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Quantum correlation entropy
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We study quantum coarse-grained entropy and demonstrate that the gap in entropy between local and global
coarse-grainings is a natural generalization of entanglement entropy to mixed states and multipartite systems.
This “quantum correlation entropy” SQC is additive over independent systems, is invariant under local unitary
operations, measures total nonclassical correlations (vanishing on states with strictly classical correlation), and
reduces to the entanglement entropy for bipartite pure states. It quantifies how well a quantum system can be
understood via local measurements and ties directly to nonequilibrium thermodynamics, including representing
a lower bound on the quantum part of thermodynamic entropy production. We discuss two other measures
of nonclassical correlation to which this entropy is equivalent and argue that together they provide a unique
thermodynamically distinguished measure.
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I. INTRODUCTION

Entanglement entropy is an important measure of nonlocal
correlations in quantum systems, with uses ranging from in-
formation theory [1–4] to many-body theory [5–9], quantum
thermodynamics [10–12], quantum phase transitions [13–15],
and description of the holographic principle and black hole
entropy [16–19]. It is defined only for pure states of a bipartite
quantum system, where Sent (|ψ〉〈ψ |) = SVN(ρA) = SVN(ρB),
with |ψ〉 a global pure state, where ρA and ρB are the re-
duced density operators in each subsystem, and with SVN(ρ) =
−tr(ρ log ρ) the von Neumann entropy.

There are various generalizations of entanglement entropy
to mixed and/or multipartite states, including both measures
of total nonclassical correlation [20–22] and measures of en-
tanglement [3,4]. Measures of total nonclassical correlation
(synonymously here, quantum correlation) quantify failure
to have strictly classical correlations, while measures of en-
tanglement quantify failure to be separable (see [24,41] for
further comparison). In bipartite pure states, where “entangle-
ment entropy” is defined, the two are equivalent.1

Many particular measures have been defined, often moti-
vated by characterizing the usefulness of states in performing
information tasks, such as quantum communication [25–29],
metrology [30–34], and computation [35–37], where both
quantum correlation and entanglement can be key resources

*jcschind@ucsc.edu
†dsafrane@ucsc.edu
1If a state is strictly classically correlated, then it is separable.

Some separable states have nonclassical correlations and can exhibit
inherently quantum features [24,41]. Thus the total nonclassical cor-
relation is more general than, but includes, entanglement. Sometimes
“discord” is used synonymously with “total nonclassical correlation,”
but we reserve discord to refer to measures based on mutual informa-
tion difference, like the original discord [23].

[38–41]. These usually quantify either some type of utility
(e.g., quantum deficit [42], distillable entanglement [43,44],
entanglement of formation [45], entanglement cost [46]) or
distance from some distinguished set of states (e.g., relative
entropy of quantumness [56], relative entropy of entanglement
[47]). But they do not retain a clear interpretation as entropy,
in the sense of statistical mechanics.

Meanwhile, there are also many related but distinct notions
of entropy. These range from the classical Gibbs and quantum
von Neumann entropies, which are informational measures
of the inherent uncertainty in a state, to “microstate-counting
entropies” such as the classical Boltzmann entropy, and ulti-
mately to the thermodynamic entropy and its application to
heat and work.

In this context it is well known that the relationship be-
tween informational entropies and thermodynamic entropy is
related to the concept of coarse-graining, as is the case with
classical Boltzmann entropy. Recently, a precise formulation
of coarse-graining in quantum systems, which was originally
discussed by von Neumann [48],2 has been revived [50,51]
and shown to provide a comprehensive framework for con-
necting quantum entropies to thermodynamics [49–54]. A
key aspect of this connection is that while coarse-graining
a system in energy provides a relation to the equilibrium
thermodynamic entropy, the nonequilibrium thermodynamic
entropy relates to local energy coarse-grainings.

In this article we study local coarse-grainings more gen-
erally and find that there is a gap in entropy between local
and global coarse-grainings that is a natural generalization of
the entanglement entropy to mixed and multipartite systems.
This quantum correlation entropy SQC (“quarrelation entropy,”
for short)—defined as the difference between the infimum
local and global coarse-grained entropies—has informational,
statistical, and thermodynamic interpretations. As we see, it

2And see [49] for a detailed account of the history of this idea.
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quantifies the uncertainty of local measurements and directly
contributes to the nonequilibrium thermodynamic entropy.

