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Enhanced noise resilience of the surface–Gottesman-Kitaev-Preskill code via designed bias
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We study the code obtained by concatenating the standard single-mode Gottesman-Kitaev-Preskill (GKP)
code with the surface code. We show that the noise tolerance of this surface–GKP code with respect to (Gaussian)
displacement errors improves when a single-mode squeezing unitary is applied to each mode, assuming that
the identification of quadratures with logical Pauli operators is suitably modified. We observe noise-tolerance
thresholds of up to σ ≈ 0.58 shift-error standard deviation when the surface code is decoded without using
GKP syndrome information. In contrast, prior results by K. Fukui, A. Tomita, A. Okamoto, and K. Fujii,
High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction, Phys. Rev. X
8, 021054 (2018) and C. Vuillot, H. Asasi, Y. Wang, L. P. Pryadko, and B. M. Terhal, Quantum error correction
with the toric Gottesman-Kitaev-Preskill code, Phys. Rev. A 99, 032344 (2019) report a threshold between
σ ≈ 0.54 and σ ≈ 0.55 for the standard (toric, respectively) surface–GKP code. The modified surface–GKP
code effectively renders the mode-level physical noise asymmetric, biasing the logical-level noise on the
GKP qubits. The code can thus benefit from the resilience of the surface code against biased noise. We use
the approximate maximum likelihood decoding algorithm of S. Bravyi, M. Suchara, and A. Vargo, Efficient
algorithms for maximum likelihood decoding in the surface code, Phys. Rev. A 90, 032326 (2014) to obtain our
threshold estimates. Throughout, we consider an idealized scenario where measurements are noiseless and GKP
states are ideal. Our paper demonstrates that Gaussian encodings of individual modes can enhance concatenated
codes.
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I. INTRODUCTION

We study a modified surface–Gottesman-Kitaev-Preskill
(surface–GKP) code subject to classical isotropic Gaussian
displacement noise. The modification includes an additional
encoding of each underlying bosonic mode by means of a
single-mode Gaussian unitary, as well as an adaptation of
the concatenation procedure of the two codes. Specifically,
we study the case where the Gaussian unitary is given by
single-mode squeezing—this is not to be confused with the
term squeezing in the context of nonideal, normalizable GKP
states. The squeezing effectively transforms the error from
isotropic to anisotropic displacement noise. At the level of the
logical GKP qubits, the anisotropic displacement noise mani-
fests itself as biased Pauli noise. To exploit this asymmetry, we
concatenate with a surface code in such a way that the primary
direction of the asymmetric noise is aligned with the preferred
direction of biased Pauli noise for surface code decoding. We
show numerically that the bias designed this way causes an
improvement of the noise tolerance threshold of this con-
catenated asymmetric surface–GKP code. Our result shows
that—contrary to a common belief—encoding bosonic modes
into other bosonic modes by means of a Gaussian unitary can
be beneficial—namely, when considering concatenated codes.

Without concatenation, Gaussian encodings are indeed not
beneficial. At the level of a single bosonic mode, the futility of
using a Gaussian unitary as an encoding map can be illustrated
using the random displacement channel (also called classical
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displacement noise channel),

N f (ρ) =
∫
R2

f (ν)D(ν)ρD(ν)†d2ν, (1)

where f is a probability density function on the phase space
and D(ν) is the (Weyl) displacement operator. Assume that
we apply a single-mode squeezing unitary U = US−1

r
[cf.

Eq. (24) below] with squeezing parameter r > 1 before the
action of the noise N f . The resulting channel can be written
as N f (UρU †) = UN f̃ (ρ)U † where N f̃ is another random
displacement channel with f̃ (ν) = f (diag(r1/2, r−1/2)ν) a
squeezed version of the distribution f . For example, if f ≡
fσ 2 is a centered Gaussian with covariance matrix σ 2I2 asso-
ciated with an isotropic Gaussian displacement channel

N f
σ2 (ρ) = 1

2πσ 2

∫
R2

e− ‖ν‖2

2σ2 D(ν)ρD(ν)†d2ν, (2)

‖ν‖2 = ν · ν = ν2
1 + ν2

2 , then f̃ is a centered Gaussian with
covariance matrix diag(r−1σ 2, rσ 2). In particular, the strength
of the “worst noise”—as expressed by the maximal singular
value of the covariance matrix of the noise—cannot be low-
ered by the introduction of the encoding unitary U . This is a
fundamental limitation on the way noise can be reshaped.

This kind of obstacle to error correction by Gaussian op-
erations (encoding) maps was formalized more generally in
Ref. [1]: It was argued that Gaussian one-mode states cannot
be protected by Gaussian operations (even against Gaussian
errors). Such results fall in line with a number of related no-go
results concerning e.g., entanglement distillation and entan-
glement swapping [2–4] by means of Gaussian operations.
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A related recent no-go result [5], specifically dealing with
Gaussian CV-into-CV encodings, concerns k bosonic modes
encoded into n � k modes by means of a Gaussian unitary:
Consider the problem of recovering from classical isotropic
Gaussian displacement noise by means of syndrome measure-
ments of linear combinations of the quadratures followed by
maximum likelihood decoding. Here the noise is described
by a random variable with centered normal distribution Z ∼
N(0, σ 2I2n) on the phase space R2n. The authors of Ref. [5]
show that the resulting effective logical noise is displacement
noise with a centered normal distribution, whose covariance
matrix has eigenvalues {σ ( j)

P , σ
( j)
Q }k

j=1 satisfying σ
( j)
P σ

( j)
Q =

σ 2 for every j = 1, . . . , k. In other words, the worst-case
noise variance (per quadrature) does not improve even at the
logical (encoded) level when using a Gaussian encoding map.
Overall, these results appear to suggest that readily available
Gaussian unitaries may not be used to boost noise tolerance
levels of bosonic error-correcting codes.

We show that when bosonic degrees of freedom are used
to encode logical qubits by means of concatenated codes, this
apparent no-go theorem no longer applies. Indeed, we find that
the introduction of additional single-mode Gaussian squeez-
ing unitaries in surface–GKP codes increases fault-tolerance
error thresholds, implying that more noise can be tolerated.
Here the error-correction threshold of an infinite code family
of bosonic codes is the maximum physical (single-mode) dis-
placement noise standard deviation σ (for a centered normal
distribution) such that the logical failure rate can be made
arbitrarily small by using sufficiently large code sizes.

A scenario where additional Gaussian unitaries improve a
(unconcatenated) GKP code has been discussed previously
in the literature: Recall that GKP codes are constructed
algebraically from certain lattices in R2n [6]. The chosen
lattice determines the code space dimension K as well as
the code’s robustness against displacements. In particular, the
size (norm) of the smallest uncorrectable shift depends on the
lattice: Shifts inside the Voronoi cell of the dual lattice are cor-
rectable. As observed early on [6], this implies, for example,
that in two dimensions the GKP code based on a hexagonal
lattice beats the “standard” square lattice GKP code in this
respect, being able to tolerate larger displacements. (This is
related to the fact that the hexagonal lattice permits the densest
sphere packing in R2, see Ref. [7].) More detailed estimates
of the difference between hexagonal and square lattice GKP
codes were obtained in Ref. [8] in terms of estimates of the
logical error probability for a single encoded qubit in the
presence of pure-loss noise. Furthermore, the characterization
of correctable displacements in terms of Voronoi cells has also
been used to derive bounds on the (quantum and classical)
capacity of the channel (1), see Refs. [6] and [9]. Importantly,
the hexagonal lattice GKP code is related to the square lat-
tice GKP code by a Gaussian unitary (see Sec. III E). Thus
the square lattice GKP code can be enhanced by a simple
application of a Gaussian unitary. This improvement may
appear minor for a single mode (e.g., it changes a constant
prefactor from π/4 to π/(2

√
3) in the logical error probability

considered in Ref. [8]). However, as we argue here, similar
modifications lead to dramatic improvements in the setting of
concatenated codes.

The underlying mechanism which improves fault-tolerance
properties in the setting of concatenated codes is not simply

a matter of increasing the volume of a Voronoi cell. Instead,
the introduction of an additional encoding map has the effect
of artificially shaping the logical-level noise, yielding biased
qubit noise. If the GKP code is appropriately concatenated
with the surface code, this leads to improved fault-tolerance
properties due to the fact that known decoders for the surface
code can benefit from a noise bias. The same mechanism
therefore applies to other codes resilient to biased noise. In
this sense, our work on surface–GKP codes is merely a case
study illustrating this principle.

In more detail, we seek to design optimized codes protect-
ing against single-mode i.i.d. (independently and identically
distributed) displacement noise of the form (2) on each mode.
Starting from a standard square lattice GKP code, we apply
a single-mode squeezing unitary to every mode yielding a
rectangular, i.e., asymmetric lattice GKP code. As already
mentioned, applying the one-mode squeezing operation with
parameter r > 1 [see Eq. (24) below], we are effectively
dealing with anisotropic noise N fZr

, where Zr ∼ N(0, �r ) is
an anisotropically distributed Gaussian random variable with
covariance matrix

�r =
(

σ 2/r 0
0 rσ 2

)
=: diag

(
σ̃ 2

Q, σ̃ 2
P

)
. (3)

In other words, this is equivalent to error correction with
square lattice GKP codes subject to asymmetric noise (for
r > 1): the noise variance σ 2

Q in the Q quadrature is reduced,
while the variance σ 2

P in the P-quadrature is increased. After
decoding the GKP qubit, this results in biased Pauli noise: a
fact that we can exploit when considering surface–GKP codes.
For this to work, the concatenation of codes needs to be done
in such a way as to make the primary direction of the noise
asymmetry align suitably with the surface code, i.e., those
(Pauli) axes where the noise bias is favorable for the surface
code decoder.

The fact that surface codes perform well under certain
biased noise has been established recently [18,34]; we briefly
review these results in Sec. IV A. Our main contribution is
a detailed discussion of how the surface–GKP code needs to
be modified to exploit this property of the surface code. This
is detailed in Sec. IV B. We also provide numerical evidence
showing that this strategy indeed provides higher error thresh-
olds (see Sec. V).

A. Prior work

Among strategies to go beyond the no-go results on
Gaussian encoding maps is Ref. [10]. Here Noh et al.
show that Gaussian CV-into-CV encodings are meaningful
if combined with non-Gaussian resources. By using GKP
states and modular quadrature measurements, they define
new families of non-Gaussian CV-into-CV encoding maps
derived from (qubit) stabilizer codes. Here we take a different
approach and consider DV-into-CV encoding maps obtained
by concatenating surface codes with modified (asymmetric)
square lattice GKP codes.

We note that the codes we study here are closely related
to the surface–GKP and toric-GKP codes previously inves-
tigated in pioneering work by Fukui et al. [11] and Vuillot
et al. [5], respectively, and further analyzed by Noh and
Chamberland [12]. These authors study the concatenation of
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the GKP code with the surface (toric) code, providing error
threshold estimates. They consider a noise model which is
i.i.d. Gaussian noise with isotropic distribution N(0, σ 2I2) on
every mode. In Refs. [5] and [12], additional noise in the
syndrome measurements respectively full circuit-level noise
is considered. Numerically, threshold estimates are obtained
in Refs. [5,11,12] by level-by-level concatenated decoding:
Modular position and momentum measurements are per-
formed to extract GKP syndrome information for every GKP
qubit. By Bayesian update, an effective Pauli-error distribu-
tion is computed, either conditioned on the particular GKP
syndrome information (meaning that this prior GKP informa-
tion is taken into account when decoding) or averaged over the
GKP measurement outcomes. Subsequently, Edmond’s maxi-
mum matching algorithm [13] (in the following referred to as
the minimum weight matching decoder) is applied to decode
the surface code given this effective Pauli noise: For the case
where GKP information is exploited, the latter is heuristically
incorporated into a weighting of the edges. Additional (heuris-
tic) decoders are studied in Ref. [5] in the case where the
GKP syndrome information (bosonic measurements) is noisy.
Furthermore, the threshold error probability is related to a
phase transition in a classical statistical model in this case.

Closely related to our work are approaches to exploiting
asymmetry in (Gaussian) displacement noise by means of
code concatenation, e.g., of cat codes with the repetition code.
An additional key ingredient we use is the behavior of the
surface code with respect to biased Pauli noise. To highlight
the relationship to our work, we briefly discuss these prior
works in Sec. IV A after introducing some more terminology.

