Definition 2. Let y ∈ Cm with ‖y‖1 � β and define y =
[yT 0]T ∈ C2b

, where 2b � m. Then the pair of unitaries
(Pb, Qb) is called a (β, b, ε)-state-preparation pair for y if
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FIG. 3. Block encoding of linear combinations of block en-
codings: (a) quantum circuit where the white control nodes are
controlled on the |0〉 state, the black control nodes on the |1〉 state,
and the gray control nodes for U (m−1) are controlled on either the
|0〉 or the |1〉 state in order to encode the bitstring for m − 1, and
(b) equivalent multiqubit gate.

Pb |0〉⊗b = |p〉 and Qb |0〉⊗b = |q〉 such that

2b−1∑
j=0

|β(p∗
jq j ) − y j | � ε. (7)

The following lemma is a known result [24], but we
provide a sharper upper bound on the approximation error
compared to Ref. [11].

Lemma 2. Let Bs = ∑m−1
j=0 y jA

( j)
s be a s-qubit operator and

assume that (Pb, Qb) is a (β, b, ε1)-state-preparation pair for
y. Furthermore, let U ( j)

n be (α, a, ε2)-block encodings for A( j)
s

for j ∈ [m] and define the following select oracle:

Wb+n =
m−1∑
j=0

| j〉 〈 j| ⊗ U ( j)
n +

2b−1∑
j=m

| j〉 〈 j| ⊗ In. (8)

Then,

Ub+n = (P†
b ⊗ Ia ⊗ Is)Wb+n(Qb ⊗ Ia ⊗ Is), (9)

is an (αβ, a + b, αε1 + βε2)-block encoding of Bs.
The proof is provided in Appendix B. This lemma shows

that, if an efficient state preparation pair exists for the coef-
ficient vector y, then we can efficiently implement a linear
combination of block encodings from the individual block
encodings. Figure 3 shows the corresponding quantum circuit.
Note that this operation requires b additional ancilla qubits.
The approximation error again scales as a weighted sum of
the (maximum) error on the block encodings and the error on
the state-preparation pair.

The combination of Lemma 2 and Eq. (6) shows that we
can directly construct a block encoding of a s-qubit operator
with the CP-like form

Bs =
m−1∑
j=0

y j A( j)
s1

⊗ A( j)
s2

⊗ · · · ⊗ A( j)
sd j

, (10)

if
∑d j

i=1 si = s for j ∈ [m], i.e., all terms in the sum in Eq. (10)
are of the same dimension, and if we have a block encoding
U ( j)

ni for each A( j)
si where j ∈ [m], and i ∈ {1, . . . , d j}.

To quantify the subnormalization factor, the number of an-
cilla qubits, and the approximation error in the block encoding
for Eq. (10), we assume that each U ( j)

ni is an (α( j)
i , a( j)

i , ε
( j)
i )-

block encoding for A( j)
si . Let

α( j) =
∏

i

α
( j)
i , a( j) =

∑
i

a( j)
i , ε ( j) =

∑
i

ε
( j)
i

∏
k �=i

α
( j)
k

(11)
for j ∈ [m]. Then, using Eq. (6), we can combine these into
(α( j), a( j), ε ( j) )-block encodings for each term in Eq. (10).
Note that whereas the number of signal qubits has to be the
same for each term in the linear combination, we do not
assume the same number of ancilla qubits here. If we define
a = max j a( j), then each block encoding for A( j)

s can simply
be extended to a ancilla qubits by adding additional ones at
the top of the register. This does not change the leading block
of the unitary. The properties of a block encoding for Eq. (10)
under these assumptions are formalized in the following the-
orem.

Theorem 1. Let Bs be the s-qubit operator in Eq. (10) with
(α( j), a( j), ε ( j) )-block encodings of A( j)

s1 ⊗ A( j)
s2 ⊗ · · · ⊗ A( j)

sd j

for j ∈ [m], constructed according to Eq. (6) with parame-
ters given by Eq. (11). Assume that all block encodings are
extended to a = max j a( j) ancilla qubits, α = max j α

( j), and
ε1 = max j ε

( j). Then, by Lemma 2, we can construct a unitary
Ub+n that is an (αβ, a + b, αε2 + βε1)-block encoding of Bs.

