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Truncated moment sequences and a solution to the channel separability problem
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We consider the problem of separability of quantum channels via the Choi matrix representation given by
the Choi-Jamiołkowski isomorphism. We explore three classes of separability across different cuts between
systems and ancillae, and we provide a solution based on the mapping of the coordinates of the Choi state (in
a fixed basis) to a truncated moment sequence (tms) y. This results in an algorithm which gives a separability
certificate using semidefinite programming. The computational complexity and the performance of it depend on
the number of variables n in the tms and on the size of the moment matrix Mt (y) of order t . We exploit the
algorithm to numerically investigate separability of families of two-qubit and single-qutrit channels; in the latter
case we can provide an answer for examples explored earlier through the criterion based on the negativity N , a
criterion which remains inconclusive for Choi matrices with N = 0.
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I. INTRODUCTION

Entanglement properties of quantum states have been at the
center of many investigations in recent years. Meanwhile, first
small-scale quantum processors have become available, and
the problem of verifying that such devices work in a properly
“quantum” way has become center stage. In that context,
it is of high relevance to understand the way entanglement
evolves under physical operations acting on quantum states
[1–6]. Many contributions to tomography and benchmarking
of quantum devices or, more generally, quantum channels
can be found in the literature, e.g., recent approaches in
the framework of resource and device-independent theories
[7,8], schemes which aim at reducing the resources required
for entanglement verification [9], methods based on quantum
process tomography [10,11], approaches that detect insepara-
bility based on witness operators [12] or separability based on
theorems exploiting local operations and classical communi-
cation [13,14]. An uncontroversial requirement for a proper
quantum operation is that the device is able to create entan-
glement, a resource on which quantum technology largely
relies. In particular it is well known that a quantum computer
that generates only limited amounts of entanglement can be
simulated efficiently classically [15]. On the other hand the
properties of devices which break entanglement turned out to
be useful for proving relevant conjectures [16] for obtaining
results for the problem of additivity of capacity [17,18] and for
their connection with different types of quantum correlations
[19]. The problem of deciding whether a quantum state is
entangled or not has been solved in the sense of its reduction
to matrix extensions and semidefinite programming [20], an
approach that was later understood more generally within
the theory of truncated moment sequences [21]. However,
no corresponding algorithm that gives a definite outcome
for quantum channels was known, i.e., an algorithm that
takes as input an arbitrary quantum channel and outputs a

definite answer whether the quantum channel can generate
entanglement for some initial separable state. Although one
might argue that with modern technology it is quite easy to
entangle, e.g., two qubits and verify their entanglement, the
entanglement is typically lost on relatively short timescales.
The way entanglement is created and possibly destroyed again
by the full channel, including storage and decoherence pro-
cesses over longer times, depends on the input state. When
trying to verify entanglement creation one would, thus, have to
search for suitable input states. In such a situation it would be
much more convenient to asses the possibility of entanglement
creation directly on the level of the quantum channel. In the
present paper we present such an algorithm for the channel
separability problem. It generalizes to quantum channels the
hierarchy of Refs. [20,21]. The resulting algorithm provides
definiteness in the answer to the question whether a quantum
channel is entangling or separable, even in cases where more
straightforward separability criteria based on positive but not
completely positive maps fail as we will demonstrate with
explicit examples in Sec. IV C.

The mathematical object associated with a physical oper-
ation is a quantum channel, which acts on the joint state of
a system A and its environment to produce an output state.
The environment can be seen as an ancilla system A′ with
which the system A is possibly entangled. The system A
itself may be bipartite and made of two subsystems A and B
which may or may not be entangled with one another or with
their respective ancillae A′ and B′. Since a channel acts on
both the system and its ancilla, the output state may be entan-
gled in different ways, which leads to different definitions of
separability of quantum channels [22–26]. These definitions
depend on whether the total state of the system and ancilla
is separable for instance across the cut A − A′ or across the
cut A − B. The algorithm that we present in Sec. III D allows
one to investigate all different notions of separability with
only small modifications needed in the input to go from one
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definition to the other, thus, giving a unifying framework for
the separability problem in the case of quantum channels.

The Choi-Jamiołkowsi isomorphism relates completely
positive trace-preserving maps with density matrices or equiv-
alently completely positive maps with positive operators.
Characterizing separability for channels can be investigated
in the light of results obtained for quantum states. Many
theoretical results have been obtained for states in terms of
separability criteria [27]. One of the most well-known neces-
sary conditions for separability is the positive partial transpose
(PPT) criterion, which states that if a state ρ is separable then
ρPT � 0 with ρPT the partial transpose with respect to one of
the subsystems [28,29].