B. Outline

We begin by presenting some background material to fix
notation and set the stage. In Sec. II, we review the surface
code, maximum likelihood decoding, and the Bravyi-Suchara-
Vargo (BSV) decoder. In Sec, III, we discuss different
versions of the GKP code as well as error recovery procedures
with and without side information.

We then present our main findings: In Sec. IV, we in-
troduce the (modified) surface— code and show how the
introduction of single-mode Gaussian unitaries effectively
leads to biased Pauli noise. In Sec. V, we present our numer-
ical results for the noise tolerance threshold using modified
surface–GKP codes. We conclude in Sec. VI.

II. THE SURFACE CODE

In this section, we review surface codes [14,15]. These are
CSS (stabilizer) codes with geometrically local generators in
two dimensions, encoding one logical qubit into n physical
qubits. Subsequently, we discuss the decoding problem for
these codes. In particular, we review the definition of maxi-
mum likelihood decoding for general stabilizer qubit codes.
We then discuss the BSV decoder (by Bravyi et al. [16]),
which approximates the maximum likelihood decoder for the
surface code.

A. Definition of the surface code

Consider a (L − 1) × (L − 1) square lattice, i.e., a rectan-
gular grid with L − 1 edges on each side. If we first identify

its vertical (left and right) boundaries, yielding a cylinder, and
subsequently perform a vertical cut located in between any
two vertical lines of the lattice, the result (mapped back to
the plane) is the grid on which a L × L surface code with
“smooth” top and bottom boundaries and “rough” left and
right boundaries is defined, cf. Fig. 1(a) below. These are
the only surface codes we consider here for simplicity. Note,
however, that a r × s surface code for arbitrary r, s � 1 can
be defined similarly, and also the boundary conditions may be
chosen differently, see Ref. [14] as well as Ref. [17] for the
so-called rotated surface codes.

The surface code is now defined as follows: to every edge
of the grid a qubit is attached, yielding a total number of
n = L2 + (L − 1)2 physical qubits. Denote by v, e, and p
a vertex, edge, and plaquette of the grid, respectively. The
(co)boundaries δv, ∂ p consist of the edges incident on v

and the edges bounding p, respectively. By the usual con-
vention, the stabilizer generators of the surface code are on
the one hand given by tensor products Av := ∏

e∈δv Xe of
Pauli-X operators acting on the edges incident to a vertex
v, and on the other hand by tensor products Bp := ∏

e∈∂ p Ze

of Pauli-Z operators acting on the edges surrounding a pla-
quette p. Denote by V the set of vertices, and by P the set
of plaquettes of the grid. Since |V| = |P| = L(L − 1), we
have 2L(L − 1) independent stabilizer generators, yielding
k = n − 2L(L − 1) = 1 encoded qubits. The centralizer of the
stabilizer group S := 〈Av, Bp〉 with respect to the n-qubit Pauli
group Pn, where v, p run over the sets V, P, is given by

C(S ) := {P ∈ Pn | PS = SP for all S ∈ S}. (4)

We can define logical Pauli-X (Pauli-Z) operators, denoted by
X (Z), as the product of Pauli-X (Pauli-Z) operators along
the left (top) boundary of the lattice, cf. Fig. 1(a). Then
X , Z ∈ C(S ) \ S , and X Z = −Z X , as required. Moreover,
the weight of both X and Z is L. These are minimal-weight
logical operators, i.e., the code distance is d = L.

B. Error recovery for the surface code

Recall that recovery from errors (i.e., after the action of a
noise channel) in a stabilizer code proceeds by measurement
of stabilizer operators (cf. Sec. IIIF 1) and subsequent appli-
cation of a recovery map (mapping back to the code space).

A noise channel in this context is a CPTP map
N : D((C2)⊗n) → D((C2)⊗n) on the density operators
D((C2)⊗n) on the Hilbert space (C2)⊗n. Here we consider
probabilistic Pauli noise, i.e., noise channels of the form

Nπ (ρ) =
∑

E∈Pn

π (E )EρE†, (5)

with π a probability distribution on the Pauli group Pn. Note
that in our applications later on, we (predominantly) con-
sider i.i.d. channels of the form Npn (ρ) = N⊗n

p=(pI ,pX ,pY ,pZ )(ρ),
where the single-qubit noise channel Np represents random
Pauli noise [see Eq. (47) below]. We also consider chan-
nels of the form N∏n

j=1 p( j) = ⊗n
j=1Np( j) where each qubit j ∈

{1, . . . , n} experiences random Pauli noise given by a distribu-
tion p( j) = (p( j)

I , p( j)
X , p( j)

Y , p( j)
Z ). However, such a restriction

does not need to be imposed at this point.
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FIG. 1. Tensor network associated with the BSV decoder. Fig-
ure 1(a) shows the surface code with d = 4, logical operators X
and Z and two stabilizer generators. Figure 1(b) gives the tensor
network whose contraction gives the value π (ES ) of a coset deter-
mined by a Pauli operator E = ⊗( j,k)Ej,k acting with the single-qubit
Pauli operator Ej,k on the qubit at location ( j, k). Evaluating this
scalar for E ∈ {Es, EsX , EsY , EsZ}, where Es is a representative er-
ror giving syndrome s, allows us to perform maximum likelihood
decoding according to Eq. (7). Local tensors are defined as shown in
Fig. 1(c). (Tensors near the boundaries are defined similarly.) A priori
Pauli-error probabilities for a qubit located at ( j, k) are denoted
π j,k (Q) = pQ, where pQ is the a priori probability of a Pauli error
Q ∈ {I, X,Y, Z}. (a) Surface code with distance d = 4. (b) Tensor
network for coset probability π (ES). (c) Bulk tensors; the first two
associated with a qubit at (j, k).

The stabilizers we measure in the surface code are the
(commuting) vertex- and plaquette-type stabilizers {Av}v∈V,
{Bp}p∈P. This provides a syndrome (measurement outcome)
s = ({sv}v∈V, {sp}p∈P) ∈ {0, 1}|V|+|P| and simultaneously
projects the state into the (common) eigenspaces of each Av

associated with eigenvalue (−1)sv , and the eigenspaces of
each Bp associated with eigenvalue (−1)sp . A syndrome s is
observed with probability

p(s) : = tr[	(s)Nqn (ρ)], where

	(s) =
∏
p∈P

1

2
[I + (−1)spBp]

∏
v∈V

1

2
[I + (−1)sv Av],

and the postmeasurement state is given by
p(s)−1	(s)Nqn (ρ)	(s). A recovery procedure mapping
the postmeasurement state back to the code space is described
by a unitary correction operation C(s) depending on the
syndrome s. Choosing a recovery procedure (sometimes
referred to as a decoder) thus amounts to the choice of a
function s �→ C(s) associating a correction operation to a
given syndrome.

The success probability of a given recovery strategy can be
analyzed by considering a single n-qubit Pauli error E ∈ Pn.
The above recovery procedure [using Pauli corrections ] suc-
cessfully recovers from an error E if the following conditions
are satisfied:

(i) First, the coset C(s)C(S ) of the chosen correction oper-
ation C(s) coincides with the coset EC(S ) of the actual error
E . Here C(S ) is the centralizer of S in the Pauli group, see (4).
This means that C(s) causes the same syndrome as E , that is,
C(s) maps the corrupted state back to the code space.

(ii) Second, the chosen correction operation C(s) belongs
to the same coset of S inside EC(S ). More precisely, for
every syndrome s, fix a “representative error” Es which causes
syndrome s. Then the coset EsC(S ) can be partitioned into

EsC(S ) = EsS ∪ EsXS ∪ EsYS ∪ EsZS, (6)

where all elements in each of the four subsets have the same
logical action. Decoding is successful if for the syndrome s
caused by E [that is, EC(S ) = EsC(S )], E and the correction
C(s) belong to the same subset on the right hand side of (6).

1. Maximum likelihood decoding

Given the available syndrome information s, the optimal
choice of recovery map C(s) is determined by the maximum
likelihood decoding strategy: one sets

CML(s) := arg max
C∈{EsS,EsXS,EsYS,EsZS}

π (C), (7)

i.e., finds the coset with maximal weight with respect to the
error distribution π [cf. (5)], and subsequently selects a cor-
rection CML(s) ∈ CML(s) belonging to this coset (arbitrarily).
This guarantees that the correction satisfies (i) and simul-
taneously maximizes the probability that it obeys (ii). The
resulting (averaged) success probability is then given by

Psuccess =
∑

s

π (CML(s)).
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2. The Bravyi-Suchara-Vargo (BSV) decoder

While the maximum likelihood decoder is optimal from
the point of view of decoding error probability, the determi-
nation of the coset (7) is nontrivial (even for simple i.i.d. error
models) as computing the coset probabilities involves sums
over sets of exponential size. In other words, the maximum
likelihood decoder cannot be realized efficiently.

To overcome this obstacle, Bravyi et al. [16] have proposed
a decoding strategy C̃χ

ML(s) which approximates the maximum
likelihood decoder CML(s). The decoding strategy depends on
a parameter χ ∈ N (the bond dimension) and becomes exact,
i.e., maximum likelihood decoding, in the limit χ → ∞. In
contrast to the maximum likelihood decoder, it is efficiently
computable (for small, i.e., typically constant χ ): the com-
putation of C̃χ

ML(s) from s involves O(nχ3) basic arithmetic
operations. The proposed decoder generally applies to “local”
stochastic error models for 2D stabilizer codes with local gen-
erators, see, e.g., the Appendix of Ref. [18] for an application
to 2D color codes.

To briefly summarize the construction of the BSV decoder,
consider the case of Pauli noise where the distribution π

over Pauli errors factorizes into a product of (not necessar-
ily identical but independent) distributions over single-qubit
errors. The key insight of Ref. [16] is that coset probabilities
π (ES ) can then be expressed as contractions of planar 2D
tensor networks, see Fig. 1. Such tensor networks are known
to be efficiently (approximately) contractible by contracting
along a single axis, effectively rendering the problem one-
dimensional. In more detail, a coset probability can be written
as

π (ES ) = 〈�1|M1 · · · M2d−2|�2〉,
where |�1〉, |�2〉 ∈ (C2)⊗2d−1 are matrix product states
(MPSs) with bond dimension 2, and each Mj ∈ B((C2)⊗2d−1)
is a certain matrix product operator (MPO) of bond dimension
2. The idea then is to evaluate the right-hand side stepwise by
applying the MPOs in succession, and eventually computing
the inner product of two MPS. However, successive multi-
plication of an MPS with constant-bond dimension MPOs
generically leads to an MPS with exponential bond dimen-
sion (in the number of applications of MPOs), rendering an
exact evaluation inefficient. To avoid this overhead, the BSV
decoder replaces intermediate MPS obtained during the com-
putations by MPS approximations having bond dimension
bounded by χ . The latter step involves a standard truncation
procedure for MPS by Murg et al. [19], which singles out the
largest singular values across each cut.

In Ref. [16], this decoder is compared to an exact (ef-
ficiently realized) maximum likelihood decoder in the case
of pure X noise, showing that moderate values of χ suffice
to achieve good accuracy. It was then used to show that the
minimum weight matching decoder is typically suboptimal.
The BSV decoder was subsequently applied in Refs. [18,34]
to study the performance of surface codes under biased noise.

III. GOTTESMAN-KITAEV-PRESKILL (GKP) CODES

In this section, we review the pertinent facts about GKP
codes [6]. We begin with a general discussion of bosonic

quantum systems in Sec. III A. In Sec. III B, we discuss dis-
placement noise, a central noise model of interest in bosonic
systems. We then review the general definition of a GKP code
associated with a symplectically integral lattice (Sec. III C)
before specializing to square lattice (Sec. III D) and
asymmetric (Sec. III E) GKP codes. Finally, in Sec. III F, we
discuss the decoding problem for GKP codes.

A. Continuous-variable (CV) quantum systems

For concreteness, we focus on a single bosonic mode (n =
1); the generalization to n > 1 modes is straightforward. A
pure state of a single mode, i.e., of a particle on a line, is
given by a (equivalence class with respect to a global phase
of a) tempered distribution ψ ∈ S ′(R). We call the state nor-
malizable if ψ ∈ L2(R).

Let Q, P denote the position and momentum operators,
also called quadratures, acting on S ′(R) and satisfying the
canonical commutation relation [20] [Q, P] = iI . We collect
them in a vector R := (Q P)T such that the commutation
relation takes the form [Rj, Rk] = iJj,kI . Here the matrix

J =
( 0 1
−1 0

)

is associated with the symplectic form (ξ, η) �→ ξT Jη on
R2 × R2.