The quantum correlation entropy, as well as being a sta-
tistical and thermodynamic entropy, is a measure of total
nonclassical correlations. As discussed further in Sec. VI, it
is equal to two other such measures: the relative entropy of
quantumness [24,42,55–57] (a measure of the distance from
the set of classically correlated states) and the zero-way quan-
tum deficit [42,58,59] (a measure of the work extractable by
certain local operations.) The equivalence of these measures,
each with quite different meanings, suggests that together they
have a general and distinguished role. With this in mind, this
paper aims to provide a self-contained treatment in terms of
the statistical mechanics of coarse-graining.

Entanglement entropy, by its usual definition, is defined
only for bipartite pure states, where entanglement and total
nonclassical correlation are equivalent. The generalization SQC

can be nonzero on separable states but is zero precisely on
classically correlated states. This clarifies that it measures
total nonclassical correlation, not entanglement. In contrast,
no entanglement measure is known to arise from statistical
mechanics.3

Analysis in terms of coarse-graining leads to a distinction
between three types of entropy:4

(i) von Neumann entropy is inherent to the state ρ and
quantifies fundamental uncertainty in a system due to being
in a mixed state.

(ii) Quantum correlation entropy (equivalently, where it is
defined, entanglement entropy) depends on a partition into
subsystems and quantifies the additional uncertainty in a
multipartite system if one can only make subsystem-local
measurements.

(iii) Coarse-grained entropy depends on a division of the
state space into macrostates and quantifies uncertainty associ-
ated with describing a system in terms of these macrostates.

The first two each contribute to the third: the entropy of any
possible coarse-graining is bounded below by the von Neu-
mann entropy, while the entropy of any local coarse-graining
is bounded below by the sum of the von Neumann and quan-
tum correlation entropies.5 In this way quantum correlation
entropy provides a key piece to a unified treatment of quantum
statistical and thermodynamic entropy, along with a direct link
to important measures in quantum information theory.

3This raises a subtle point. The term “entanglement entropy” sug-
gests that “entanglement” (i.e., nonseparability) and “entropy” are
closely related. This seems to be true only in the special case of bi-
partite pure states. More generally the statistical mechanical entropy
appears (based on this work) to be tied to quantum correlations, not
entanglement, when the two are inequivalent.

4With this distinction the terms “von Neumann entropy” and “en-
tanglement entropy” should not be applied interchangeably. While
it is true that von Neumann entropy may arise in a system (say,
a joint system described by ρAB) because of its entanglement with
some external system (say, system C), this is a fundamentally dif-
ferent concept than quantum correlation entropy (i.e., entanglement
entropy) within the system (that is, between A and B).

5Recalling its connection to local energy coarse-graining, this sum
is then a bound on the nonequilibrium thermodynamic entropy.

II. QUANTUM CORRELATION ENTROPY
FROM COARSE-GRAINED ENTROPY

In the theory of quantum coarse-grained entropy [48–52],
a coarse-graining C = {P̂i} is a collection of Hermitian (P̂†

i =
P̂i) orthogonal projectors (P̂iP̂j = P̂i δi j) forming a partition of
unity (

∑
i P̂i = 1). A coarse-graining is the set of outcomes of

some projective measurement. Each subspace generated by P̂i

is called a “macrostate.”
Given a coarse-graining C the “coarse-grained entropy” (or

“observational entropy”) of a density operator ρ is

SC (ρ) = −
∑

i

pi log

(
pi

Vi

)
, (1)

where pi = tr(P̂iρ) is the probability of finding ρ in each
macrostate, and Vi = tr(P̂i ) is the volume of each macrostate.
The coarse-grained entropy is defined both in and out of
equilibrium, obeys a second law, and (with a properly chosen
coarse-graining) is equal to the thermodynamic entropy in
appropriate cases [49–54,60–62].

One way to specify a coarse-graining is via the spec-
tral decomposition of an observable operator, Q̂ = ∑

q q P̂q,
with associated coarse-graining, CQ̂ = {P̂q}. If Q̂ has a full
spectrum of distinct eigenvalues, then SCQ̂

(ρ) is merely the
Shannon entropy of measuring Q̂. On the other hand, Q̂ may
have larger eigenspaces. If ρ has a definite value q, then
SCQ̂

(ρ) is the log of the dimension of the q eigenspace of Q̂
(i.e., the volume of the q macrostate), a quantum analog of
the Boltzmann entropy. Evidently the coarse-grained entropy
provides a quantum generalization of both the Shannon and
the Boltzmann entropies of a measurement and represents the
uncertainty an observer making measurements assigns to the
system.