As was shown recently [30], the separability problem for
states can be recast as a “truncated moment” problem, a prob-
lem well studied in recent years in the mathematical literature.
The truncated moment problem consists of finding conditions
under which a given sequence of numbers corresponds to
moments of a probability distribution. The moment problem
corresponds to the case where an infinite sequence is given,
whereas in the truncated moment problem only the lowest
moments are fixed and the aim is to find a measure matching
these moments. Of relevance for the separability problem as
we will see is the K-truncated moment problem where the
measure is additionally required to have the set K as support.
In Ref. [30] we showed that asking whether a quantum state
is separable along an arbitrary partition of Hilbert space can
be cast in the form of a K-truncated moment problem, and we
applied this approach to symmetric multiqubit states.

In the present paper our goal is to apply this formalism
to the more general situation of the separability of quan-
tum channels. Even though the problem of separability of
channels can be related to the one of states through the
Choi-Jamiołkowsi isomorphism, it is still relevant to explicitly
formulate the mapping with the moment problem since it
allows us to provide theorems that give necessary and suffi-
cient conditions for a channel to be separable or entanglement
breaking; moreover, the resulting necessary and sufficient
criterion is also practically usable thanks to a quite simple
algorithm that implements the theorems numerically. The pa-
per is organized as follows. In Sec. II we recall some useful
definitions about quantum channels and the various notions of
separability. In Sec. III we explain in detail how the truncated
moment problem maps to these separability problems, and we
provide a theoretical solution in the form of a set of theorems
(Sec. III C) and a numerical solution in terms of an algorithm
(Sec. III D). In Sec. IV we consider various examples of appli-
cation of this algorithm, which allow detection of separability
in quantum channels. Finally we conclude in Sec. V.

II. DEFINITIONS

We start by recalling some elementary definitions.

A. Quantum channels

Let ρ be a quantum state acting on a tensor product H =
H (1) ⊗ · · · ⊗ H (d ) of Hilbert spaces H (i) of finite dimension.
Any physical transformation can be described by a completely
positive map, that is, a map � such that � ⊗ 1 is positive on
all states acting on an extended Hilbert space H ⊗ H ′ (where

H ′ is the Hilbert space of an ancillary system of arbitrary size).
A quantum channel � is, therefore, defined as a completely
positive trace-preserving linear map, which maps ρ to a state
ρ ′ = �(ρ) acting on some Hilbert space (that for simplicity
we consider here equal to H so that �:L(H ) → L(H ), where
L(H ) is the set of linear operators on H).

Let N be the dimension of the Hilbert space H . A density
matrix can be expanded as ρ = ∑

i, j ρi j |i〉 〈 j|, with |i〉 as
the vectors of the canonical basis of H . To any linear map
� mapping ρ to ρ ′ one can associate a superoperator M
of size N2 such that ρ ′

i j = Mi j,klρkl (with summation over
repeated indices), and a dynamical matrix D� defined [31] by
a reshuffling of entries of M, namely, (D�)i j,kl = Mik, jl [27].
Alternatively one can define the Choi matrix,

C� =
∑
i, j

�(|i〉 〈 j|) ⊗ |i〉 〈 j| , (1)

[32], which coincides with D� when written in the canonical
basis. The Choi matrix C� is Hermitian. The map � is positive
if and only if the corresponding Choi matrix C� is block
positive (that is, positive on product states in H ⊗ H) [33].
According to Choi’s theorem [32], � is completely positive
if and only if its Choi matrix is positive semidefinite. Fi-
nally, � is trace preserving if and only if the N2 conditions∑

i(C�)i j,il = δ jl are fulfilled. These conditions imply that
tr C� = N .

As a consequence, if � is a quantum channel, then 1
N C�

can be seen as a density matrix acting on H ⊗ H . Any com-
pletely positive trace-preserving map can be associated with
a density matrix in that way. The Choi-Jamiołkowsi isomor-
phism is a bijection between a quantum channel � and its
Choi matrix C� [27,33]. We will also make use of the fact that
a quantum channel can be written in Kraus form as

�(ρ) =
∑

l

ElρE†
l ,

∑
l

E†
l El = 1. (2)

The Kraus operators El are not unique, but a canonical form
can be found by diagonalizing the Choi matrix and reshuffling
its eigenvectors into square matrices in which case a set of at
most N2 Kraus operators suffices [27].

B. Separability of channels

A bipartite quantum state ρ acting on a Hilbert space HA ⊗
HB is separable if it admits a decomposition,

ρ =
∑

i

wiρ
(A)
i ⊗ ρ

(B)
i , (3)

with wi � 0 and ρ
(A)
i , ρ

(B)
i acting on HA, HB respectively.