For ξ = (ξ1 ξ2)T ∈ R2, the displacement operator D(ξ )
is defined as

D(ξ ) := e−iξT JR = ei(ξ2Q−ξ1P). (8)

These operators yield a representation (ξ, α) �→ e−iαD(ξ ) of
the Weyl-Heisenberg group on S ′(R) which restricts to a
unitary irreducible representation on L2(R). That is, we have

e−iαD(ξ )e−iβD(ζ ) = e−i(α+β+ 1
2 ξT Jζ )D(ξ + ζ ), (9)

for all α, β ∈ R, and ξ, ζ ∈ R2. We note that the opera-
tor D(ξ ) translates—by conjugation—the vector (Q P)T of
mode operators by the amount ξ ∈ R2 in phase space.

The group Sp(2,R) of symplectic linear maps on R2, i.e.,
linear maps preserving the symplectic form, is

Sp(2,R) := {S ∈ Mat2×2(R) | ST JS = J}.
The metaplectic representation S �→ US associates a Gaussian
unitary US on S ′(R) to every S ∈ Sp(2,R). The action of
US (by conjugation) on the quadrature operators is linear and
given by S, i.e.,

USRjU
†
S =

2∑
k=1

S j,kRk, j = 1, 2.

In particular, US preserves canonical commutation relations.
One consequence is that for arbitrary S ∈ Sp(2,R) and ξ ∈
R2, we have

D(Sξ ) = US−1 D(ξ )U †
S−1 . (10)

In other words, D(Sξ ) is unitarily equivalent to D(ξ ) with the
corresponding unitary conjugation only depending on S but
not on ξ .
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B. Displacement noise in bosonic systems

GKP codes (named after Ref. [6] by Gottesman, Preskill,
and Kitaev) isometrically embed a finite-dimensional quan-
tum system CK into L2(R) (and, more generally, L2(R)⊗n).
Although their performance under various forms of noise has
been studied in the original paper [6] and a number of sub-
sequent papers [21,22], the codes were originally designed
primarily to protect against displacement noise, i.e., noise
channels of the form

N fZ (ρ) =
∫
R2

fZ (ν)D(ν)ρD(ν)†d2ν. (11)

Here fZ : R2 → [0, 1] is a probability density function asso-
ciated with a random variable Z on the phase space R2 and
D(ν) is the displacement operator.

Of specific interest is the case where Z ∼ N(0, �), i.e.,
is described by a centered normal distribution with (positive
semidefinite) covariance matrix �, hence

fZ (ν) = (2π )−1 det(�)−1/2e− 1
2 νT �−1ν .

In the isotropic case, � = σ 2I2, the channel (11) becomes
the isotropic Gaussian displacement channel (2). The single-
parameter family of noise channels which results by varying
σ provides a natural test bed for assessing the noise resilience
of GKP and other codes (see, e.g., Ref. [9]), as well as related
capacity questions. In this context, a recent breakthrough [23]
has confirmed a long-standing conjecture introduced in the
seminal work [24].

C. The GKP code GKP(L)

GKP codes are constructed algebraically from certain lat-
tices L ⊂ R2n. We first restrict our attention to n = 1 which
is sufficient for our purposes, i.e., we consider GKP codes
for a single mode encoding a K-dimensional system. We then
further restrict to K = 2, i.e., codes encoding a single qubit
into a single-mode bosonic system [25]. We note that the
construction discussed here was previously known [26,27]
and rigorously discussed by Bouzouina and De Bièvre [28] in
1996. Its potential in terms of quantum error correcting codes
was, however, only recognized by GKP in 2001 [6].

1. Definition of the code space

Let us review the construction of a code space GKP(L) ⊂
S ′ based on a lattice L ⊂ R2 with certain properties. Specifi-
cally, L needs to be symplectically integral: There are vectors
ξ1, ξ2 ∈ R2 and K ∈ N such that

ξ1
T Jξ2 = ±2πK, (12)

and L := {n1ξ1 + n2ξ2 | n1, n2 ∈ Z} is the (integer) span of
{ξ1, ξ2}. Given such a lattice L, the space GKP(L) is defined
as the (simultaneous) +1 eigenspace of all (pairwise com-
muting) operators D(ξ ), ξ ∈ L. [Condition (12) implies that
ξT Jξ ′ ∈ 2πZ for all ξ, ξ ′ ∈ L, which, because of (9), ensures
that that these operators commute.] That is, the stabilizer
group S of GKP(L) is given by

S = {D(ξ ) | ξ ∈ L} = 〈D(ξ1), D(ξ2)〉.

The space GKP(L) can be interpreted as the Hilbert space of
a quantum system with phase space R2/L: states belonging to
GKP(L) are invariant under lattice transformations realized
by displacements D(ξ ), ξ ∈ L.

We next discuss the effect of various (error) operators on
the code space GKP(L). Because the displacements D(ζ ),
ζ ∈ R2 form an operator basis, we restrict our attention to
displacements (similar to the way qubit stabilizer codes are
analyzed in terms of Pauli operators). In other words, we
are interested in the effect of an arbitrary displacement D(ζ ),
ζ ∈ R2. A first question is which of these operators preserve
the subspace GKP(L): Ignoring irrelevant global phases, we
are interested in the centralizer of the stabilizer group in the
Heisenberg-Weyl group, i.e., the set

C(S ) := {D(ζ ) | ζ ∈ R2 such that

D(ζ )S = SD(ζ ) for all S ∈ S}.
The set of these operators is characterized by the set of vectors
ζ ∈ R2 satisfying

ζ T Jξ ∈ 2πZ for all ξ ∈ L,

cf. (9). These vectors form a lattice on their own: the (sym-
plectically) dual lattice L⊥. Because of (12), we can choose
its generating vectors ξ⊥

1 , ξ⊥
2 ∈ R2 such that

ξ⊥
i

T
Jξ j = 2πδi j, i, j ∈ {1, 2}. (13)

Thus the centralizer of the stabilizer group is given by

C(S ) = {D(ζ ) | ζ ∈ L⊥} = 〈D(ξ⊥
1 ), D(ξ⊥

2 )〉.
Operators belonging to C(S ) are logical, i.e., preserve the code
space GKP(L), but may or may not act nontrivially on it.
Elements D(ζ ), D(ζ ′) ∈ C(S ) have identical logical action if
and only if they differ by multiplication by an element in S ,
that is, if and only if ζ − ζ ′ ∈ L. Thus

{D(ζ ) | [ζ ] ∈ L⊥/L} (14)

is a complete family of inequivalent logical errors indexed by
the set L⊥/L = {[ζ ] | ζ ∈ L⊥} of cosets of L, where [ζ ] :=
ζ + L is a coset with representative ζ ∈ L⊥.

2. Voronoi cells and lattice modulo operation

As discussed below, logical error probabilities in the GKP
error recovery process heavily depend on properties of the
underlying lattices L and L⊥—especially the Voronoi cell of
L⊥. Let us briefly define the latter set for an arbitrary lattice
L ⊂ R2. For x ∈ R2, the closest lattice point in L to x is

QL(x) := arg min
ξ∈L

‖x − ξ‖.

Here the Euclidean distance is used and we assume that ties
are broken in a systematic manner (e.g., such that QL(x)i �
xi, i = 1, 2). The Voronoi cell V of L is the set of points closest
to the origin 0 := (0 0)T , i.e.,

V := {x ∈ R2 | QL(x) = 0}.
For later use, we also define a lattice modulo operation by

( · (mod )L) : R2 → V
x �→ x (mod L) := x − QL(x).
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D. Square lattice GKP codes

In the following two sections, we list several examples of
lattices giving rise to GKP codes. We begin with a discussion
of the standard square lattice GKP code. We also refer to this
as the symmetric GKP code code below.

1. Square lattice GKP codes of dimension K

Let K ∈ N be arbitrary. Then the vectors

ξ1 = (
√

2πK 0)T ,

ξ2 = (0
√

2πK )T ,
(15)

satisfy the condition (12) and span a symplectically integral
lattice L. Its dual lattice L⊥ is spanned by the vectors

ξ⊥
1 = (0 −

√
2π/K )T ,

ξ⊥
2 = (

√
2π/K 0)T . (16)

In particular, the set of cosets L⊥/L associated with logical
errors [cf. (14)] is given by

L⊥/L = {[n1ξ
⊥
1 + n2ξ

⊥
2 ] |n1 ∈ {0, . . . , K − 1},

n2 ∈ {0, . . . , K − 1}}. (17)

A detailed description of the action of the associated log-
ical errors can be given by fixing a basis of GKP(L). Let
ψ ∈ GKP(L) ⊂ S ′. Then the eigenvalue equation D(ξ2)ψ =
ei

√
2πKQψ = ψ implies that ψ ∈ S ′ is of the form

ψ (x) =
∑
n∈N

cnδ(x − n
√

2π/K ), (18)

with cn ∈ C, and with δ denoting the Dirac-δ distribution.
The eigenvalue equation D(ξ1)ψ = e−i

√
2πKPψ = ψ further

implies that

cn = cn+K for all n ∈ N. (19)

From (18) and (19), we conclude that the dimension of
GKP(L) is K , consistent with the fact that (17) shows the
existence of K2 linearly independent logical operators. Fur-
thermore, the set {e j}K−1

j=0 defined by

e j (x) =
∑
n∈N

δ(x − n
√

2πK − j
√

2π/K ) (20)

for j = 0, . . . , K − 1, defines a basis of GKP(L). The
action of logical error operators D(n1ξ

⊥
1 + n2ξ

⊥
2 ) ∝

D(ξ⊥
1 )n1 D(ξ⊥

2 )n2 [cf. (17)] on these basis vectors can be
computed to be

D(ξ⊥
1 )e j = e

−2π i j
K e j,

D(ξ⊥
2 )e j = e( j+1) mod K

(21)

for all j = 0, . . . , K − 1. That is, (D(−ξ⊥
1 ), D(ξ⊥

2 )) are
the (generalized) logical Pauli Z and X operators of a
K-dimensional system. They generate what is sometimes re-
ferred to as a finite-dimensional Weyl system.

2. Square lattice GKP codes encoding a qubit (K = 2)

In the following, we specialize to the square lattice GKP
code encoding a qubit, i.e., the case where K = 2. Explicitly,

the square lattice and its dual generated by the vectors (15),
respectively, (16) are

L� := {(2√
π n1 2

√
πn2)T | n1, n2 ∈ Z},

L⊥
� := {(√π n1

√
π n2)T | n1, n2 ∈ Z}.

We refer to the corresponding code GKP(L�) using the ex-
pression square lattice GKP code. It is the most commonly
used version of the GKP code and often simply referred to as
the GKP code. Labeling the basis elements (20) as

|0〉� := e0 and |1〉� := e1, (22)

one finds that the action (21) is that of the standard Pauli
operators (with respect to the computational basis). Thus one
writes

X � := D((
√

π 0)T ),

Z� := D((0
√

π )T ).

We emphasize that (22) is simply a (commonly used) conven-
tion. Indeed, as argued below, it is essential for our purposes
to choose a slightly different mapping from GKP basis states
to (logical) qubit states.

It is clear from the construction above that the basis ele-
ments |0〉�, |1〉� are not proper quantum mechanical states in
the usual sense: They constitute an infinite uniform superposi-
tion of position (equivalently: momentum) eigenstates and are
therefore not normalizable. To obtain a physically meaningful
description, one has to view the GKP states as a limit of
approximate GKP states, in which the sum is replaced by one
with weights according to a Gaussian envelope, and the delta
distributions forming the position eigenstates are replaced by
squeezed Gaussian states.

E. Asymmetric GKP codes

Applying a Gaussian unitary US−1 to a GKP code GKP(L)
results in a GKP code GKP(L′) = US−1 GKP(L), where the
lattice L′ = SL is obtained by applying the associated sym-
plectic transformation S ∈ Sp(2,R) to L [cf. (10)]. Note that
(12) is invariant under symplectic transformations of the lat-
tice, hence if ξ1, ξ2 span L, then Sξ1, Sξ2 are lattice basis
vectors of L′ satisfying (12).