Given a density operator ρ, the minimum value of coarse-
grained entropy, minimized over all coarse-grainings C, is

inf
C

(SC (ρ)) = SCρ
(ρ) = SVN(ρ), (2)

the von Neumann entropy [48,50,51]. The second equality
states that the von Neumann entropy SVN(ρ) = −tr(ρ log ρ)
is equal to the coarse-grained entropy SCρ

(ρ) in the coarse-
graining Cρ consisting of eigenspaces of ρ. Thus (2) expresses
that no measurement can be more informative than a measure-
ment of the density matrix itself.

Now consider an arbitrary multipartite system AB . . .C,
whose Hilbert space is the tensor product H = HA ⊗ HB ⊗
. . . ⊗ HC . In this background one can consider a subclass of
coarse-grainings, the “local” coarse-grainings, defined by

CA ⊗ CB ⊗ . . . ⊗ CC = {
P̂A

l ⊗ P̂B
m ⊗ . . . ⊗ P̂C

n

}
, (3)

where CA = {P̂A
l } is a coarse-graining of A, and so on for the

other subsystems. These are precisely the coarse-grainings
describing local measurements (i.e., consisting of only local
operators). Applying definition (1) in such a coarse-graining
yields the entropy

SCA⊗...⊗CC (ρ) = −
∑
lm...n

plm...n log

(
plm...n

Vlm...n

)
, (4)
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where plm...n = tr(P̂A
l ⊗ P̂B

m ⊗ . . . ⊗ P̂C
n ρ) are the probabili-

ties of finding the system in each macrostate, and Vlm...n =
tr(P̂A

l ⊗ P̂B
m ⊗ . . . ⊗ P̂C

n ) are the volumes of each macrostate.
One can now ask: What is the minimum entropy of any set

of local measurements? That is, what is the infimum value

inf
C=CA⊗...⊗CC

(SC (ρ)) (5)

of the coarse-grained entropy, if the minimum is taken only
over local coarse-grainings?

There are two possibilities. Either the minimum value
SVN(ρ) can be saturated by local coarse-grainings or it cannot.
Which of these is the case depends on the density matrix. If
the minimum fails to be saturated, then there is an entropy
gap �S above the minimum which is inherent to any local
measurements.

A natural question is then How is this entropy gap, asso-
ciated with restriction to local coarse-grainings, related to the
entanglement entropy? Two observations provide a founda-
tion for answering this question. The first, quite nontrivial,
observation is that the entropy gap is equal to the entan-
glement entropy for bipartite pure states (see property Ia;
Sec. III). The second is that the entropy gap is zero for any
product state (see property II; Sec. III). These facts suggest
that entanglement entropy should in general be identified with
this entropy gap. The aim of this article is to make precisely
that identification and show that it leads to an intuitive and
useful framework.

The observations above motivate the definition

SQC
AB...C (ρ) ≡ inf

C=CA⊗...⊗CC

(SC (ρ)) − SVN(ρ) (6)

of the quantum correlation (quarrelation) entropy SQC
AB...C (ρ).

The subscript denotes the partition into subsystems, allowing
various partitions of the same system.

In other words, quarrelation entropy is the difference in
coarse-grained entropy between the best possible local coarse-
graining and the best possible global coarse-graining. This
definition can be evaluated exactly for a variety of states using
the properties introduced below and can also be implemented
numerically.

III. PROPERTIES

The quantum correlation (quarrelation) entropy SQC, de-
fined by Eq. (6), has the following properties. Proofs are given
in the Appendix.6

(Ia) A bipartite system AB in a pure state ρ = |ψ〉〈ψ |, with
reduced densities ρA and ρB in the A and B subsystems, has
quarrelation entropy

SQC
AB(ρ) = SVN(ρA) = SVN(ρB). (7)

This is equal to the usual entanglement entropy.

6Note that properties (I), (IIa), and (VII) and Eqs. (12) and (16)
have appeared in the literature in the context of equivalent measures
(see Sec. VI for further discussion). Also, Bravyi [63] has evaluated
an equivalent measure on the so-called determinant and hexacode
pure states.