More generally, a positive semidefinite matrix M is said to
be separable if it can be written as

M =
∑

k

Pk ⊗ Qk, (4)

with Pk and Qk positive semidefinite matrices.
Various kinds of channel separability have been introduced

in the literature. Consider the Hilbert space H = HA ⊗ HB

describing a system partitioned into two subsystems A and
B and let �:L(HA ⊗ HB) → L(HA ⊗ HB) be a completely
positive map. As a criterion for complete positivity one must
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consider the extended Hilbert state H ⊗ H ′ with H ′ = H
where here and in the following the prime is used to denote
the ancilla system. The corresponding Choi matrix C� can
be seen as a density matrix acting on Hilbert space H =
HA ⊗ HB ⊗ HA′ ⊗ HB′ . Following Eq. (1) it can be expressed
as C� = ∑

i jrs �(|ir〉 〈 js|) ⊗ |ir〉 〈 js|.

1. Separable channels

� is called separable (SEP) if it takes the form �(ρ) =∑
l (Al ⊗ Bl )ρ(Al ⊗ Bl )† [22]. In other words, the Kraus oper-

ators for the channel � in (2) can be factored as El = Al ⊗ Bl .
Such channels map separable states to separable states. In
terms of these Kraus operators, the Choi matrix of a separable
map � is given by

C� =
∑
i, j,r,s

∑
l

Al |i〉〈 j|A†
l ⊗ Bl |r〉〈s|B†

l ⊗ |i〉〈 j| ⊗ |r〉〈s|. (5)

Swapping HA′ and HB we can interpret C� as an operator in
H = HA ⊗ HA′ ⊗ HB ⊗ HB′ and reexpress it as

C� =
∑

l

∑
i, j

Al |i〉〈 j|A†
l ⊗ |i〉〈 j| ⊗

∑
r,s

Bl |r〉〈s|B†
l ⊗ |r〉〈s|.

(6)
It is clear that

∑
i, j Al |i〉〈 j|A†

l ⊗ |i〉〈 j| is positive semidefinite
for all l’s because it is the Choi matrix of the completely
positive map ρ �→ AlρA†

l ; and the same holds for B. There-
fore, C� can be written as a sum

∑
l M (l )

A ⊗ M (l )
B with M (l )

A
and M (l )

B positive semidefinite: It is, thus, a separable matrix
across the (A − A′) − (B − B′) cut. It was shown in Ref. [6]
that the converse is true, namely, C� is separable across the
(A − A′) − (B − B′) cut if and only if � is a separable map.
We will use this characterization of separable channels in
Sec. III C.

We will call � fully separable (FS) if the corresponding C�

is separable across all possible cuts.

2. Entanglement-breaking channels

� is called entanglement breaking (EB) [23] if (� ⊗ 1)(ρ)
is a separable state across the H − H ′ cut whatever the initial
state ρ ∈ L(H). It does not address the separability of the
bipartite system H into A and B but rather the separability
between the system and its environment (it can, therefore,
be defined for one-qubit channels). Various necessary and
sufficient conditions for entanglement breaking have been
obtained in Ref. [23]. One necessary and sufficient criterion
is that there exist a Kraus form where all Kraus operators
have rank 1. In terms of the Choi matrix, a necessary and
sufficient condition for EB is that C� be separable across
the (A − B) − (A′ − B′) cut. Physically these channels cor-
respond to the case in which the output state is prepared
according to the measurement outcomes made by the sender
and sent via a classical channel to the receiver. We point out
the difference between separable and entanglement-breaking
channels in Fig. 1.

Channels which become entanglement breaking after a
sufficient number of compositions with themselves are called
eventually entanglement-breaking channels [25,26].

FIG. 1. Difference between separable (left) and entanglement-
breaking (right) channels for a bipartite system AB with ancillae
A′B′. The chains represent entanglement. A separable channel pre-
serves separability between (A − A′) and (B − B′), whereas an
entanglement-breaking channel destroys entanglement between A
and all the ancillae and B and all the ancillae, giving separability
between (A − B) and (A′ − B′).

3. Entanglement annihilating channels

� is called entanglement annihilating [34] if it destroys any
entanglement within the system H (but it does not necessarily
destroy entanglement between H and H ′). A necessary and
sufficient condition for entanglement annihilating channels in
terms of the Choi matrix is that C� � 0 and that its partial
trace over A and B is proportional to the identity matrix (see
Corollary 1 of Ref. [24]). Such a condition on partial trace is
not implementable in truncated moment sequence (tms) form,
so we will not address this type of separability.