This shows that the set of symplectically integral lattices
L [and thus GKP codes GKP(L)] can be partitioned into
equivalence classes of lattices that can be transformed into
each other by symplectic Gaussian unitaries. Let us briefly
argue that there is in fact only a single equivalence class:
Every symplectic integral lattice L can be obtained by apply-
ing a symplectic transformation S ∈ Sp(2,R) to the square
lattice L�. Indeed, suppose that L is spanned by ξ1, ξ2 ∈ R2

satisfying the integrality condition

ξ1
T Jξ2 = 4π, (23)

and let

ξ�
1 := (2

√
π 0)T ,

ξ�
2 := (0 2

√
π )T ,

be vectors generating L�. Then it is easy to check [us-
ing the antisymmetry of the symplectic form and (23)]

052408-7



HÄNGGLI, HEINZE, AND KÖNIG PHYSICAL REVIEW A 102, 052408 (2020)

that the matrix S := 1
2
√

π
(ξ1|ξ2) having normalized ver-

sions of ξ1, ξ2 in its columns is symplectic and maps
L� to L. We note that a generalization to N > 2 of
this argument can be obtained using a symplectic Gram-
Schmidt procedure. Starting from the square lattice L�, we
can therefore obtain various deformed (asymmetric) GKP
codes.

1. Rectangular lattice GKP codes

Of primary interest is the following example, the rectangu-
lar lattice GKP code. Let r � 1 and consider the symplectic
matrix

Sr :=
(√

r 0
0 1/

√
r

)
(24)

associated with a one-mode squeezing unitary. The lattice
generated by the corresponding symplectically transformed
vectors (Srξ

�
1 , Srξ

�
2 ) and its dual lattice are rectangular:

Lr = {(2√
πr n1 2

√
π/r n2)T | n1, n2 ∈ Z},

(25)
L⊥

r = {(√πr n1

√
π/r n2)T | n1, n2 ∈ Z},

and the resulting code GKP(Lr ) is called a rectangular lattice
GKP code, see Fig. 2. Here the parameter r is the ratio
between the generating vectors of the lattice. We denote the
logical Pauli operators by

X r := D((
√

πr 0)T ),

Zr := D((0
√

π/r)T ).

The square lattice GKP code is a rectangular lattice GKP code
with ratio r = 1. For a discussion of the effect of a parameter
r > 1 compared to r = 1 in terms of error correction and state
preparation see Sec. IIIF 2.

We note that for a square or rectangular lattice L and its
symplectically dual lattice L⊥, the Voronoi cells V ⊂ R2 and
V⊥ ⊂ R2, respectively, are given by

V := {
λ1ξ1 + λ2ξ2 | λ1, λ2 ∈ [ − 1

2 , 1
2

]}
,

(26)
V⊥ := {

λ1ξ
⊥
1 + λ2ξ

⊥
2 | λ1, λ2 ∈ [ − 1

2 , 1
2

]}
,

where we assume that the lattice L is spanned by ξ1, ξ2 and
L⊥ is spanned by ξ⊥

1 , ξ⊥
2 .

2. Hexagonal lattice GKP codes

We mainly focus on rectangular lattice GKP codes for
concreteness and ease of illustration. Note, however, that one-
mode squeezing is not the only symplectic transformation
applicable to the square lattice. In particular, the transformed
vectors need not be orthogonal. An example is the hexagonal
lattice GKP code GKP(S�L�) which is associated with the
symplectic transformation

S� =
(

2√
3

)1/2(1 1/2
0

√
3/2

)
.

The lattice S�L� has an angle of 2π/3 between the two
lattice basis vectors – this is the interior angle of a hexagon.

FIG. 2. The lattice Lr (dashed black lines) and the dual lattice
L⊥

r (solid blue lines) defining the GKP codes for two different ratio
parameters r = 1 (square lattice) and r = 4. The Voronoi cell of the
dual lattice L⊥

r is marked with blue edges. (a) r = 1, (b) r = 4.

Since the product of symplectic matrices is a symplectic ma-
trix, one gets an asymmetric hexagonal lattice GKP code by
applying S�Sr to the square lattice code [29].

F. Error recovery for the GKP code

Consider a logical qubit encoded in GKP(L), i.e., de-
scribed by a density operator ρ supported on GKP(L).
Assume that this state undergoes noise given by a completely
positive and trace preserving (CPTP) map N : B(L2(R)) →
B(L2(R)) on the set B(L2(R)) of bounded operators on the
Hilbert space L2(R). Specifically, we are interested in random
displacement channels N fZ [cf. (11)]. Error correction starting
from the corrupted state N fZ (ρ) proceeds by

(i) Syndrome measurement: This measures the (eigenval-
ues of the) commuting stabilizer generators D(ξ1), D(ξ2) (with
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the generating vectors ξ1, ξ2 of the lattice L). By (8) and (13),
this measurement amounts to a measurement of the quadrature
operators (Q, P) modulo the dual lattice L⊥. The measure-
ment yields a syndrome s = (q p)T ∈ V⊥ belonging to the
Voronoi cell of the dual lattice L⊥.

For example, in the square lattice case, Q and P are
measured modulo

√
π , with outcomes q, p ∈ (−

√
π

2 ,
√

π

2 ).
This can be realized using a logical CNOT gate (realized
by a beamsplitter) between the encoded GKP-qubit and an
additional ancilla GKP-qubit, and subsequent homodyne mea-
surements of Q and P of the ancilla mode (cf. Ref. [6]).

(ii) Application of a unitary correction operation C(s) de-
pending on the syndrome s: The correction operation can be
chosen to be a displacement, i.e., it is of the form C(s) =
D(c(s)) for a function c : V⊥ → R2 determined by the chosen
recovery procedure (see below).

Sequences (i) and (ii) of operations define a recovery CPTP
map Rc : B(L2(R)) → B(L2(R)) in terms of the function c :
V⊥ → R2. We call this function the recovery procedure in the
following.

To analyze the effect of the recovery map Rc, first consider
a single (unitary) displacement error D(ν) for some ν ∈ R2

applied to a density operator ρ with support on GKP(L). In the
recovery scheme described above, the stabilizer measurement
of the corrupted state D(ν)ρD(ν)† yields the syndrome

s(ν) = ν (mod L⊥),

with certainty. Combined with the subsequent correction
operator D(c(s(ν))), this results in an overall (effective) dis-
placement given by

D(c(s(ν)))D(ν) ∝ D(c(s(ν)) + ν) (27)

where we omit the irrelevant global phase. This overall op-
eration acting on the initial state ρ therefore leaves the state
invariant (i.e., recovery succeeds) if

(a) the operation (27) is logical, i.e., maps the code space
to itself, that is,

c(s(ν)) + ν ∈ L⊥, (28)

and
(b) the operation (27) has trivial action on the code space,

that is, the displacement vector belongs to the trivial coset:

c(s(ν)) + ν ∈ L = [0]. (29)

Here we have used the characterization of the effect of dis-
placements on the code space discussed in Sec. III C. We note
that condition (28) is typically guaranteed for all ν ∈ R2 for
reasonable choices of the recovery procedure c : V⊥ → R2

(as the ones discussed below). We call such recovery proce-
dures valid. The following analysis therefore focuses on (29).

For valid recovery procedures, condition (29) guarantees
that there is no residual logical error. More generally, the
residual logical operator depends on the coset the vector
c(s(ν)) + ν belongs to and can be read off from the following

table:

c(s(ν)) + ν ∈ Logical Pauli operator applied
[0] I

[ξ⊥
2 ] X

[ξ⊥
2 − ξ⊥

1 ] Y
[−ξ⊥

1 ] Z

(30)

(Here we write I for the case of a trivial operator leaving the
code space invariant.)

Returning to our error model (11), an error D(ν) occurs
with probability fZ (ν)d2ν. Table (30) allows us to conclude
that the combined CPTP map Rc ◦ N f obtained by applying
the recovery operation after the noise—when restricted to
states supported on GKP(L)—is given by

N pI ,pX ,pY ,pZ
(ρ) = pIρ + pX XρX

† + pY Y ρY
† + pZZρZ

†
,

(31)

where [cf. (30)]

pP = Pr
ν

[c(s(ν)) + ν ∈ [ξ⊥
P

]]

=
∫

ν: c(s(ν))+ν ∈[ξ⊥
P ]

fZ (ν)d2ν, (32)

with P ∈ {I, X ,Y , Z} and

(ξ⊥
I

, ξ⊥
X

, ξ⊥
Y

, ξ⊥
Z

) := (0, ξ⊥
2 , ξ⊥

2 − ξ⊥
1 ,−ξ⊥

1 ). (33)

In particular, the success probability of a valid recovery pro-
cedure c : V⊥ → R2 is thus given by Pc

success = pI .
We note that the effective logical error channel (31) is the

result of averaging over displacement errors and syndrome
measurement outcomes. The latter average is incorporated in
the definition of the recovery map Rc. In fact, a more detailed
description of this process treats the sequence (i) and (ii) as
an instrument (rather than a CPTP map): this generates both
syndrome information s ∈ V⊥ and a corresponding state ρ(s)
(obtained by applying the correction to the post-measurement
state). Such a description is needed if the syndrome informa-
tion s is used, e.g., in concatenated coding to update Bayesian
priors. The distribution over syndromes s is

Ps(s0) = Pr
ν

[s(ν) = s0] for s0 ∈ V⊥. (34)

Conditioned on the syndrome being s0 ∈ V⊥, the conditional
probability ps0

P
of finding an error P ∈ {I, X ,Y , Z} is

ps0

P
= Pr

ν
[c(s(ν)) + ν ∈ [ξ⊥

P
]| s(ν) = s0]

= Prν[s(ν) = s0 and c(s(ν)) + ν ∈ [ξ⊥
P

]]

Ps(s0)
, (35)

by Bayes’ rule, i.e.,

pP =
∫
V⊥

Ps(s0) ps0

P
d2s0

=
∫
V⊥

Prν[s(ν) = s0 and c(s(ν)) + ν ∈ [ξ⊥
P

]]d2s0. (36)

In particular, the state after applying the correction operation
is ρ(s0) = N p

s0
I

,p
s0
X

,p
s0
Y

,p
s0
Z

(ρ). In other words, for a fixed syn-
drome measurement outcome s0, the residual error model is a
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(logical) Pauli-noise channel with syndrome-dependent error
probabilities (ps0

I
, ps0

X
, ps0

Y
, ps0

Z
).

1. Nearest lattice point recovery procedure

Let us now consider a specific simple choice of recovery
procedure c : V⊥ → R2, namely,

c(s) = −s for s ∈ V⊥.

We call this the nearest lattice point recovery procedure: it at-
tempts to correct a given shift error by mapping to the nearest
lattice point in L⊥. While it is not equivalent to maximum
likelihood decoding for general error distributions fZ , it is
expected to work well for distributions concentrated around
the origin (i.e., predominantly small displacement errors). Be-
cause of its simplicity, it is commonly used in the context of
GKP codes. Figure 3 illustrates this recovery procedure, as
well as the phase space regions of displacements associated
with errors that are successfully recovered from, respectively
lead to a logical error.