(Ib) More generally, for any multipartite state of the special
(“maximally correlated” [58,64]) form

ρ =
∑

i j

σi j |aibi . . . ci〉〈a jb j . . . c j |, (8)

where σi j are complex coefficients and |al〉, |bm〉, . . . , |cn〉
are orthonormal bases for the A, B, . . . ,C subsystems, the
quarrelation entropy is

SQC
AB...C (ρ) =

(
−

∑
i

σii log σii

)
− SVN(ρ). (9)

Note that for ρ to be a state requires σi j = σ ∗
ji and

∑
i σii =

1. These states include all pure states of the form |ψ〉 =∑
k αk|akbk . . . ck〉 and, thus, all bipartite pure states by

virtue of the Schmidt decomposition. The infimum defining
quarrelation entropy is achieved by coarse-graining in the
|albm . . . cn〉 basis.

(IIa) In finite dimensions, SQC
AB...C (ρ) = 0 if and only if ρ is

a classically correlated state—that is, if there exists a locally
orthonormal product basis diagonalizing ρ. Explicitly, classi-
cally correlated states (sometimes called “strictly classically
correlated”) are those that can be put in the form

ρ =
∑
lm...n

plm...n|albm . . . cn〉〈albm . . . cn|, (10)

where |al〉, . . . , |cn〉 form orthonormal bases in A, . . . ,C, and
plm...n form a set of real probabilities. That these are the
states with strictly classical correlations has been studied
extensively [23,24,41,42,56,58,65,66]. Classically correlated
states include all product states and form a strict subset of the
separable states.

(IIb) In general (finite or infinite dimensions), ρ is a clas-
sically correlated state if and only if both infC=CA⊗...⊗CC SC (ρ)
is realized as a minimum and SQC

AB...C (ρ) = 0. In finite dimen-
sions the infimum is always realized.

(III) For any local coarse graining CA ⊗ . . . ⊗ CC ,

SCA⊗...⊗CC (ρ) � SVN(ρ) + SQC
AB...C (ρ). (11)

That is, any observer who can make only local measurements
observes at least as much uncertainty as the inherent uncer-
tainty in the joint state (the von Neumann entropy) plus an
additional contribution (the quarrelation entropy) due to their
inability to make a nonlocal joint measurement.

(IV) In general, 0 � SQC
AB...C (ρ) � log dim H − SVN(ρ). Ad-

ditional bounds can be computed directly from local von
Neumann entropies. A family of lower bounds is given by

SQC
AB...C (ρ) � SVN(ρloc) − SVN(ρ), (12)

where ρloc is any local reduced density matrix obtained by
tracing out some of the subsystems. An upper bound is given
by

SQC
AB...C (ρ) �

(∑
X

SVN(ρX )

)
− SVN(ρ), (13)

where X ∈ {A, B, . . . ,C} is an index summing over all the
subsystems, with ρX the reduced density in each one.
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(V) If H = HA ⊗ HB and HB = HB1 ⊗ HB2 , then for a
fixed ρ on H,

SQC
AB1B2

(ρ) � SQC
AB(ρ). (14)

That is, further splitting up the system into smaller subsystems
can only increase the quarrelation entropy.

(VI) If H = HA ⊗ HB and HB = HB1 ⊗ HB2 , then

SQC
AB1B2

(ρA ⊗ ρB) = SQC
B1B2

(ρB). (15)

If also HA = HA1 ⊗ HA2 , then

SQC
A1A2B1B2

(ρA ⊗ ρB) = SQC
A1A2

(ρA) + SQC
B1B2

(ρB). (16)

That is, SQC is additive on independent systems.
(VII) SQC

AB...C (ρ) is invariant under local unitary oper-
ations. That is, if ρ̃ = (UA ⊗ . . . ⊗ UC ) ρ (U †

A ⊗ . . . ⊗ U †
C ),

then SQC
AB...C (ρ̃ ) = SQC

AB...C (ρ), where U are local unitaries.