Theorem 1 follows directly from the combination of
Lemmas 1 and 2. Without loss of generality, the subnormal-
ization factors α( j) � α can be incorporated in the vector y
encoding the coefficients of the linear combination.

The circuit construction can be simplified for operators
with the CP structure instead of the CP-like structure. The
combination of the SWAP registers from Eq. (6) with the select
oracle in Lemma 2 introduces generalized Fredkin gates [25].
Fredkin gates are difficult to realize experimentally [26] and
can be avoided if every Kronecker product of the block encod-
ings in the linear combination uses the same SWAP register. In
this case, the select oracle becomes

Wb+n = (Ib ⊗ Sn)W̃b+n(Ib ⊗ S†
n ), (12)

where

W̃b+n =
m−1∑
j=0

| j〉 〈 j| ⊗ Ũ ( j)
n +

2b−1∑
j=m

| j〉 〈 j| ⊗ In, (13)

with Ũ ( j)
n = U ( j)

n1 ⊗ · · ·U ( j)
nd .

IV. DISCUSSION

Our technique combines block encodings of small matrices
to create block encodings of larger operators that can be rep-
resented as in Eq. (10). This decomposition is closely related
to the CP decomposition of a tensor [21] and allows for more
generality. The sizes of the individual block encoded matrices
can differ in each term of the linear combination, but they
must all have the same size when combined into a Kronecker
product.

Optimization algorithms, such as, for example, alternating
least squares, have been successfully used to compute approx-
imations to CP decompositions in many applications. Even
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TABLE I. Asymptotic CNOT complexity for a quantum circuit that block encodes a PLTCP matrix Bs with s terms in the linear combination
and every term a Kronecker product of s 2×2 matrices. The third column lists the CNOT complexity for an exact synthesis of a controlled single
qubit gate, the fourth column lists the CNOT complexity for an approximate synthesis [30].

Total CNOT complexity

Circuit element Number Gates Exact Approximate

State preparation (Plog2(s), Qlog2(s) ) [28] 23
24 s

SWAP registers [1] 2s SWAP gates 6s
Select oracle s Controlled 2s-qubit �(11s2 log2(s)2) �[11s2 log2(s) log2(1/ε)]

2s-qubit with log2(s) controls s Controlled two-qubit �(11s log2(s)2) �[11s log2(s) log2(1/ε)]
Two-qubit with log2(s) controls [29,30] 11 Controlled one-qubit �(11 log2(s)2) �[(11 log2(s) log2(1/ε))]

One-qubit with log2(s) controls [30] �(log2(s)2) �[log2(s) log2(1/ε)]
Toffoli with log2(s) + 1 controls [30] �[(log2(s) + 1)2] �[(log2(s) + 1) log2(1/ε)]

though exact CP decompositions are NP-hard to compute in
general. The optimization algorithms can be extended to ac-
commodate for the different sizes of block encodings in each
of the terms and could incorporate the flexibility in size of the
terms in their objective. They can be used as such for approxi-
mate quantum circuit synthesis. As NISQ devices suffer from
noise [12], the approximate nature of algorithms for CP-like
decompositions can be exploited to obtain shorter circuits for
less precise decompositions with fewer terms. Under a given
noise level, the error on the approximate CP-like decompo-
sition can be balanced with the error on the individual block
encodings to find a trade-off with short circuit depth.

One of the major challenges with using block encodings is
the introduction of an ancilla register. This removes the con-
straint of strictly unitary approximations and allows for linear
combinations, but at the same time it introduces a probabilistic
nature in the synthesis process and requires that the circuit
is repeatedly executed until success. This makes our strategy
related to the repeat-until-success (RUS) synthesis technique
for single qubit unitaries [16,17]. A RUS circuit is a block
encoding of the desired operator in combination with a set of
recovery operators to recover the input state if a failure state is
measured. In our paper, we do not consider recovery operators
and assume that the computation is repeated if a failure state
is measured.

Another related work is Ref. [27], which proposes ba-
sic linear algebra subroutines for quantum computers. Their
method relies on Hamiltonian simulation of embeddings of
arbitrary matrices and allows to approximate the action of
PLTCP-like matrices using Trotter splitting for simulating
sums and Kronecker products of matrices.