To analyze its behavior, first observe that the recovery
procedure c is valid, i.e., satisfies (28) for all ν ∈ R2: indeed,
we have

c(s(ν)) + ν = −s(ν) + ν

= −ν (mod L⊥) + ν ∈ L⊥

by definition. Thus we can use the expression (32) for the
residual (i.e., postcorrection) logical error (coset) probabilities
without syndrome information [cf. (33) and Appendix A1],

pP =
∑
ξ∈L

∫
V⊥

fZ (ν + ξ + ξ⊥
P

)d2ν, (37)

for P ∈ {I, X ,Y , Z}. Similarly, using the syndrome informa-
tion s0, Eq. (35) yields

ps0

P
=

∑
ξ∈L fZ (s0 + ξ + ξ⊥

P
)∑

ξ⊥∈L⊥ fZ (s0 + ξ⊥)
. (38)

2. Biased logical noise from isotropic physical noise in GKP(Lr)

As an example, consider the rectangular lattice GKP code
GKP(Lr ) with the physical mode subject to the isotropic
Gaussian displacement channel N f

σ2 [cf. (2)]. Inserting the
associated probability density fσ 2 into (37) and (38) yields
(see Appendix A2)

pI = (1 − qX )(1 − qZ ),

pX = qX (1 − qZ ),

pY = qX qZ ,

pZ = (1 − qX )qZ ,

(39)

where

qP :=
∫
V⊥

nP(s0)qs0

P
d2s0 (40)

for P ∈ {X , Z} with

qs0

X
:= 1 − nX (s0)−1e(4r, x),

qs0

Z
:= 1 − nZ (s0)−1e(4/r, z),

(41)

FIG. 3. Lattices for GKP(Lr ) for the ratio parameters r = 1, 4.
In the phase space, the lattice Lr (dashed black lines) and its dual
L⊥

r (solid blue lines) are depicted, respectively. For the square lat-
tice (r = 1) GKP code undergoing a displacement D(ν ), ν ∈ R2,
measuring the stabilizer generators ei2

√
πQ and ei2

√
πP corresponds

to measuring the values η = ν (mod L⊥), with η = (η1 η2)T ,
η1, η2 ∈ [−

√
π

2 ,
√

π

2 ]. Applying the correction D(η) corresponds to
a mapping to the nearest lattice point in L⊥

r . The correction is suc-
cessful if the actual error displacement ν = (ν1 ν2)T satisfies ν1 =
2
√

πn1 + η1, ν2 = 2
√

πn2 + η2, with n1, n2 ∈ Z. In other words,
the correction is successful if the error vector ν lies in the areas
marked by the blue edges. This correspond to shifts of the dual lattice
Voronoi cell by a lattice vector ξ ∈ L. If the error vector ν lies in
one of the grey shaded areas, the correction results in a logical error
X̄ , Ȳ , Z̄ [cf. table in (30)]. (a) r = 1, (b) r = 4.

and

nX (s0) := e(r, x),

nZ (s0) := e(1/r, z). (42)
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Here we write s0 = (x z)T for the syndrome and make use
of the function

e(u,w) := 1√
2πσ 2

∑
n∈Z

e− (
√

πun+w)2

2σ2 (43)

for u,w ∈ R, u � 0. More explicitly, (40) can be written as

1 − qX = 1

2

∑
n∈Z

erf

(√
2πr

σ 2

(
n + 1

4

))

− erf

(√
2πr

σ 2

(
n − 1

4

))
, (44)

1 − qZ = 1

2

∑
n∈Z

erf

(√
2π

rσ 2

(
n + 1

4

))

− erf

(√
2π

rσ 2

(
n − 1

4

))
, (45)

where erf (x) = 2√
π

∫ x
0 e−τ 2

dτ . Note that (44) is a monotoni-
cally increasing function in r, whereas (45) is monotonically
decreasing in r.

Similarly, we obtain the following expressions for the con-
ditional logical error probabilities given syndrome s0:

ps0

I
= (

1 − qs0

X

)(
1 − qs0

Z

)
,

ps0

X
= qs0

X

(
1 − qs0

Z

)
,

ps0

Y
= qs0

X
qs0

Z
,

ps0

Z
= (

1 − qs0

X

)
qs0

Z
. (46)

As discussed, the rectangular lattice GKP code GKP(Lr )
with squeezing parameter r > 1 is the result of applying the
one-mode squeezing operation with parameter r > 1 to the
square lattice GKP code. Thus, using identity (10) and a vari-
able substitution, we get N f

σ2 (US−1
r

ρU †
S−1

r
) = US−1

r
N fZ̃

(ρ)U †
S−1

r

where Z̃ ∼ N(0, �r ), with the diagonal matrix �r defined
in (3). That is, the noise is effectively transformed to one
where the two quadratures are displaced independently with
variances (σ̃ 2

Q, σ̃ 2
P ) := (σ 2/r, rσ 2) [cf. (3)]. Note that σ̃ 2

Q < σ̃ 2
P

for r > 1. This results in biased noise on the level of GKP
qubits as can be seen in (39): For r > 1, we have pX < pZ .

Since we use the code GKP(Lr ) extensively below, let us
briefly discuss the degree of squeezing necessary to produce
associated code states from standard square lattice GKP code
states, i.e., the parameter r in (24). As common in quantum
optics, we quantify squeezing in terms of the squeezing factor
s, which is given in units of dB and defined as

s(σQ) := −10 log10

(
σ 2

Q

σ 2
0

)
,

where σ 2
0 = 1/2 is the variance in the Q quadrature in the

vacuum state. As just derived, the effective variance in the Q
quadrature of a rectangular (r > 1) lattice code is σ̃ 2

Q = σ 2/r,
where σ 2 is the corresponding variance of a square (r = 1)
lattice code. We therefore have s(σ̃Q) = s(σ 2) + 10 log10(r),
i.e., the introduction of asymmetry (r > 1) yields an increase
of the squeezing factor by an additive term 10 log10(r).

We note that for more general Gaussian encodings corre-
sponding to some Gaussian unitary US , the resulting modified
density fZ̃ over displacements may not be a product distribu-
tion with respect to the quadratures. This generally results in
correlations between the X and Z errors. One such example is
the asymmetric hexagonal lattice GKP code (cf. Sec. IIIE 2).
Expressions for the associated logical error probabilities un-
der the noise channel (2) are given in Appendix A3.

IV. THE (MODIFIED) SURFACE–GKP CODE

In this section, we introduce our main idea, namely, the
effective generation of biased noise in modified surface–
GKP codes by the introduction of asymmetry. The modified
surface–GKP codes we study are obtained by concatenating
an asymmetric GKP code at the base (inner) level with a qubit
(surface) code at the top (outer) level. They benefit from the
fact that surface codes are resilient to certain forms of biased
noise.

In Sec. IV A we briefly review prior uses of biased noise
in the discrete- and continuous-variable (CV) settings. In
Sec. IV B, we give the details of how the concatenation has
to be done in order to yield an improvement over standard
surface–GKP codes. Then, in Sec. IV C, we explain how to
use the BSV decoder to decode asymmetric surface–GKP
codes with and without GKP side information.

A. Prior work on biased noise in codes

For certain physical systems, physically relevant processes
naturally lead to biased noise. There is a long history of
considering such scenarios in quantum error correction: It was
shown that biased noise is typically less detrimental than more
general noise if suitable encodings are used. For example,
early work [30] on qubit codes considered the extreme case
of pure dephasing noise. Fault-tolerance schemes for asym-
metric (i.e., predominantly dephasing) qubit noise models
were introduced and analyzed in Refs. [31–33], giving im-
proved estimates for error rates and error thresholds for biased
noise.

More recently, and directly relevant to our work, a sig-
nificant degree of resilience to biased noise of surface codes
was observed numerically by Tuckett et al. [34] when using
the approximate maximum likelihood decoder of Bravyi et al.
[16]. That is, recovery from Pauli noise,

N(pI ,pX ,pY ,pZ )(ρ) =pIρ + pX XρX † + pY Y ρY † + pZ ZρZ†,

(47)

(i.i.d. on each qubit) is successful (in the limit of large code
sizes) even for values of pY close to 1/2, in the case where
pX = pZ and the bias

η := pY /(pX + pZ ) (48)

is sufficiently large. This is in sharp contrast to the case of
independent X and Z noise, where

pX = qX (1 − qZ ),

pY = qX qZ ,

pZ = (1 − qX ) qZ ,
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and where the tolerable noise thresholds for qX and qZ are
smaller than ≈11% [35].

Subsequent work by Tuckett et al. [18] extended these
findings significantly in several directions: on the one hand,
new numerical results for (rotated), nonsquare, i.e., r × s-
surface codes were established. On the other hand, additional
analytical arguments were given to support the numerical
evidence: the minimum weight of a Y -type logical op-
erator was computed (as a function of r, s), and in the
limiting case of pure Y -noise, a threshold of 50% error
probability was established by analyzing a corresponding
decoder.

Note, however, that not all qubit codes show such improve-
ments: In fact, it was shown numerically in Ref, [18] that the
threshold of color codes [36] actually decreases with stronger
bias. It should also be emphasized that improvements can only
be obtained by suitably aligning the code’s stabilizers with the
asymmetry in the noise as discussed below.

While these results apply to qubit codes, more recent work
has shown that biasedness of noise can naturally emerge
when using CV systems to encode logical qubits. Specifically,
Guillaud and Mirrahimi [37] and Puri et al. [38] argued that
bosonic cat codes exhibit logical-level noise biased towards
dephasing (under certain bosonic noise processes affecting
the physical modes), where the bias is tunable by adjusting
the “cat size” parametrizing the code. They show how to
exploit this by concatenating the cat code with the (qubit)
repetition code, which has some resilience to biased noise. In
addition, methods for achieving bias-preserving logical gates
are proposed and analyzed in detail.

B. Exploiting engineered bias in surface–GKP codes

To tap into the potential of the surface code to correct
biased noise, we require the following modifications of what
are typically considered to be surface–GKP codes:

(i) First, we use a Gaussian unitary US applied to each
mode to turn isotropic Gaussian noise into biased noise at
the GKP-qubit level, that is, we work with modified GKP
code states US|0〉� and US|1〉�, where |0〉� and |1〉� are the
standard square lattice GKP basis states.

(ii) Second, we change the way the GKP code is concate-
nated with the surface code. More precisely, we map Pauli-Y
(instead of Pauli-Z) eigenstates of a (GKP) qubit to the modi-
fied GKP basis states US|0〉� and US|1〉� according to

| + i〉 = 1√
2

(|0〉 + i|1〉) �→ US|0〉�,

| − i〉 = 1√
2

(|0〉 − i|1〉) �→ US|1〉�,

(49)

and linearly extend this to a definition of a (modified) isomet-
ric GKP-qubit encoding C2 → L2(R).

We note that the definition (49) ensures that qubit operators
are identified with logical GKP operators according to

Y ↔ USZ�U †
S ,

Z ↔ USX �U †
S .

(50)

In the case of a rectangular lattice GKP code, the correspon-
dence (50) leads to effective (qubit level) noise channels with

independent Y and Z noise, i.e.,

pX = qZqY ,

pY = (1 − qZ )qY ,

pZ = qZ (1 − qY ),

(51)

in the resulting qubit noise channel (47), where

(qY , qZ ) = (qZ , qX ), (52)

with qX , qZ given in (40). In particular, pZ is biased com-
pared to pY for r large enough (i.e., pZ � pY ), since qZ is
monotonically decreasing in r whereas qY is monotonically
increasing in r by the relation (52) and Eqs. (44), (45). We
note that the triple (pX , pY , pZ ) thus is a two-parameter family
parameterized by (qY , qZ ), and the set of such triples differs
from the one studied in [18,34], which consists of tuples of the
form (pX , pY , pZ ) = (pX , pY , pX ), cf. (48). In particular, this
means that the threshold estimates obtained in Refs. [18,34]
cannot directly be lifted to our setting. Rather, we need to
separately study the threshold behavior of biased noise of the
form (51).

We find (see Sec. V) that the surface code is well-
equipped against displacement noise specified by (51) if pZ �
pY . Specifically, we find threshold standard deviations σ of
the noise corresponding to – in a standard (non-modified)
surface–GKP code—Pauli-X (equivalently: Pauli-Z) error
probabilities strictly above the ≈11% of the plain surface
code, similar to the results in Refs. [18,34].

C. Decoding modified surface–GKP codes with
the BSV decoder

In the surface–GKP code, each of the n qubits of the
surface code is encoded in a GKP-qubit (i.e., in a single
mode). As with any concatenated code, the surface–GKP code
provides natural families of decoders obtained by combining a
decoder for the GKP code with a decoder for the surface code.
Such a decoding procedure first decodes the GKP code (the in-
ner code), and subsequently the surface code (the outer code).
Here we primarily use the nearest lattice point recovery pro-
cedure discussed in Sec. IIIF 1 to decode the GKP code, and
the BSV decoder discussed in Sec. IIB 2 for the surface code.

Recall that the GKP decoder produces syndrome informa-
tion s j,k for every GKP-encoded qubit ( j, k) (see Sec. III F).
Here we use j and k to index the row and column in the square
lattice geometry [see Fig. 1(a)]. This syndrome information
can either be ignored or passed on to the outer decoder.
The difference is illustrated in Fig. 4. In the former case,
i.e., decoding without side information, the prior distribution
π j,k = (pj,k

I
, pj,k

X
, pj,k

Y
, pj,k

Z
) over logical Pauli-error probabil-

ities (seen by the outer decoder) are identical for each qubit
( j, k), i.e., π j,k = π , and equal to the averaged GKP-qubit
probabilities π = (pI , pX , pY , pZ ) given in expression (32)
[that is, (39) for rectangular lattice GKP-qubits subject to
isotropic Gaussian noise]. Thus the BSV decoder is provided
with the i.i.d. distribution πn, that is, the tensors in Fig. 1(c)
are qubit independent.