III. TRUNCATED MOMENT SEQUENCES

In the present section, we introduce the mathematical
framework of truncated moment sequences (Sec. III A) and
then apply it to quantum states (Sec. III B) and channels
(Sec. III C). In general, to some nonnegative measure μ on Rn

one can associate its moments, which are the average values
of the monomials xα1

1 · · · xαn
n . The moment yα of order α =

(α1, . . . , αn) ∈ Zn
+ is defined as yα = ∫

xαdμ(x), where xα

denotes the monomial xα1
1 · · · xαn

n . If we are given a finite set y
of real numbers, i.e., a truncated sequence, a natural question
is to ask whether these numbers are the moments of a certain
probability distribution. If the measure μ is constrained to be
supported by a semialgebraic set K , the moment yα is given as

yα =
∫

K
xαdμ(x). (7)

The tms problem deals with the characterization of the trun-
cated sequences y = (yα )α∈Zn+ that are sequences of moments
of a measure μ. Solutions to this problem have been put
forward in the mathematical literature. As we will see, the
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separability problem can be expressed exactly in the form of
Eq. (7). The reader interested in the mathematical results for
the solution of the moment problem should continue with the
next section; otherwise, jumping to Secs. III B and III C will
directly give its connection with the physical problem of sepa-
rability of quantum states and quantum channels, respectively.

A. The tms problem

In order to be as self-contained and pedagogical as pos-
sible for a physics-oriented audience, we start by reviewing
and explaining some results from the mathematical literature
[35–41]. We follow the nice presentation from Ref. [42]. We
then recall the theorems obtained in Ref. [30] for quantum
states and formulate them in the case of quantum channels.

A tms y = (yα )|α|�2d of degree 2d is a finite set of real
numbers indexed by n-tuples α = (α1, . . . , αn) of integers
αi � 0 such that |α| = ∑

i αi � 2d (here we only consider
tms of even degree: indeed, although the definition would
extend trivially to odd-degree tms, even-degree tms are the
only ones involved in the theorems below, so this slightly
simplifies notations). We denote by S2d the set of n-tuples
α = (α1, . . . , αn) with |α| � 2d so that y is a vector in RS2d .
The number of such n tuples is

2d∑
k=0

(
k + n − 1

n − 1

)
=

(
n + 2d

2d

)
. (8)

A moment sequence corresponds to a situation where all yα

are known to arbitrary order, which we denote by y ∈ RS∞ .
The truncated moment problem (tms problem) is the prob-

lem of finding whether there exists a representing measure for
a given sequence y, that is, a positive measure dμ such that
yα = ∫

xαdμ(x) for all α with |α| � 2d . Here the notation xα

stands for
∏n

i=1 xαi
i .

The K-tms problem addresses the case where the measure
dμ is additionally required to be supported by a semialgebraic
set K , that is, a set defined by polynomial inequalities. We
will use the notation K = {x ∈ Rn|g1(x) � 0, . . . , gm(x) � 0}
with g j (x) multivariate polynomials. The sequence y has a
representing measure for the K-tms problem if for all α’s with
|α| � 2d , Eq. (7) holds.

Necessary and sufficient conditions for the solution of the
tms problem can be obtained in terms of moment matrices.
Given a tms (yα )|α|�2d , its moment matrix of order t is the
matrix Mt (y) indexed by α, β with |α|, |β| � t and defined as
Mt (y)αβ = yα+β . The entries of the matrix involve indices of
y up to order 2t and since the highest index of y is 2d (by
definition of the tms) such a matrix is defined only if t � d .
The size of Mt (y) is given by the number of moments up
to order t , that is,

(n+t
t

)
. In the case of an infinite moment

sequence, the matrix M(y) is infinite.
Necessary and sufficient conditions for the solution of the

K-tms problem additionally involve the localizing matrices
associated with polynomials g j specifying K , which are de-
fined as follows. Any polynomial g of n variables x1, . . . , xn

can be decomposed over monomials as g = ∑
|α|�deg(g) gαxα ,

where deg(g) is the degree of the multivariate polynomial g. It
can, thus, be seen as a vector in RSdeg(g) . For a tms (yα )|α|�2d

and a polynomial g, we define a shifted sequence g � y by

setting (g � y)α = ∑
γ gγ yα+γ . The localizing matrix of order

t associated with g is defined as the moment matrix of order
t of the shifted sequence, that is, Mt (g � y). Explicitly, its
components read Mt (g � y)αβ = ∑

γ gγ yα+β+γ . The highest
index of y involved here is 2t + deg(g) so that the matrix is
defined only for 2t + deg(g) � 2d , that is, t � d − deg(g)/2.
The m polynomials defining K give rise to m-localizing matri-
ces Mt (g j � y). In order that all of them be defined, the order t
has to be such that t � d − d0 with

d0 = max
1� j�m

{1, 
deg(g j )/2�}, (9)

that is, the degree of y has to be greater than or equal to 2(t +
d0).