IV. RELATIONSHIP TO SUBSYSTEM ENTROPIES
AND MUTUAL INFORMATION

In order to understand the quantum correlation (quarrela-
tion) entropy it is instructive to see how the entropy of a local
coarse-graining is minimized, by considering the identity

SCA⊗...⊗CC (ρ) =
(∑

X

SCX (ρX )

)
− ICA⊗...⊗CC (ρ), (17)

where X ∈ {A, B, . . . ,C} labels the subsystems, with ρX the
reduced density in each one, and

ICA⊗...⊗CC (ρ) ≡
∑
lm...n

plm...n log

(
plm...n

pA
l pB

m . . . pC
n

)
(18)

is the mutual information of the joint measurement. The pA
l ≡∑

m...n plm...n = tr(P̂A
l ρA) and so on are marginal probabilities,

and subadditivity of the Shannon entropy implies I � 0.
In computing SQC one might hope to minimize the subsys-

tem entropies SCX while maximizing ICA⊗...⊗CC in (17). These
extrema cannot, in general, be achieved simultaneously, so an
optimal coarse-graining must obtain some balance of these
contributions.

Pure states of the form |ψ〉 = ∑
k αk|akbk . . . ck〉 [cf. prop-

erty (Ib)] provide a special case where the subsystem entropies
and mutual information can be simultaneously extremized. In
the optimal coarse-graining, assuming N subsystems, one then
finds

∑
X SCX (ρX ) = NS0 and I = (N − 1)S0, where S0 =

−∑
k |αk|2 log (|αk|2). Subtracting these two contributions

leads in this special case to

SQC
AB...C (ρ) = SVN(ρA) = · · · = SVN(ρC ) = S0, (19)

an equality which could be somewhat misleading, since in
general the quarrelation entropy and subsystem von Neumann
entropies will not be equal.

V. EXAMPLES

To demonstrate calculability we exhibit two simple ex-
amples of some relevance to the literature. Example (A)
compares “two Bell pair” versus GHZ entanglement in dif-
ferent partitions, relevant to genuine multipartite nonlocality
[67–69]. Example (B) considers a prototypical “separable but

not classically correlated” state, relevant to local indistin-
guishablity [70].

(A) In a four-partite system labeled A1 ⊗ A2 ⊗ B1 ⊗
B2, define |φGHZ〉 = (|0000〉 + |1111〉)/

√
2 and |φ2Bell〉 =

|φ+〉A1B1
⊗ |φ+〉A2B2

, where |φ+〉 = (|00〉 + |11〉)/
√

2, each
with density ρ = |φ〉〈φ|. By properties (I) and (VI) above,
we find for the four-partite case SQC

A1A2B1B2
(ρ2Bell ) = 2 bits,

while in two-bipartite cases SQC
(A1∪B1 )(A2∪B2 )(ρ2Bell ) = 0 and

SQC
AB(ρ2Bell ) = 2 bits. Meanwhile, SQC(ρGHZ) = 1 bit in all

these partitions.
(B) In a bipartite system A ⊗ B define ρ = 1

2 (|00〉〈00| +
|1+〉〈1 + |), where |+〉 = (|0〉 + |1〉)/

√
2. Properties (IV) and

(II) provide an analytical bound α � SQC
AB(ρ) > 0 [where α ≈

0.6 bit is a number derived from (13)]. Numerical minimiza-
tion estimates SQC

AB(ρ) = 0.50 .

VI. EQUIVALENCE TO OTHER MEASURES

Equivalent measures to the entropy considered here have
arisen with various motivations and in various guises through-
out the literature. The first seems to have been considered (in
the special case of pure states) by Bravyi [63] as a minimal
Shannon entropy of measurement outcomes. The motivation
was essentially similar to that here, only lacking the connec-
tion to coarse-graining and statistical mechanics. This was
generalized to mixed states by SaiToh et al. [55], though with-
out reference to Bravyi. Between those studies the concept of
quantum deficit was introduced by Oppenheim et al. [58] and
in subsequent studies [42,59] the zero-way deficit was shown
(implicitly) to be equal to the measure of Bravyi and SaiToh
et al. and also (explicitly) to the relative entropy distance to
classically correlated states. That distance was then proposed
as an important measure of nonclassicality in its own right
by Groisman et al. [56], who called it the relative entropy
of quantumness, and systematically related to other relative
entropy-based measures by Modi et al. [24], who called it the
relative entropy of discord. More recently, similar quantities
have appeared related to quantum coherence [71–80], where
the relative entropy of quantumness is the minimum over local
bases of the relative entropy of coherence.