Alternatively, one may use the GKP syndrome information
in the surface code decoding step. In this case, the prior
probabilities π j,k passed to the surface code decoder are po-
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FIG. 4. Two ways of decoding the surface–GKP code. In both
cases the GKP error correction circuit produces syndrome informa-
tion s j,k . When decoding without side information [Fig. 4(a)], this
information is ignored and the same prior distribution π over logical
Pauli errors {I, X ,Y , Z} is used for every site. The surface-code BSV
decoder (which also involves syndrome measurement but whose
syndromes are not shown here) is run with the associated product
(i.i.d.) distribution π n. Figure 4(b) shows how to exploit the GKP side
information: For each qubit ( j, k) a prior distribution π j,k = π p(s j,k )
over logical Pauli errors is computed from the GKP syndrome s j,k ,
and this is then used in the BSV decoder as the prior distribution. (a)
Decoding without GKP side information. (b) Decoding with GKP
side information.

tentially different for each GKP-encoded qubit ( j, k). They
are computed from the associated GKP syndrome s j,k accord-
ing to expression (35), which involves the distribution over
the bosonic displacement errors, and we write π j,k = πp(s j,k ).
The BSV decoder can then be run with the (nonidentical)
product distribution

∏
( j,k) π j,k , where each qubit experiences

independent noise with a distribution depending on the out-
come of the associated GKP measurement.

We note that decoding with and without side informa-
tion has been studied previously in Refs. [5,11,12], for the
surface–GKP code and the toric-GKP code respectively, based
on square lattices. These authors used a minimum weight
matching decoder for the toric (surface) code. Syndrome in-
formation from the GKP measurements was translated into
different edge weights (where the three papers use different
heuristic expressions) to be passed to the minimum weight
matching decoder. In contrast, we consider nonsquare lattice
GKP codes, and use the BSV decoder: here the way syndrome
information is passed is completely determined. Indeed, for
bond dimension χ → ∞, this results in maximum likelihood
decoding based on the available syndrome information.

V. THRESHOLD ESTIMATES FOR THE MODIFIED
SURFACE-GKP CODE

In this section, we present numerical results obtained by
applying the decoding procedure discussed in Sec. IV C to
study the effect of asymmetry in surface-GKP codes. We
primarily study if asymmetry increases thresholds, even when
no GKP side information is used, in rectangular lattice GKP
codes. Additionally, we provide numerical data for rectangu-
lar and asymmetric hexagonal lattice GKP codes using GKP
side information.

A. Simulation method

The results are based on Monte Carlo simulation of the
error correction processes illustrated in Fig. 4. A pseudocode
of the corresponding routine in the case where the GKP side
information is ignored is presented in Fig. 9 in Appendix B,
whereas Fig. 10 in Appendix B gives pseudocode in the case
where the side information is used in the BSV decoder. Given
a standard deviation σ , both routines simulate the process
of applying a displacement error distributed according to
N(0, σ 2I2) independently of each GKP qubit of a distance-d
surface code, subsequent GKP syndrome extraction and error
correction, and surface-code error correction with or without
this syndrome information. The output of both routines is
the residual logical Pauli error that this process yields on the
logical surface–GKP qubit. Thus the routines permit us to
empirically estimate the averaged logical error channel. More
coarsely, we use these procedures to study the logical error
probability Perr = Perr(σ, d, r) as a function of the standard
deviation σ of the noise [cf. (2)], the code distance d , and the
asymmetry ratio r defining the GKP code lattice.

For a fixed ratio r, we are interested in the threshold,
which is the critical noise level, i.e., the critical value of σ ,
below which the error probability Perr can be made arbitrarily
small by choosing a sufficiently large code distance d . Follow-
ing standard reasoning, an estimate σc for this quantity can
be obtained by studying the intersection points of a family
{σ �→ Perr(σ, d, r)}d∈D of curves parameterized by a (finite)
set of distances D ⊂ N. More precisely, we use the critical
exponent method of Ref. [39]: define a correlation length
ξ = (σ − σc)−μ for some critical exponent μ, and assume
that for d � ξ , the failure probability only depends on the
dimensionless ratio d/ξ , i.e., it is a function of the variable
x := (σ − σc)d1/μ. Our thresholds are obtained by numeri-
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cally fitting the data to a power series up to quadratic terms
in x, i.e., using the same fitting formula as in Ref. [34].

For our simulations, we choose physical parameters as
follows. We consider code sizes d satisfying 9 � d � 21,
Gaussian displacement noise standard deviations σ in the
interval [0.4,0.7], and asymmetry ratios r ∈ [1, 4]. The pa-
rameters for the simulation are as follows: The number of
Monte Carlo samples for an estimate of Perr for fixed physical
parameters (σ, d, r) is chosen between 10 000 and 50 000,

depending on the distance d . For the BSV decoder, we use
bond dimensions χ in the interval [48,100]. We provide a
more detailed description and justification of these choices in
Appendix D.

B. Numerical results for surface–GKP(Lr)

We primarily focus on decoding surface–GKP codes with-
out making use of GKP side information (other scenarios
will be discussed below). We present (selected) simulation
results for this scenario: in Figs. 5(a)–5(c), the curves {σ �→
Perr(σ, d, r)}d∈{9,13,17,21} are shown for asymmetry ratios r ∈
{1, 2, 3}, respectively. These curves are used to extract a
threshold value σc as described above. Figure 6 shows the
curves {σ �→ Perr(σ, d, r)}r∈{1,1.5,2,2.5,3,3.5,4} indicating how
different asymmetry ratios r change the logical error proba-
bility for a fixed distance d ∈ {9, 13, 17, 21}.

1. Standard (symmetric) surface–GKP code

The standard (symmetric, i.e., r = 1) GKP code corre-
sponding to the square lattice provides our reference point
for comparison when studying the effect of asymmetry. For
this reason, we work with a relatively high bond dimension
of χ = 100 for the BSV decoder with the goal of obtaining
accurate estimates of the maximum likelihood decoding prob-
ability (see Appendix D for a detailed discussion). We obtain
a threshold value σc ≈ 0.540, see Fig. 5(a).

We note that this value is comparable to the threshold
estimate for σc between 0.54 and 0.55 obtained in Ref. [5]
for independent X and Z noise using the minimum weight
matching decoder. We emphasize, however, that while these
results deal with the same physical error model, there is no a
priori reason the obtained thresholds should coincide. This
is because the mapping to qubit-level noise used here [cf.
Sec. IV B, in particular modification (ii)] differs from that
used in Ref. [5].

Note also that the data presented in Ref. [16] suggests that
the difference between using the minimum weight matching
decoder and the BSV decoder may play a minor role for the
symmetric case r = 1. In fact, for pure Pauli-X (equivalently,
Pauli-Z) errors even the discrepancy between the threshold
values obtained by using the minimum weight matching de-
coder [39] and the maximum likelihood decoder (for which a
threshold can be derived from the numerical estimates for the
random-bond Ising model obtained in Ref. [40]) is known to
be less than 0.7%, see Ref. [16]. This is within the accuracy
regime of the results found in Ref. [5].

2. Asymmetric surface–GKP codes

Consider now the asymmetric case, i.e., r > 1. A subset of
corresponding simulation results is shown in Figs. 5(b) and

5(c). These curves are used to extract threshold estimates.
We note that the choice of bond dimension (discussed in
Appendix D) is less crucial here as our goal is mainly to
demonstrate the advantage of asymmetry. Indeed, for any
chosen value of χ , the associated curve in Fig. 5 represents
the actual error probability of some (albeit approximate and
hence possibly nonoptimal) decoder.

It is also instructive and experimentally relevant in the
near future to consider the error probability for a fixed code
distance d . Corresponding curves for a collection of asym-
metry ratios are shown in Fig. 6. Figures 6(a)–6(d) give the
curves {σ �→ Perr (σ, d, r)}r∈{1,2,2.5,3,3.5,4} for different ratios in
separate graphs for the same distance d ∈ {9, 13, 17, 21}.

We observe a qualitative difference between the regime of
small distances and small asymmetry ratios, and the regime
of large distances and large asymmetry ratios. More precisely,
we may ask where the error probability decreases monotoni-
cally with increasing asymmetry ratio r, i.e., Perr(σ, d, r′) <

Perr(σ, d, r) for r′ > r (for all σ ). We find that this property
holds for all r, r′ � 2.0 for all distances d . For higher dis-
tances, e.g., d = 17 and d = 21, this property extends up to all
asymmetry ratios r, r′ � 2.5. In other words, the monotonicity
in r appears to be a function of the distance d: For example, for
d = 9 and ratios r′ = 3.5 and r = 1, there are values σ such
that Perr (σ, 9, 3.5) > Perr (σ, 9, 1), whereas for d = 21 we find
that Perr (σ, 21, 3.5) < Perr (σ, 21, 1) for all σ .

It is conceivable that this nonmonotonic behavior of Perr

is merely an artefact of the finite size, i.e., the limited code
distances d that can be explored by simulation. For large
distances d , the logical error probability may in fact decrease
monotonically for increasing asymmetry ratios r. Our current
numerical data does not permit us to draw a definite conclu-
sion in this regard.

3. Thresholds

Figure 7 summarizes our main numerical findings for the
effect of asymmetry on the threshold. It gives the observed
threshold values σc for all considered asymmetry ratios r. For
comparison, the vertical axis on the right hand side gives the
value of qX (cf. (44)) for σ = σc and r = 1, i.e., the Pauli-
X (equivalently, Pauli-Z) error probability of the individual
qubits of the surface code. This probability corresponds to
the scenario where—under the same displacement error noise
model – the standard GKP code and GKP error correction
without syndrome information is used to encode each qubit.

The numerical results gathered in Fig. 7 show that every
asymmetry ratio r > 1 considered here yields an improved
threshold compared to the symmetric (r = 1) case: for ex-
ample, the threshold (tolerable error probability) improves to
σc = 0.581 (0.127) for r = 3 from σc = 0.540 (0.101) for
the symmetric case r = 1. That is, even a moderate, experi-
mentally achievable amount (cf. Appendix D3) of squeezing
results in more noise resilience.

Theoretically it is also interesting to examine the limit
of large asymmetry r. Figure 7 shows that the estimated
threshold value σc obtained by simulation is nonmonotonic,
exhibiting a maximum around r = 3. As explained above,
this numerical finding may be due to finite-size effects, i.e.,
the limited system sizes considered in our simulations. We
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FIG. 5. The error probability Perr(σ, d, r) (left) for decoding without GKP side information for different asymmetry ratios r ∈
{1.0, 2.0, 3.0}. Insets give higher-resolution data around the observed threshold estimate σc for the critical noise variance. The latter is indicated
by a vertical line. The right-hand side shows a log-plot of the error probability Perr(σ, d, r). For comparison, the error probability of the bare
GKP code, i.e., without concatenation with the surface code, is shown in blue with the solid line corresponding to ratio r = 1.0 and the dashed
lines corresponding to the respective ratio of the figure. (a) Ratio r = 1.0, threshold σc ≈ 0.540. (b) Ratio r = 2.0, threshold σc ≈ 0.562.

(c) Ratio r = 3.0, threshold σc ≈ 0.581.

cannot conclusively deduce that the actual threshold increases
monotonically with r (for large distances d). We note that the
limiting effective surface-code qubit-level noise for r → ∞ is
pure Y noise with 50% probability. For the latter, an analytical

threshold result is known [18]. However, this result does not
allow us to draw conclusions about the threshold for any fixed
asymmetry ratio r because of the different order of limits with
respect to d and r, respectively.

052408-15



HÄNGGLI, HEINZE, AND KÖNIG PHYSICAL REVIEW A 102, 052408 (2020)

FIG. 6. The dependence of the error probability Perr(σ, d, r) on the noise variance σ for decoding without GKP side information. In
each figure, the curves σ �→ Perr(σ, d, r) for asymmetry ratios r between 1.0 and 4.0 are given. The individual figures treat code distances
d ∈ {9, 13, 17, 21}. (a) Distance d = 9. (b) Distance d = 13. (c) Distance d = 17. (d) Distance d = 21.

Note that the effective qubit error distribution resulting
from the use of asymmetric GKP codes depends on both the
asymmetry ratio r (a parameter which may in principle be
chosen arbitrarily subject to experimental capabilities) and
the physical error strength σ . In particular, the parameter r
determines the relative weight of X -, Y -, and Z-Pauli errors
similar to the bias parameter η in the work of Refs. [18,34].
We emphasize however that our effective noise model does
not have the form of the error distributions considered in those
works. In particular, their bias parameter η is not in one-to-one
correspondence with our asymmetry ratio r.