A. CNOT complexity

The asymptotic gate complexity of the resulting quantum
circuit synthesis technique depends on two factors: the num-
ber of terms m in the CP-like decomposition in Eq. (10)
and the gate count of each individual block encoding in
the select oracle. If we assume that m = O[poly(s)], then
b = O[polylog(s)] and quantum circuits with O[poly(s)] gates
for the state-preparation unitaries always exist [28]. Also the
select oracle of Lemma 2 can in this case be implemented with
O[poly(s)] gates.

We call operators that can be expressed as Eq. (10)
PLTCP-like matrices if the linear combination consists of
O[poly(s)] terms, a polylogarithmic number of terms in the
matrix dimension. PLTCP-like matrices can be synthesized
with polylogarithmic gate complexity if each term is effi-
ciently implementable. The precise asymptotic complexity
depends on the size of every block A( j)

si and the number of
gates required for their block encoding.

The CNOT complexity for the simplest case where Bs

is a PLTCP matrix with s terms and where every term is
a Kronecker product of s 2×2 matrices is summarized in
Table I. The CNOT complexity of the select oracle is deter-
mined from the decomposition of two-qubit unitaries [29] and
the synthesis of controlled one-qubit unitaries [30].

For PLTCP-like matrices with more complicated structures
we still maintain a O[poly(s)] CNOT complexity as long as
the gate complexity for the synthesis of the individual block
encodings scales at most with O[poly(s)]. An advantage of
this method is that the synthesis of the O[poly(s)] small block
encoding unitaries requires fewer classical resources than the
synthesis of larger blocks. The strength of the technique lies
in the ability to combine small scale block encodings to build
larger operators.

B. Examples

We stress that unitariness of Bs is not required because
of the embedding as a block encoding and that even if Bs is
unitary, the individual terms in Eq. (10) clearly are not unitary.
One class of PLTCP matrices is the Laplace-like operators
[31],

d∑
j=1

M (1) ⊗ · · · ⊗ M ( j−1) ⊗ L( j) ⊗ M ( j+1) ⊗ · · · ⊗ M (d ),

(14)

and they can directly be encoded from block encodings of the
individual terms. For example, in the Laplace operator itself,
all M ( j) are identities and L( j) = L for j ∈ {1, . . . , d}. In this
case we only need one block encoding of L, which is repeated
d times, to encode the full operator. This is an improvement
over the d2 block encodings that are required in general.

Localized Hamiltonians are another example of PLTCP
operators. The Hamiltonian of a transverse field Ising model
(TFIM) on a one-dimensional chain of s spin-1/2 particles is
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FIG. 4. Results of 1000 simulations of HTFIM with two to ten
spins and h = 2. The boxplots summarize the empirical relative
errors on the block encoding of HTFIM under three different error
scenarios: a 1% error on the Pauli-X and Pauli-Z gates (blue), a
1% error on the state preparation unitaries for LCU (red), and a 1%
error on both the Pauli gates and the LCU unitaries (yellow). The
dotted lines show the theoretical upper bound on the error according
to Theorem 1.

given by

HTFIM = −
s−1∑
i=1

σ (i)
z σ (i+1)

z − h
s∑

i=1

σ (i)
x , (15)

where σx and σz are the Pauli-X and Pauli-Z matrices. Since
this Hamiltonian is a linear combination of 2s − 1 unitaries,
no ancilla qubits are required to encode the 2×2 matrices,
and no SWAP operations are necessary to form the Kronecker
products. The complexity of block encoding HTFIM lies in
forming the linear combination. We have simulated block en-
coding circuits for HTFIM under three different error scenarios:
a 1% error on the σx and σz gates, a 1% error on the state
preparation for the linear combination of unitaries (LCU), and
the combination of both. The results are summarized in Fig. 4
with the theoretical upper bound derived from Theorem 1
denoted by the dotted lines.

We observe that errors on the Pauli gates have a smaller
effect on the accuracy of the block encoding than errors on the
state preparation unitaries. The upper bound slightly overesti-
mates the effect of the errors on the Pauli gates. This happens
because the error is not uniformly distributed over the terms
in the linear combination in Eq. (15). The expected number
of repetitions until success lies between 1.2 and 1.4 for two to
ten spins and is not sensitive to errors.