Here we are interested in the equivalence of three quan-
tities. The zero-way quantum deficit, which measures a
difference in work extractable by local versus global opera-
tions, is defined by [42]

�∅(ρ) = inf
	∈CLOCC∅

[S(ρ ′
A) + · · · + S(ρ ′

C )] − S(ρ), (20)

where 	 is a zero-way CLOCC operation (see [42]), ρ ′ =
	(ρ), and ρ ′

A = trB...C (ρ ′) and so on are the reduced densities.
The relative entropy of quantumness (also known as the rela-
tive entropy of discord [24]) measures distance to the nearest
classically correlated state and is defined by [41,56]

SREQ(ρ) = inf
χ∈χc

S(ρ || χ ), (21)

where χc is the set of all classically correlated states as defined
by (10) and S(ρ || χ ) = tr(ρ log ρ − ρ log χ ) is the quantum
relative entropy. And SQC(ρ) is defined by (6).

It is well known that �∅ = SREQ [20,42]. It is easy
to also show SQC = SREQ. By Theorem 3 in [51], every
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coarse-graining can be refined to rank 1 without increasing
the coarse-grained entropy, so that (6) can be rewritten as
an infimum over rank 1 local projectors. Then an application
of Lemma 1 from [42] leaves the composition of two infima
which combine to the one in (21) above. Thus �∅ = SREQ =
SQC.

This measure therefore has three significant and comple-
mentary interpretations: (i) in terms of work extractable by
local operations, (ii) as the distance from the set of classi-
cally correlated states, and (iii) as a statistical mechanical
entropy related to nonequilibrium thermodynamics. Given
this breadth of meaning, these three quantities seem to provide
a thermodynamically distinguished measure of nonclassical
correlation.

VII. INEQUIVALENT BUT RELATED MEASURES

In the special case where both terms in (17) can be ex-
tremized by the same coarse-graining, SQC becomes equal to
other related measures. To exemplify this in a simple setting,
consider a bipartite state ρAB such that ρA, ρB, and ρA ⊗ ρB all
have nondegenerate eigenspaces.

First, note that SQC can be related, in general, to a difference
in mutual information. Defining the quantum mutual informa-
tion as Iqm = SVN(ρA) + SVN(ρB) − SVN(ρAB) and the classical
mutual information Icl as the supremum of (18) over local
coarse-grainings, one finds

SQC
AB � Iqm − Icl. (22)

This is proved by plugging (17) into (6) and applying inf(x −
y) � inf (x) − sup(y).

If there exists a local coarse-graining C0 that simultane-
ously infimizes the marginal term and supremizes the mutual
term in (17), then (22) becomes an equality, and C0 = CρA ⊗
CρB = CρA⊗ρB is the coarse-graining in reduced density matrix
eigenbases (we have used the simplifying assumption about
nondegeneracy here). Then, in this special case,

SQC
AB(ρAB) = SCρA ⊗CρB

(ρAB) − SVN(ρAB)

= Iqm − Icl. (23)

This difference of mutual information is a symmetric discord
measure [81–83] and is closely related to measures of corre-
lated coherence [75,76,78–80].

But equality (23) does not hold in general—generically
there may be three distinct coarse-grainings: infimizing the
marginal term, supremizing the mutual term, and infimizing
their difference. Then all three quantities in (23) are inequiv-
alent, and only SQC has a simple interpretation as minimal
coarse-grained entropy. The equality in (22) does hold in most
simple examples, but a counterexample to equality is given
by the state in example (B) in Sec. V above, where strict
inequality can be observed numerically.

VIII. DISCUSSION AND CONCLUSIONS

Consider a state ρ in a multipartite system. The coarse-
grained entropy of ρ, when minimized over all possible
coarse-grainings, has a minimum given by the von Neumann
entropy. But if one minimizes over only local coarse-

grainings, the minimum may be higher. This entropy gap is
what we call the quantum correlation (quarrelation) entropy.

This definition treats pure and mixed states and multipartite
systems with any number of subsystems all on equal footing.
It is also a measure of total nonclassical correlation: it is equal
to the zero-way quantum deficit and to the relative entropy
of quantumness. Together these provide a clear interpretation:
this entropy arises because no set of local measurements can
reveal all information about a state with nonclassical correla-
tions.

The given definition can be extended immediately to clas-
sical systems (described by phase-space density distributions)
in the context of classical coarse-grained entropy [52], but in
the classical case SQC is always zero. This reflects that, like
classically correlated quantum states [cf. (10)], the state of a
classical system is exactly determined by local measurements.