C. Numerical results for further scenarios

Up to this point, we have not considered all possible op-
timizations over different choices of codes and decoders in
our simulations. For example, we restricted our attention to
rectangular GKP codes and did not attempt to optimize the
underlying lattice by varying its axial angle. It can be expected
that such an optimization yields additional benefits. Indeed,
as already pointed out in the seminal paper [6], using the

hexagonal lattice L� instead of L� results in improved error
correcting properties because of the difference in volume of
the associated Voronoi cells.

A further significant improvement should result from
modifying the decoder: So far, we did not use the GKP syn-
drome information in the surface code decoding step. For
the standard (symmetric) surface-GKP code, it was shown
in Refs. [5,11,12] that using this side information improves
threshold estimates.

To examine if such modifications lead to improvements
as expected, we numerically estimate logical error probabil-
ities for surface–GKP codes based on the rectangular lattice
Lr with r = 2, decoded without and with side information
[Figs. 8(a) and 8(b), respectively]. Analogously to the results
of Refs. [5,11] for the symmetric case where a threshold of
σc ≈ 0.61 was observed, we find that the use of side infor-
mation significantly increases the threshold in the asymmetric
case also.

As a paradigmatic test case, we additionally consider the
use of the asymmetric hexagonal lattice surface GKP code
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FIG. 7. Empirically computed thresholds for different asymme-
try ratios r. The error bars depict the standard deviation of the fitted
threshold value σc (left hand side axis) and range from 0.0006 (for
r = 1) to 0.0019 (for r = 3). The values on the right-hand side
axis correspond to qX̄ [Eq. (46)] for the parameters σ = σc and
r = 1. These values are given for comparison with existing estimates
for (qubit) surface codes: For example, it is known [35] that the
logical X -error probability qX for minimum matching decoding for
independent X and Z noise is around 10.1%. We recover this value
for ratio r = 1. The overall logical error probability is given by
p = q2

X
+ 2qX (1 − qX ).

GKP(S�SrL�) introduced in Sec. IIIE 2 for asymmetry ra-
tio r = 2, see Fig. 8(c). Again, this simulation data is for a
decoder using side information. Here the observed threshold
is comparable to that obtained for the square lattice surface
GKP code.

These numerical results indicate that such additional mod-
ifications aimed to improve fault-tolerance properties do not
negatively interfere with the use of asymmetry. In particular,
combining these strategies and additionally optimizing over
lattices (rather than simply the hexagonal and rectangular
ones) has the potential to yield further increases of the thresh-
old estimates.

VI. CONCLUSIONS

Our results show that no-go theorems for Gaussian CV-
into-CV encodings (see Sec. I) no longer apply when
considering concatenated codes: Our numerical results for the
(modified) surface–GKP code indicate that suitably chosen
Gaussian CV-into-CV encodings (such as the one presented
in Sec. IV B) effectively lead to a deformation of the ef-
fective error distribution for the GKP-qubits which known
decoders for the surface code can benefit from. We ex-
pect that similar strategies may improve other CV codes
constructed by concatenation. Due to the minimal addi-
tional experimental requirements, this kind of modification of
bosonic fault-tolerance schemes may be particularly attractive
once the basic components of an experimental setup are in
place.

Our paper provides a proof of principle and shows that arti-
ficially engineered asymmetry not only benefits surface-GKP
codes, but is also compatible with other improvements to the

FIG. 8. Other improvements for ratio r = 2.0: Here the plots
show the error probability Perr(σ, d, r) as a function of σ for decod-
ing without side information [Fig. 8(a)] and with side information
[Fig. 8(b)] for the rectangular lattice GKP code. Figure 8(c) shows
the error probability for the asymmetric hexagonal lattice GKP code
decoded with side information. Observed threshold estimates σc are
indicated with vertical lines. (a) Rectangular lattice GKP without side
information, threshold σc ≈ 0.562. (b) Rectangular lattice GKP with
side information, threshold σc ≈ 0.6062 (with standard deviation
0.0007). (c) Asymmetric hexagonal lattice GKP with side informa-
tion, threshold σc ≈ 0.6045 (with standard deviation 0.0009).

GKP encoding: This includes, e.g., the use of nonrectangular
lattices having larger Voronoi cells, and the use of GKP side
information at the surface-code decoding stage.
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Future work may seek to establish monotonicity of the
logical error probability as a function of the degree of asym-
metry. Furthermore, the effect of nonideal (finitely squeezed)
GKP states, as well as noise in the syndrome information,
and eventually full circuit-level noise should be exam-
ined. Finally, methods for fault-tolerant computation with
asymmetric surface–GKP codes, e.g., using bias-preserving
gates should be further developed.
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APPENDIX A: COMPUTATION OF COSET
PROBABILITIES

In this Appendix, we derive the logical error (coset)
probabilities for nearest lattice point decoding (NLPD, cf.
Sec. IIIF 1) given a classical isotropic Gaussian displacement
noise channel N f

σ2 [cf. (2)]; the latter channel is characterized
by its density

fσ 2 (ν) = 1

2πσ 2
e− ‖ν‖2

2σ2 , (A1)

where ‖ν‖2 = νT ν = ν2
1 + ν2

2 . We start by proving the for-
mulas (37), (38) for the coset probabilities without and with
GKP side information for NLPD for a general random dis-
placement error channel (11) in Appendix A 1. Subsequently,
the corresponding explicit expressions (39), (46) for a rect-
angular lattice and the error channel corresponding to (A1)
are derived in Sec. A 2. Finally, in Appendix A 3, we give an
explicit expression for the coset probabilities with GKP side
information in the case of an asymmetric hexagonal lattice
and density (A1). The latter expression is not presented in the
main text but added here for completeness as it is used in the
simulations for the asymmetric hexagonal case.

1. Nearest lattice point decoding (NLPD)

Recall that for NLPD (cf. Sec. IIIF 1) we have c(s(ν)) =
−s(ν) ∈ V⊥ and thus

{ν ∈ R2 | c(s(ν)) + ν ∈ [ξ⊥
P

]}

= {ν ∈ R2 | ν − s(ν) ∈ ξ⊥
P

+ L}
= {ν ∈ R2 | ν = ω + ξ + ξ⊥

P
, ξ ∈ L and ω ∈ V⊥}.

Hence by (32) and variable substitution, we have

pP = Pr
ν

[
c(s(ν)) + ν ∈ [

ξ⊥
P

]]
=

∑
ξ∈L

∫
V⊥

fZ (ν + ξ + ξ⊥
P

) d2ν,

proving (37). Furthermore, since s(ν) = ν (mod L⊥), we
have

{ν ∈ R2 | s(ν) = s0} = {ν ∈ R2 | ν = ξ⊥ + s0, ξ⊥ ∈ L⊥}.
By (34) and variable substitution, it thus follows that

Ps(s0) = Pr
ν

[s(ν) = s0] =
∑

ξ⊥∈L⊥
fZ (ξ⊥ + s0). (A2)

This together with

{ν ∈ R2 | c(s0) + ν ∈ [ξ⊥
P

]}
= {ν ∈ R2 | − s0 + ν ∈ [ξ⊥

P
]}

= {ν ∈ R2 | ν = s0 + ξ + ξ⊥
P

, ξ ∈ L}
and an additional variable substitution implies, by (35), that

ps0

P
= Pr

ν
[c(s(ν)) + ν ∈ [ξ⊥

P
]| s(ν) = s0]

= Ps(s0)−1 Pr
ν

[s(ν) = s0 and c(s(ν)) + ν ∈ [ξ⊥
P

]]

=
⎛
⎝ ∑

ξ⊥∈L⊥
fZ (s0 + ξ⊥)

⎞
⎠

−1 ∑
ξ∈L

fZ (s0 + ξ + ξ⊥
P

). (A3)

This yields (38).

2. NLPD with Gaussian noise channel: rectangular lattice

Let now L ≡ Lr and fZ ≡ fσ 2 be given by (A1). Further-
more, let us write s0 = (x z)T . Then by the definition of the
dual lattice L⊥

r [cf. (25)] we may write Eq. (A2) as

Ps(s0) = 1

2πσ 2

∑
n1,n2∈Z

e− (
√

πrn1+x)2

2σ2 e− (
√

π/rn2+z)2

2σ2

= e(r, x) e(1/r, z),

cf. (43). Recall that (ξ⊥
I

, ξ⊥
X

, ξ⊥
Y

, ξ⊥
Z

) := (0, ξ⊥
2 , ξ⊥

2 −
ξ⊥

1 ,−ξ⊥
1 ). If we interpret ξ⊥

P
as a function of P, we may

thus write

ξ⊥
P

= (
√

πr · 1P∈{X ,Y }
√

π/r · 1P∈{Z,Y })
T ,

where 1P∈{X ,Y }, 1P∈{Z,Y } are indicator functions. Then, by the
definition of the lattice Lr [cf. (25)],

∑
ξ∈Lr

fZ (s0 + ξ + ξ⊥
P

) = 1√
2πσ 2

∑
n1∈Z

e− (
√

πr(2n1+1P∈{X ,Y } )+x)2

2σ2
1√

2πσ 2

∑
n2∈Z

e− (
√

π/r(2n2+1P∈{Z,Y } )+z)2

2σ2

= e(4r, x + √
πr 1P∈{X ,Y }) e(4/r, z +

√
π/r 1P∈{Z,Y }),
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whence the coset probabilities with GKP information (A3) can be written as

ps0

P
=Ps(s0)−1

∑
ξ∈Lr

fZ (s0 + ξ + ξ⊥
P

)

=e(4r, x + √
πr 1P∈{X ,Y })

e(r, x)

e(4/r, z + √
π/r 1P∈{Z,Y })

e(1/r, z)
.

This together with the identities

e(r, x) − e(4r, x + √
πr) = e(4r, x), e(1/r, z) − e(4/r, z +

√
π/r) = e(4/r, z)

yields (41), (42), and (46).
By (36), the coset probabilities (39) without GKP information follow from (46) by integration, cf. (40). Finally, (44) is verified

as

(1 − qX ) =
∫
V⊥

r

nX (s0)
(
1 − qs0

X

)
d2s0

=
∫

{ x=λ1
√

πr | λ1∈[−1/2,1/2]}
e(4r, x)dx

=
∑
n1∈Z

1√
π

∫ √
2πr
σ2 (n1+1/4)

√
2πr
σ2 (n1−1/4)

e−τ 2
1 dτ1

= 1

2

∑
n∈Z

erf

(√
2πr

σ 2

(
n + 1

4

))
− erf

(√
2πr

σ 2

(
n − 1

4

))
,

where we used (in this order) the identity ∫
V⊥

r

nP(s0)d2s0 = 1,

the definition of the dual Voronoi cell V⊥
r [cf. (26)], variable substitution, and the definition of the error function. The identity

(45) is verified analogously.

3. NLPD with Gaussian noise channel: hexagonal lattice

Here we derive the coset probabilities with GKP side information for an asymmetric hexagonal lattice L�,r (cf. Sec. IIIE 2),
with fZ ≡ fσ 2 given in (A1). We have

L�,r = {c(2
√

πrn1 +
√

π/rn2

√
3π/rn2)T | n1, n2 ∈ Z},

L⊥
�,r =

{
c

2
(2

√
πrn1 +

√
π/rn2

√
3π/rn2)T | n1, n2 ∈ Z

}
,

and

V⊥
�,r =

{ c

2
(2

√
πrλ1 +

√
π/rλ2

√
3π/rλ2)T

∣∣∣ λ1, λ2 ∈ [ − 1
2 , 1

2

]}
,

where c := (2/
√

3)
1/2

. For u,wq,wp ∈ R, u � 0, define

e�(u,wq,wp) := 1

2πσ 2

∑
n1,n2∈Z

e− (c
√

πun1+(c/2)
√

π/un2+wq )2+((c/2)
√

3π/un2+wp)2

2σ2 .

Then, with s0 = (x z)T , Eq. (A2) can be written as

Ps(s0) =
∑

ξ⊥∈L⊥
�,r

fZ (ξ⊥ + s0) =
∑

n1,n2∈Z

e− ((c/2)(2
√

πrn1+√
π/rn2 )+x)2+((c/2)

√
3π/rn2+z)2

2σ2

2πσ 2

= e�(r, x, z).