The Hamiltonian for the spin-1 Heisenberg model is equal
to

HXYZ =
s−1∑
i=1

X (i)X (i+1) + Y (i)Y (i+1) + Z (i)Z (i+1), (16)

where X, Y, and Z are the spin-1 generators of SU(2). These
3×3 matrices can be embedded in 4×4 matrices by zero
padding and block encoded in two signal qubits and one
ancilla qubit. In order to compress the CP rank, we have
tensorized HXYZ to a s-way 9×9 × · · · × 9 array and numer-
ically computed an approximate CP decomposition using the

0 5 10 15 20
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s = 3

s = 4

s = 5

s = 6

FIG. 5. Compression of the CP rank with the TENSOR toolbox
[32] of the Heisenberg isotropic antiferromagnetic Hamiltonian HXYZ

for s = 3, . . . , 6 spins. The CP rank of the exact decomposition
Eq. (16) is circled.

alternating least-squares algorithm from the TENSOR toolbox
[32]. The results for three to six spins are shown in Fig. 5.

We observe that the relative error on the approximation of
the Hamiltonian decreases with increasing CP rank. A stag-
nation occurs at the exact CP rank of the operator, signaling
convergence. If an approximation with a relative error of 1% is
sufficient, a CP rank reduction of 20%–30% can be achieved.
This directly translates to shorter quantum circuits as each
term appears in the select oracle. For example, in the case of
s = 4 it also leads to a reduction in ancilla qubits: The exact
expression is a linear combination of nine terms, requiring
four ancilla qubits for encoding the linear combination, and
this can be compressed to seven terms, or only three ancilla
qubits.

V. CONCLUSIONS

In this paper we showed how block encodings of small
matrices, which are easier to synthesize, can be combined
together to create block encodings of larger operators with
CP-like structure. Under the assumption of O[poly(s)] terms
in the decomposition and small individual block encodings,
this scheme has a polynomial dependence on the number of
signal qubits both for gate complexity and ancilla qubits. We
reviewed three examples of PLTCP matrices, showed that the
CP rank can be compressed if a larger approximation error
is acceptable, and found that the circuits behave well under
errors.

Further research is required to study the class of oper-
ators with PLTCP-like structure and operators that can be
well approximated in this form. The modification of opti-
mization algorithms for CP decompositions [21] to admit
decompositions, such as Eq. (10) is another interesting re-
search direction.
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APPENDIX A: PROOF OF LEMMA 1

Proof. From Definition 1 and the mixed-product property of the Kronecker product (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD), we
obtain

Ãs ⊗ Ãt = (〈0|⊗a ⊗ Is ⊗ 〈0|⊗b ⊗ It )(Un ⊗ Um)(|0〉⊗a ⊗ Is ⊗ |0〉⊗b ⊗ It ). (A1)

The Kronecker product Ãs ⊗ Ãt is encoded in Un ⊗ Um, but not as the leading principal block. We use the property,

SWAP1
2(I1 ⊗ |0〉) = |0〉 ⊗ I1,

to show that Sn+m recovers the correct order by swapping the s signal qubits,

Sn+m(|0〉⊗a ⊗ Is ⊗ |0〉⊗b ⊗ It ) =
s∏

i=1

SWAPa+i
a+b+i(|0〉⊗a ⊗ Is ⊗ |0〉⊗b ⊗ It ),

=
s−1∏
i=1

SWAPa+i
a+b+iSWAPa+s

a+b+s(|0〉⊗a ⊗ Is ⊗ |0〉⊗b ⊗ It ),

=
s−1∏
i=1

SWAPa+i
a+b+i(|0〉⊗a ⊗ Is−1 ⊗ |0〉⊗b ⊗ I1 ⊗ It ),

= · · ·
= |0〉⊗a ⊗ |0〉⊗b ⊗ Is ⊗ It .

Taking the Hermitian conjugate yields

(〈0|⊗a ⊗ Is ⊗ 〈0|⊗b ⊗ It )S
†
n+m = 〈0|⊗a ⊗ 〈0|⊗b ⊗ Is ⊗ It .