The three theorems below give necessary and sufficient
conditions for a tms (or a full moment sequence) to have a
representing measure, supported on K or not. In all cases, the
representing measure is r atomic, meaning that it is a sum of r
δ functions with positive weights, dμ(x) = ∑

j ω jδ(x − x j ).
The central criterion is the existence of extensions. An exten-
sion of a tms y of degree 2d is a tms of degree 2d ′ with d ′ > d
whose restriction to indices of order 2d or less coincides with
y. We denote it again by y. One can define the moment matrix
of order t of such an extension for all t � d ′, and we then say
that for t ′ > t, Mt ′ (y) is an extension of Mt (y). An extension
Mt ′ (y) is said to be a flat extension of Mt (y) if it satisfies the
condition that its rank is equal to the rank of Mt (y), that is,

rk Mt ′ (y) = rk Mt (y). (10)

In particular, if (10) holds then Mt ′ (y) � 0 ⇔ Mt (y) � 0
(see Appendix B). Theorem 1 below deals with the moment
problem, Theorem 2 with the tms problem, and Theorem 3
with the K-tms problem.

Theorem 1. ( Ref. [35]; see Theorem 1.2 of Ref. [42]) Let
y ∈ RS∞ . If M(y) � 0 and rk M(y) = r is finite, then y has a
unique representing measure, which is r atomic.

Theorem 2. (Ref. [35]; see Theorem 1.3 and Corollary 1.4
of Ref. [42]) Let y ∈ RS2t . If Mt (y) � 0 and Mt (y) is a flat
extension of Mt−1(y), then y can be extended to y ∈ RS2t+2 in
such a way that Mt+1(y) is a flat extension of Mt (y).

From induction and using Theorem 1, one concludes that
the tms in RS2t can be, in fact, extended to y ∈ RS∞ and
has a unique representing measure, which is r atomic with
r = rk Mt (y). Moreover one can show (see Ref. [42] for de-
tail) that the r atoms xi which support the measure can be
obtained from the kernel of Mt (y), that is, the set of poly-
nomials p = ∑

α pαxα such that
∑

β Mt (y)αβ pβ = 0. More
specifically, the set of xi is the variety V[ker Mt (y)] = {x ∈
Cn; f (x) = 0 ∀ f ∈ ker Mt (y)}, that is, the set of common
roots of polynomials in the kernel of Mt (y). In words, what
the above results say is that in order to find a representing
measure for y ∈ RS2d one has to start from the moment matrix
Mt=d (y) (which is the smallest moment matrix containing all
the data) and look for extensions of higher and higher order,
until for some order t one has rk Mt (y) = rk Mt−1(y). If such
an extension exists then the representing measure exists and is
supported by the common roots of polynomials of ker Mt (y).

Theorem 3. (Ref. [35]; see Theorem 1.6 of Ref. [42]) Let
y ∈ RS2t and r = rk Mt (y). Then y has a r atomic representing
measure supported on K if and only if Mt (y) � 0 and there
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exists a flat extension Mt+d0 (y) with Mt (g j � y) � 0 for 1 �
j � m and d0 defined in (9).

This theorem can be decrypted as follows. Starting from
the moment matrix of order d and looking for higher-
order extensions of order t , if there exists an extension
Mt+d0 (y) with rk Mt+d0 (y) = rk Mt (y) = r then all its subma-
trices Mt+1(y), Mt+2(y), . . . are also flat extensions of Mt (y).
From Theorems 1 and 2 one readily concludes that there exists
a unique r-atomic representing measure; the atoms are given
by the variety associated with the kernel of the first extension
where the flatness condition is achieved. However these atoms
may not be located on K . The conditions Mt (g j � y) � 0 on
the localizing matrices precisely enforce that additional con-
dition (see Appendix A for an insight into the proof). As
mentioned above, these matrices are only defined if the degree
of y is greater than 2(t + d0), which is why, in order to fulfill
these conditions, one has to find extensions in y ∈ RS2(t+d0 ) .
Therefore, although an extension to Mt+1(y) is enough to
guarantee the existence of a r-atomic representing measure,
an extension to Mt+d0 (y) is required so that it is supported by
K . As a consequence, achieving the flatness condition requires
to go quickly to matrices of high order, which has an impact
in terms of computational complexity.