In addition to measuring nonclassical correlation, this
entropy has a role in thermodynamics. So far quantum coarse-
grained entropy has been formally applied to nonequilibrium
thermodynamics in two main scenarios.

In one scenario, Strasberg and Winter [49,54] considered
a system-bath interaction where the total thermodynamic en-
tropy was identified as SCS⊗CE (in the present notation), where
CE is an energy coarse-graining of the bath, and CS is any
coarse-graining of the system. This entropy was shown to
be produced by nonequilibrium processes in accordance with
standard thermodynamic laws. The present work indicates
that one factor behind entropy production is the development
of nonclassical correlations between the system and the bath
and, in particular, that SCS⊗CE � SQC

SB(ρ) + SVN(ρ). Strasberg
and Winter also showed that the entropy production splits
into classical and quantum parts—and comparing to (21) and
(42) in [49], SQC here is a lower bound on the quantum part
alone. This quantum entropy production coincides with the
relative entropy of coherence in the coarse-graining basis, and
recent studies of nonequilibrium thermodynamics based on
coherence [84–86], and other methods [87], have also led to
related observations.

The other scenario considered [50,51] was thermalization
in a closed isolated system with local interactions, initialized
away from equilibrium. The nonequilibrium thermodynamic
entropy in this case can be identified with the observational
entropy SC (ρ) in a local energy coarse-graining C = ⊗i CHi ,
where the system is split into small but macroscopic local
subsystems each with local Hamiltonian Hi. Starting out of
equilibrium, over time this entropy dynamically approaches
the expected equilibrium value (up to some corrections de-
pendent upon finite-size effects and on the initial state)—even
though the system is closed and, perhaps, pure. Not only does
this entropy dynamically equilibrate, but also it has a clear
interpretation when the system has only partially equilibrated
[52,88]. Comparison with an equivalent classical scenario
shows that this entropy increases in both situations [52].
Through (11), the present work shows that in the quantum
case, creation of nonclassical correlations is an extra factor
that drives the entropy upwards.

In both cases, the nonequilibrium thermodynamic en-
tropy can be seen as arising from some appropriate local
coarse-graining and, thus, has three additive (nonnegative)
contributions: (i) SVN(ρ), the mixedness of the global state;
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(ii) SQC(ρ), the entropy of nonclassical correlation between
the relevant subsystems; and (iii) an additional contribution
depending on the specific coarse-graining relevant to the prob-
lem.

Quantum correlation entropy thus provides useful insight
into the relations between thermalization, entropy production,
and nonclassical correlation and clarifies how entanglement
entropy—as a statistical mechanical entropy—generalizes to
generic systems.
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APPENDIX

This Appendix provides proofs of properties (I)–(VII) of
SQC listed in the text.

(Ia) This follows from (Ib), but we show the spe-
cial case here, for clarity. Every bipartite pure state can
be put in the form |ψ〉 = ∑

k ck|akbk〉, ρ = |ψ〉〈ψ |, by
Schmidt decomposition. The reduced densities obey S0 =
−∑

k |ck|2 log |ck|2 = S(ρA) = S(ρB). Evaluating in the local
coarse-graining C = {|albm〉〈albm|} yields SC (ρ) = S0. So by
(6), SQC

AB(ρ) � S0. But we can also show SQC
AB(ρ) � S0, by

considering marginal entropies, as follows. The lemma in
the proof of (IV) shows that, for any local coarse-graining,
SCA⊗CB (ρ) � SCA (ρA). But SCA (ρA) � SVN(ρA). Since every
local coarse-graining obeys SCA⊗CB (ρ) � S(ρA), so does the
infimum, so SQC

AB(ρ) � S0. Thus, SQC
AB(ρ) = S0.