Furthermore, writing

ξ⊥
P

= c

2
(2

√
πr · 1P∈{X ,Y } +

√
π/r · 1P∈{Z,Y }

√
3π/r · 1P∈{Z,Y })

T
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(cf. Appendix A 2), we get

∑
ξ∈L�,r

fZ (s0 + ξ + ξ⊥
P

) =
∑

n1,n2∈Z

e−
(

2c
√

πr

(
n1+

1P∈{X ,Y }
2

)
+c

√
π/r

(
n2+

1P∈{Z,Y }
2

)
+x

)2
+

(
c
√

3π/r

(
n2+

1P∈{Z,Y }
2

)
+z

)2

2σ2

2πσ 2

= e�
(

4r, x + c
√

πr1P∈{X ,Y } + c

2

√
π/r1P∈{Z,Y }, z + c

2

√
3π/r1P∈{Z,Y }

)
,

whence the coset probabilities with GKP information (A3) can be written:

ps0

P
= Ps(s0)−1

∑
ξ∈L�,r

fZ (s0 + ξ + ξ⊥
P

)

= e�
(
4r, x + c

√
πr · 1P∈{X ,Y } + c

2

√
π/r · 1P∈{Z,Y }, z + c

2

√
3π/r · 1P∈{Z,Y }

)
e�(r, x, z)

. (A4)

APPENDIX B: PSEUDOCODE FOR THE MONTE CARLO
SIMULATION ALGORITHMS

Here we give pseudocode for the algorithms used to obtain
our numerical results in Sec. V. The routine MCWITHOUT-
SIDEINFO shown in Fig. 9 simulates one Monte Carlo step
when decoding without side information [41]. In this descrip-
tion, the errors Ej,k are sampled exactly from the distribution
π and the BSV decoder is given the exact probabilities π .

We note that Fig. 9 does not yet constitute a practical algo-
rithm: Because expression (39) for π involves infinite sums,
an approximation has to be made in our implementation, i.e.,
we work with a suitably chosen approximation π̃ to π . We
argue in Appendix C that using this approximation π̃ does
not impact the validity of our conclusions about the effect of
asymmetry.

In Fig. 10, we give pseudocode for the simulation of er-
ror correction when using GKP side information. Again, in
our implementation, Step 10 in this algorithm is replaced
by an approximate computation described and analyzed in
Appendix C.

APPENDIX C: CUTOFF ANALYSIS

For the computation of the distributions π (cf. Step 10
in Fig. 9) and π j,k (cf. Step 10 in Fig. 10), infinite sums
are approximated by finite ones by introducing a cutoff κ .

More precisely, the probability distribution π is computed
using the expressions (44) and (45) with a cutoff κ = 10,
meaning that all summands with indices of absolute value
� 10 are neglected. Similarly, for the conditional distribution
π j,k , a cutoff κ = 15 is chosen when evaluating expressions
(46) respectively (A4). Let us denote the corresponding ap-
proximate distributions by π̃ and π̃ j,k , respectively. Here we
discuss the impact of using these approximations instead of
the actual distributions π , respectively, π j,k on the accuracy
of our simulation.

We first observe that these approximations do not enter in
the sampling procedure generating the errors Ej,k when fol-
lowing the description of Figs. 9 or 10. That is, the simulation
algorithm produces the correct distribution over errors [42].
This means that only the effect of using π̃ instead of the exact
distribution π (respectively, π̃ j,k instead of π j,k) as input to the
BSV decoder has to be considered.

If the BSV decoder receives an approximation of the actual
a priori probabilities π (or π j,k), its action is not that of
a maximum likelihood decoder even in the limit of infinite
bond dimension χ . Nevertheless, it still acts as a (hopefully
decent) decoder: The fact that the bond dimension is finite
and the input probabilities are approximate as a consequence
of a finite cutoff κ can only possibly affect the performance of
the decoder. In other words, the simulation algorithms shown
in Figs. 9 and 10 allow us to compute estimates of logical

FIG. 9. Subroutine MCWITHOUTSIDEINFO simulates one instance of the error-recovery process when GKP side information is ignored. It
returns the residual logical error.
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FIG. 10. Subroutine MCWITHSIDEINFO Monte-Carlo-simulates one instance of the error-recovery process when GKP side information is
used. It returns the residual logical error.

error probabilities of some decoder (with and without side
information).

Running these simulation algorithms hence establishes
lower bounds on achievable error thresholds obtained by using
nonideal decoders. Since our general goal is to show that
asymmetry is beneficial, this means that we do not need to
worry about the choice of cutoff κ as long as we observe
an improvement over symmetric codes (i.e., asymmetry ratio
r = 1).

In this comparison, it is of course important to have a
reliable estimate of the threshold for the symmetric case r = 1
since this is our reference point. We make three observations
concerning this point:

First, from an operational viewpoint, it is natural to op-
timize the decoding success probability while restricting
attention to efficient decoders. We use the BSV decoder with
a particularly high bond dimension (see Appendix D 5). This
should guarantee that the decoder provides a good approx-
imation to maximum likelihood decoding while still being
efficient.

Second, our threshold estimate for the symmetric case
is comparable to previously obtained threshold values (cf.
Sec. V B) in this well-studied scenario, increasing confidence
in their reliability.

Third, we argue here that the approximate probability dis-
tributions π̃ are—for the considered parameter regime and
cutoff κ—very close to the actual probability distributions
π . That is, the input to the BSV decoder only differs by a
small amount from the ideal input. While we do not make any
claims about the continuity properties of the BSV decoder,
this is at least some indication that using these approximate
distributions is justified.

For this analysis, define the quantities

α+ := max
r,σ

{√
2πr

σ 2

√
2π

rσ 2

}
and

α− := min
r,σ

{√
2πr

σ 2
,

√
2π

rσ 2

}
,

where the optimizations are over the parameter values (r, σ )
considered in our simulations. The logical error probabili-

ties without GKP side information (39) are computed via
the probabilities qX , qZ , i.e., the expressions (44) and (45).
As the slope of the error function erf (τ ) is decreasing with
increasing |τ |, the contribution of the summands in (44) and
(45) decreases with n ∈ Z. For n �= 0, the function

inc(n) := 1

2

(
erf

(
α−n + α+

4

)
− erf

(
α−n − α+

4

))

is thus an upper bound on the increment caused by the nth
summand in both cases (44) and (45). Note that the error
function is an odd function and thus inc(n) = inc(−n). We
can therefore bound the error introduced by a cutoff κ � 1 by

max
P∈{X ,Z}

(1 − qP ) − (1 − q̃P )

� 2
∞∑

n=κ

inc(n)

= 2√
π

∞∑
n=κ

∫ α−n+α+/4

α−n−α+/4
e−τ 2

dτ

� 2√
π

∫ ∞

α−κ−α+/4
e−τ 2

dτ

� 2√
π

∫ ∞

α−κ−α+/4

τ

α−κ − α+/4
e−τ 2

dτ

= 1

(α−κ − α+/4)
√

π
e−(α−κ−α+/4)2

. (C1)

Here q̃X and q̃Z are given by the expressions (44) and (45)
with the sum over n ∈ Z replaced by a sum from −κ + 1 to
κ − 1. On the other hand, 1 − qX and 1 − qZ as given in (44)
and (45) can be bounded from below by their summand n = 0,
respectively. The latter in turn is in both cases greater than or
equal to erf (α−/4). Thus the ratio of the approximation error
in the calculation of (44) and (45) and the true value is

max
P∈{X ,Z}

(1 − qP ) − (1 − q̃P )

1 − qP

� (
√

π (α−κ − α+/4) erf (α−/4) e(α−κ−α+/4)2
)−1. (C2)
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FIG. 11. Test of the necessary bond dimension for the GKP code (without side information): Error probabilities are estimated for different
bond dimensions χ . Heuristically, a bond dimension χ suffices if Perr does not decrease significantly when the bond dimension is increased
further. We observe that the required bond dimension χ appears to be nonmonotonic as a function of the asymmetry ratio r, being maximal in
some intermediate regime of r (left hand side). The required bond dimension increases with increasing distance d (right-hand side). (a) Ratio
r = 2.0. (b) Ratio r = 3.0. (c) Ratio r = 4.0. (d) Distance d = 9. (e) Distance d = 13. (f) Distance d = 17.

For the given parameter values r ∈ [1, 4] and σ ∈
[4/10, 7/10], the parameters α+ and α− evaluate to
(α+, α−) = 5

√
2π (1, 1/7). Inserting this into (C2) shows that

with a cutoff κ = 10, the approximate values 1 − q̃X , 1 − q̃Z

are within 10−93% of the correct values 1 − qX , 1 − qZ . Since
the probabilities of interest are given by degree-2 polynomials
in (qX , qZ ), see Eq. (51), this shows that the introduction of a
cutoff leads to a negligible error in the computation of π .
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APPENDIX D: CHOICE OF PARAMETERS

In this Appendix, we discuss the choice of parameters used
in our simulation. This includes physical parameters such as
the code size d (Appendix D 1), the noise strength as quan-
tified by the variance σ (Appendix D 2), and the asymmetry
ratio r (Appendix D 3).

We also discuss parameters related to the simulation, in-
cluding the number of Monte Carlo iterations (Appendix D 4),
as well as the necessary bond dimension χ in the BSV decoder
(Appendix D 5).

1. Code sizes

We consider code sizes d ∈ {9, 13, 17, 21}, which are
comparable to what has been used in [18,34] to study the
performance of the surface code under biased noise using the
BSV decoder.

2. Noise strengths (variance)

To identify noise levels of interest, we use previously
known results: In Ref. [5], it was shown that (standard)
square lattice toric-GKP codes can tolerate isotropic Gaus-
sian displacement noise with standard deviations up to values
between σ ≈ 0.54 and σ ≈ 0.55 when a certain weighted
minimum-matching decoding is used without GKP side in-
formation, and around σ ≈ 0.61 when GKP side information
is employed. Based on this, we simulate noise levels given
by standard deviations σ ∈ [0.4, 0.7) in increments of 0.02 (a
higher resolution of 0.01 is used in the vicinity of empirical
thresholds).

3. Asymmetry ratios

As discussed in Sec. IIIF 2, a lattice asymmetry ratio r
corresponds to an increase of 10 log10(r) in squeezing with re-
spect to the square lattice GKP code (we consider r � 1). The
relevant quantity to decide whether an amount of squeezing is
physically reasonable is the total squeezing resulting from the
isotropic noise variance σ 2 and the ratio r. The physically rea-
sonable range of r therefore depends on the value of σ under
consideration. Here we consider asymmetry ratios r ∈ [1, 4]
with increments of 0.5, which translate to a squeezing <11 dB

for the considered range of variances σ ∈ [0.4, 0.7]. Note that
this is around the amount of squeezing within reach of near
term experimental setups, see, e.g. the discussion in Ref. [11].
Ratios up to r = 4 turned out to be sufficient for the numerical
demonstration of the beneficial effect of asymmetry.

4. Number of Monte Carlo iterations

The number of simulations completed for every tuple
(σ, d, r) depends on the distance d: the distances 9,13,17,
and 21 are simulated approximately 50 000, 30 000, 30 000,
and 10 000 times, respectively; for higher distances the fluc-
tuations decrease and hence the empirical estimates converge
faster. For the bond dimension tests (see Appendix D 5) the
number of simulations for all distances is approximately
30 000.

5. Necessary bond dimension

For given choices of σ, r, and d , the bond dimension χ has
to be chosen suitably large in order for the BSV decoder to be
sufficiently accurate.

To determine appropriate bond dimensions for our
model, we conducted test simulations for distances d ∈
{9, 13, 17, 21} and ratios r ∈ [1.5, 4] (in increments of 0.5),
for a fixed standard deviation σ = 0.58 (i.e., in the vicinity
of the expected threshold estimate) and for bond dimensions
χ ∈ {36, 48, 60, 72}. Note that χ = 36 and χ = 48 are the
bond dimensions used in Refs. [18] and [34], respectively.
Examples are depicted in Fig. 11. We find a similar behavior
as observed in Ref. [34]: intermediate ratios (biases) require
higher bond dimensions. Furthermore, the necessary bond di-
mension increases with the distance d . Our tests show that for
distances d = 9, 13, 17, the bond dimensions χ = 48, 60, 72
are sufficient, respectively, for all considered ratios. For dis-
tance d = 21 we choose χ = 100, since the tests indicate
that χ = 72 is insufficient. Also, the values for ratio r = 1,
which serve as benchmarks, are simulated with bond dimen-
sion χ = 100 to prevent any bias toward our interpretation.
As explained in the main text, for the asymmetric (r > 1)
cases choosing lower bond dimensions χ suffices. This is
because any choice of χ provides estimates for the logical er-
ror probability of some decoder. This suffices to demonstrate
improvements over the symmetric (r = 1) case.
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