B. Tms for quantum states

Let us now apply these theorems to quantum states, follow-
ing Ref. [30]. Consider a quantum state ρ acting on the tensor
product H = H (1) ⊗ · · · ⊗ H (p) of Hilbert spaces H (i) with
dim L(H (i) ) = κi + 1. Let S(i)

μi
(0 � μi � κi ) be a set of Her-

mitian matrices forming an orthogonal basis for L(H (i) ), and
Sμ1μ2···μp = S(1)

μ1
⊗ · · · ⊗ S(p)

μp an orthogonal basis of L(H ). We
expand ρ as

ρ = Xμ1μ2···μpSμ1μ2···μp (11)

(with implicit summation over repeated indices), where
Xμ1μ2···μp = tr(ρSμ1μ2···μp ) are the (real) coordinates of the
state. Here each index μi runs from 0 to κi, and we will
use latin letters ai for indices running from 1 to κi. It will
prove convenient to take S(i)

0 as the identity matrix of size
the dimension of H (i). Actually, as detailed in Ref. [30], the
matrices Sμ1μ2···μp need not be an orthogonal basis: It suffices
that they be a tight frame (a mathematical structure bearing
some analogy with orthogonal bases), which proves useful,
for example, in the case of symmetric states where some
redundancy of the matrices in the expansion (11) is handy.

One can associate with ρ a tms y = (yα )|α|�p of de-
gree p in the following way. A density matrix acting on
Hilbert space H (i) can be expanded as

∑κi
μi=0 x(i)

μi
S(i)

μi
. We

associate to H (i) a set of κi variables x(i)
ai

, 1 � ai � κi. Let
x = (x1, x2, . . . , xn) be the vector of all these variables. In the
general case (x1, x2, . . . , xn) := (x(1)

1 , x(1)
2 , . . . , x(p)

κp ) and n =∑
i κi, and each xk corresponds to a certain x(i)

ai
, whereas if we

consider symmetric states (i.e., mixtures of pure states invari-
ant under permutation of the H (i)) only one set of variables,
say x(1)

a1
, should be considered, and then n is the common value

κ1 = κ2 = · · · .
An arbitrary monomial of these variables xk can be written

as xα ≡ ∏n
k=1 xαk

k , where αk counts the number of variables

xk in the monomial. We then define a tms by yα = Xμ1μ2···μp ,
where α is the index such that xα = ∏p

i=1 x(i)
μi

. Since X has p
indices we have |α| � p so that yα is a tms of degree p. In
fact, in order to define a moment matrix, an even-degree tms
is required. Thus, we set p = 2d if p is even or p = 2d − 1
if p is odd. Thus, Xμ1μ2···μp is mapped to a tms (yα )α�2d (and
in the case where p is odd the moments of order exactly 2d
remain unspecified).

As an example, let us consider the case of a state of
two spins 1. We expand it as ρ = Xμ1μ2 Sμ1μ2 , where in-
dices μi run from 0 to 8 (since a spin-1 density matrix is
a 3 × 3 Hermitian matrix and can be described by nine real
numbers). We then introduce the vector of variables x =
(x1, x2, . . . , x16), where x1, . . . , x8 are associated with the first
spin and x9, . . . , x16 with the second. Entries Xμ1μ2 define
a tms yα of degree 2 where each α is a vector of integers
of length 16 with all entries equal to 0 if μ1 = μ2 = 0, a
single nonzero entry αμ1 = 1 if μ1 �= 0 and μ2 = 0, a single
entry αμ2+8 = 1 if μ2 �= 0 and μ1 = 0, and two entries equal
to 1 if both μ1 and μ2 are nonzero. Each of these α’s is
associated with a monomial, for instance, X3;8 corresponds to
α = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) or to x3x16.

As shown in Ref. [30], the problem of finding whether ρ is
separable across the multipartition H (1) ⊗ · · · ⊗ H (p) is equiv-
alent to a K-tms problem. Indeed, projecting the separability
condition on the basis Sμ1μ2···μp , coordinates of a separable
state can be written as

Xμ1μ2···μp =
∫

K
x(1)
μ1

x(2)
μ2

· · · x(p)
μp

dμ(x), (12)

with x(i)
0 = 1, ; x = (x(1), x(2), . . . , x(p) ) ∈ Rn (n =∑

i κi ), x(i) = (x(i)
a )1�a�ti ∈ Rκi , and dμ(x) = ∑

j ω jδ(x −
z j ) a measure supported on a semialgebraic set K ⊂ Rn

defined by the positivity of the density matrices on each
local Hilbert space (that is, the measure is an atomic measure
with atoms z j ∈ K). This tms problem is equivalent to asking
whether there exists a positive measure dμ with support K
for a tms whose moments are the yα given as explained above
by the coordinates Xμ1μ2···μp of the state ρ. In this language,
Eq. (12) precisely takes the form (7). As a consequence,
separability of ρ can be addressed in the following way:
Given a state ρ, we can map its coordinates Xμ1μ2...μp to
a tms (yα )α�2d and look for extensions (yα )α�2t , starting
from t = d . State ρ is separable if and only if there exists a
flat extension (yα )α�2(t+d0 ) of (yα )α�2t with Mt (y) � 0 and
Mt (g j � y) � 0 for j = 1, . . . , m.