(Ib) Let S0 = −∑
i σii log σii − SVN(ρ). C = {|al〉〈al |} ⊗

. . . ⊗ {|cn〉〈cn|} is a local coarse-graining such that SC (ρ) =
S0 + SVN(ρ). So SQC

AB...C (ρ) � S0. But (IV) with ρloc = ρA

gives also SQC
AB...C (ρ) � S0. Thus SQC

AB...C (ρ) = S0.
(IIa) This follows from (IIb).
(IIb) (⇒) Suppose |al . . . cn〉 is a product basis

diagonalizing ρ. Then C = {|al〉〈al |} ⊗ . . . ⊗ {|cn〉〈cn|} =
{|al . . . cn〉〈al . . . cn|} is a local coarse-graining finer
than Cρ , which implies SC (ρ) = SVN(ρ) (Theorem 3
in [51]), which is the infimum by (2). (⇐) Assume
minC=CA⊗...⊗CC SC (ρ) exists and is equal to SVN(ρ).
The coarse-graining C0 = {P̂l ⊗ · · · ⊗ P̂n} attaining the
minimum is finer than Cρ (Theorem 3 in [51]), thus it

diagonalizes ρ. Thus ρ = ∑
l...n pl...nP̂l ⊗ · · · ⊗ P̂n, where

pl...n are real numbers. Writing each projector into rank
1 orthogonal projectors P̂l = ∑

kl
|akl 〉〈akl | yields the

classically correlated form, (10). Then {|akl . . . ckn〉} is a
product basis diagonalizing ρ. (Finite dimensions) Only
coarse-grainings involving rank 1 projectors need be
considered in the infimum since others can be refined
(Theorem 2 in [51]). These can be written in terms of unitary
operators UA, . . . ,UC such that infC=CA⊗...⊗CC SC (ρ) =
inf (UA,...,UC ) S̃(UA, . . . ,UC ), where S̃ = −∑

l...n pl...n log pl...n,
with pl...n ≡ tr(ρ (UA ⊗ . . . ⊗ UC )†P̂l...n(UA ⊗ . . . ⊗ UC )) and
P̂l...n are projectors of any rank 1 local coarse-graining. Then
S̃ : UA × . . . × UC → R, with UA the set of unitary operators
on HA, etc. If each subsystem has finite dimension, then, in
an appropriate topology, S̃(UA, . . . ,UC ) is the real continuous
image of a compact set, so it attains its infimum.

(III) This is true by definition (6).
(IV) The loose bounds follow immediately from

(6) with (2). (Upper bound) By (17), since I � 0,
SCρA ⊗...⊗CρC

(ρ) � ∑
X SCρX

(ρX ) = ∑
X SVN(ρX ). But

SQC
AB...C (ρ) � SCρA ⊗...⊗CρC

(ρ) − SVN(ρ) since it is the infimum.
(Lemma) Let plm...n and Vlm...n be the probabilities and vol-
umes defining SCA⊗CB⊗...⊗CC (ρ). Likewise, let qm...n and Wm...n

be those defining SCB⊗...⊗CC (ρB...C ), where ρB...C = trA(ρ).
It follows that qm...n = ∑

l plm...n and Vm...n = tr(P̂A
l )Wm...n.

Thus qm...n

Wm...n
� plm...n

Vlm...n
for all l, m, . . . , n, and since − log(x)

is monotonic decreasing, −∑
lm...n plm...n log plm...n

Vlm...n
�

−∑
lm...n plm...n log qm...n

Wm...n
= −∑

m...n qm...n log qm...n

Wm...n
. Thus

SCA⊗CB⊗...⊗CC (ρ) � SCB⊗...⊗CC (ρB...C ). (Lower bound)
By repeated application of the lemma above,
SCA⊗...⊗CC⊗CD⊗...⊗CF (ρ) � SCD⊗...⊗CF (ρD...F ). But (2) implies
SCD⊗...⊗CF (ρD...F ) � SVN(ρD...F ). Ordering of subsystems is
irrelevant, so this is general.

(V) Any coarse-graining of the form CA ⊗ CB1 ⊗ CB2 is also
a coarse-graining of the form CA ⊗ CB. So one minimization
strictly includes the other.

(VI) SCA⊗CB (ρA ⊗ ρB) = SCA (ρA) + SCB (ρB) since Vlm =
VlVm and, for ρ = ρA ⊗ ρB, also plm = pl pm. Also SVN(ρA ⊗
ρB) = SVN(ρA) + SVN(ρB). Thus SQC is additive since, after
splitting, each term is infimized independently. Then (15)
follows from SQC

A (ρA) = 0.
(VII) Write the infimum of (6) in terms of local unitaries

as in the proof of (IIb). The local unitaries defining ρ̃ are
absorbed into the infimum, so the infimum is invariant. Since
also SVN(UρU †) = SVN(ρ), SQC

AB...C is invariant to generic sys-
tems.
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