Combining this with Eq. (A1) shows

Ãs ⊗ Ãt = (〈0|⊗a ⊗ Is ⊗ 〈0|⊗b ⊗ It )S
†
n+mSn+m(Un ⊗ Um)S†

n+mSn+m(|0〉⊗a ⊗ Is ⊗ |0〉⊗b ⊗ It ),

= (〈0|⊗a ⊗ 〈0|⊗b ⊗ Is ⊗ It )Sn+m(Un ⊗ Um)S†
n+m(|0〉⊗a ⊗ |0〉⊗b ⊗ Is ⊗ It ),

such that (5) has Ãs ⊗ Ãt as the principal leading block. The subnormalization and approximation error of Ãs ⊗ Ãt satisfy

‖As ⊗ At − αβÃs ⊗ Ãt‖2

� ‖(αÃs + ε1Is) ⊗ (βÃt + ε2It ) − αÃs ⊗ βÃt‖2,

= ‖αÃs ⊗ ε2It + ε1Is ⊗ βÃt + ε1Is ⊗ ε2It‖2,

� αε2‖Ãs‖2 + βε2‖Ãt‖2 + ε1ε2,

� αε2 + βε1 + ε1ε2,

where we used that ‖As‖2 � α‖Ãs‖2 + ε1 and ‖Ãs‖2 � 1 and analogous results for Ãt . This completes the proof. �

APPENDIX B: PROOF OF LEMMA 2

Proof. We have that the leading s-qubit block of Ub+n is given by

B̃s = (〈0|⊗b ⊗ 〈0|⊗a ⊗ Is)Ub+n(|0〉⊗b ⊗ |0〉⊗a ⊗ Is),

= (〈0|⊗b ⊗ 〈0|⊗a ⊗ Is)(P†
b ⊗ Ia ⊗ Is)Wb+n(Qb ⊗ Ia ⊗ Is)(|0〉⊗b ⊗ |0〉⊗a ⊗ Is),

= (〈0|⊗b P†
b ⊗ 〈0|⊗a ⊗ Is)Wb+n(Qb |0〉⊗b ⊗ |0〉⊗a ⊗ Is),

= (〈p| ⊗ 〈0|⊗a ⊗ Is)Wb+n(|q〉 ⊗ |0〉⊗a ⊗ Is).

Plugging in the expression for the select oracle Eq. (8), this yields

B̃s =
m−1∑
j=0

〈p| j〉 〈 j|q〉 ⊗ (〈0|⊗a ⊗ Is)U ( j)
n (|0〉⊗a ⊗ Is) +

2b−1∑
j=m

〈p| j〉 〈 j|q〉 ⊗ 〈0|⊗a |0〉⊗a ⊗ Is,

=
m−1∑
j=0

p∗
jq j Ã

( j)
s +

2b−1∑
j=m

p∗
jq jIs.
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By Definitions 1 and 2, we get that

‖Bs − αβB̃s‖2 =
∥∥∥∥∥∥

m−1∑
j=0

y jA
( j)
s − αβ

m−1∑
j=0

p∗
jq j Ã

( j)
s − αβ

2b−1∑
j=m

p∗
jq jIs

∥∥∥∥∥∥
2

,

=
∥∥∥∥∥∥

m−1∑
j=0

y jA
( j)
s − αβp∗

jq j Ã
( j)
s − α

2b−1∑
j=m

βp∗
jq jIs

∥∥∥∥∥∥
2

,

� αε1 +
∥∥∥∥∥

m−1∑
j=0

y j
(
A( j)

s − αÃ( j)
s

)∥∥∥∥∥
2

+ α

∥∥∥∥∥∥
2b−1∑
j=m

y jIs

∥∥∥∥∥∥
2

,

� αε1 + βε2.

The penultimate inequality approximates all βp∗
jq j terms by y j in the two sums. The error of each individual approximation

is bounded by ε1 such that the total error is bounded from above by αε1 as ‖Ã( j)
s ‖2 � 1 and ‖Is‖2 = 1. The last term in the

penultimate line is equal to zero by Definition 2. The final equality directly follows from the block encoding property and
‖y‖1 � β. �
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