C. Tms for quantum channels

We will now reformulate the theorem above to give
a necessary and sufficient criterion for the separability of
quantum channels. Let �:L(HA ⊗ HB) → L(HA ⊗ HB) be a
completely positive map and C� its corresponding Choi ma-
trix acting on H = HA ⊗ HB ⊗ HA′ ⊗ HB′ ; an orthogonal basis
of H is then given by matrices SμAμBμA′μB′ = S(A)

μA
⊗ S(B)

μB
⊗

S(A′ )
μA′ ⊗ S(B′ )

μB′ , where S(•)
μ are Hermitian matrices forming an

orthogonal basis of the set of bounded linear operators on
H•. Let us translate the above tms theorems as necessary and
sufficient conditions on the Choi matrix to be separable.

052406-5



N. MILAZZO, D. BRAUN, AND O. GIRAUD PHYSICAL REVIEW A 102, 052406 (2020)

The compact K is defined according to the decomposition
we are interested in. In the EB case, one wants to decompose
the Choi matrix as

∑
k Pk ⊗ Qk , where Pk and Qk are posi-

tive operators acting on HA ⊗ HB and HA′ ⊗ HB′ , respectively.
Expanding the Pk over a basis of operators SAB

λ (these SAB
λ

could be taken as the S(A)
μA

⊗ S(B)
μB

) and Qk over a basis SA′B′
λ′ and

expressing the condition that they must be positive, we obtain
a definition of the compact K as the set of real expansion
coefficients cλ, dλ′ such that

∑
λ

cλSAB
λ � 0, (13)

∑
λ′

dλ′SA′B′
λ′ � 0. (14)

These positivity conditions can be rewritten as inequalities on
the coefficients of the corresponding characteristic polynomi-
als using the Descartes sign rule (see Sec. III D below). In
the SEP case, the Choi matrix now has to be decomposed as∑

k Pk ⊗ Qk with Pk and Qk acting on HA ⊗ HA′ and HB ⊗ HB′ ,
respectively. The same reasoning applies for the positivity
conditions as in the EB case.

Given a channel �, we expand the corresponding Choi
matrix as

(1) for EB, C� = ∑
λ,λ′ Xλλ′SAB

λ ⊗ SA′B′
λ′ (with SAB

λ a basis
of operators for the system and SA′B′

λ′ for the ancilla)
(2) for SEP, C� = ∑

λ,λ′ X̃λλ′SAA′
λ ⊗ SBB′

λ′ (with SAA′
λ a basis

of operators for the Hilbert space HA ⊗ HA′ , and SBB′
λ′ for the

Hilbert space HB ⊗ HB′ ).
We can then map either the coordinates Xλλ′ or the co-

ordinates X̃λλ′ to a tms (yα )α�2 (indeed, since we look for
separability across a bipartition, the degree of the tms is 2).
The necessary and sufficient conditions for channels are then
given as follows:

Theorem 4.
(i) The channel � is EB if and only if, considering

extensions (yβ )β�2t of (yβ )β�2, there exists a flat exten-
sion (yβ )β�2(t+d0 ) of (yβ )β�2t (possibly with t = 1) with
Mt (y) � 0 and Mt (g j � y) � 0 for j = 1, . . . , m where the
g j’s are polynomials of variables cλ and dλ′ defined by
the conditions

∑
λ cλSAB

λ � 0,
∑

λ′ dλ′SA′B′
λ′ � 0, and d0 =

max1� j�m{1, 
deg(g j )/2�}.
(ii) The channel � is SEP if and only if, considering

extensions (yβ )β�2t of (yβ )β�2, there exists a flat exten-
sion (yβ )β�2(t+d0 ) of (yβ )β�2t (possibly with t = 1), with
Mt (y) � 0 and Mt (g j � y) � 0 for j = 1, . . . , m where the
g j’s are polynomials of variables cλ and dλ′ defined by
the conditions

∑
λ cλSAA′

λ � 0,
∑

λ′ dλ′SBB′
λ′ � 0, and d0 =

max1� j�m{1, 
deg(g j )/2�}.
In the case of fully separable channels, the Choi matrix

must be separable across any cut. We expand the matrix
C� as C� = XμAμBμA′μB′ S(A)

μA
⊗ S(B)

μB
⊗ S(A′ )

μA′ ⊗ S(B′ )
μB′ . The coeffi-

cients XμAμBμA′μB′ are now mapped to a tms of order 4, and the
set K is given by positivity conditions on each Hilbert space.
The channel � is fully separable if and only if, looking for
extensions of that tms, we find a flat extension (with positivity
conditions on the moment and localizing matrices).

D. The algorithm

Theorem 4 can be translated into an algorithm that char-
acterizes separable or entangling channels with respect to
a chosen partition. The algorithm is based on semidefinite
programming (SDP). The inputs to the algorithm are the
following. The first input is the Choi matrix of the specific
channel that one wants to test; it acts on the system-ancilla
Hilbert space H = HA ⊗ HB ⊗ HA′ ⊗ HB′ , and its coordinates
(in a basis depending on the partition chosen) provide a tms
yα . The second input is the set of polynomials g j defining
the compact K via polynomial inequalities [as in Eqs. (13)
and (14)], which allows one to define the localizing matrices.
Keeping the second input fixed, we can change the Choi
matrix by swapping Hilbert spaces so as to explore different
separability problems (SEP, EB, or FS) as defined in Sec. II B.
The SDP algorithm minimizes a linear function of the mo-
ments yα under the constraints that the moment matrix and
the localizing matrices are positive semidefinite.

Let W be a matrix as in (13) and (14). It depends on the set
of variables associated with each Hilbert space, for instance,
the variables cλ in Eq. (13). To derive an explicit expression
for the g j , we express the coefficients of the characteristic
polynomial p(z) = ∑n

k=0(−1)n−kakzk of W through the recur-
sive Faddeev-LeVerrier algorithm, i.e., for 1 � m � n,

an−m = − 1

m

m∑
k=1

(−1)kan−m+k tr(W k ), (15)

with an = 1 and a0 = det(W ). From Descartes sign rule, pos-
itivity of W is equivalent to having ak � 0 for all k’s. Let
us consider, for example, the case of two-qubit channels for
which i, j go from 0 to 1 in Eq. (6) and C� is a 16 × 16
matrix and look for its separability as a tensor product of two
4 × 4 matrices. The characteristic polynomial for each factor
is then of degree 4 [n = 4 in Eq. (15)], and the inequalities
for positivity are given by Newton’s identities (also known as
Girard-Newton formulas). Besides a4 = 1 and a3 = tr W = 1
(since W is a density matrix), we get the conditions,

a2 = 1
2 (1 − trW 2) � 0,

a1 = 1
6 (2 tr W 3 − 3 tr W 2 + 1) � 0,

a0 = 1
24 (−6 tr W 4 + 8 tr W 3 + 3(tr W 2)2 − 6 tr W 2 + 1) � 0,

(16)

which yield polynomial inequalities on the cλ.
The tms yα associated with C� is obtained from its coordi-

nates in a certain basis. In the case of states (see Sec. III B),
specifying the coordinates of the density matrix was equiva-
lent to fixing some moments of the measure dμ(x) as being
the expectation values of some physical observables, given by
tr(ρS(1)

μ1
⊗ · · · ⊗ S(p)

μp ). In the case of channels instead, the ob-
servables are relative to the enlarged space system ancilla, so
in order to perform physical measurements on the system only
one needs to express the values tr(C�S(A)

μA
⊗ S(B)

μB
⊗ S(A′ )

μA′ ⊗
S(B′ )

μB′ ) in terms of the entries of the superoperator M specifying
the channel as ρ ′

i j = Mi j,klρkl . This gives a direct relation
with the input-output representation, i.e., the quantum channel
� is seen as a dynamical process: If ρ is the initial (input)
state before the process, then �(ρ) is the final (output) state
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after the process occurs. We can go from one representation
to the other considering that M and C� are related by the
reshuffling operation in the computational basis; for a generic
basis this will, in general, result in a linear combination of
physical measurements on the system. The number of physical
measurements needed to fix one entry of the moment matrix
relative to C� can be used, for instance, as a cost function to
decide between efficiency of entanglement detection and ex-
perimental convenience. The system-ancilla approach is what
is used in the so-called ancilla-assisted process tomography
(see, e.g., Ref. [43]), whereas the input-output one is the
standard quantum process tomography (see, e.g., Ref. [44]).

The SDP algorithm then consists of minimizing a function∑
α Rαyα with Rα an arbitrary polynomial under the constraint

that Mt (y) and the localizing matrices Mt (g j � y) are positive
semidefinite and look for an extension such that the flatness
condition is fulfilled. The algorithm is implemented using
GLOPTIPOLY [45] and the MOSEK optimization toolbox [46].
Note that if the rank condition is not met the SDP can still
yield a solution to the minimization problem [47], but it does
not tell us anything a priori on the representing measure
problem. To describe all the ingredients in the algorithm, to
study its complexity and its efficiency, we will apply it in
the next section to different examples: the spin-1 channels
mentioned already above, and specific two-qubit channels,
which are relevant in many experimental settings.

IV. EXAMPLES

In the general case, the number of moments involved, and,
thus, the size of the moment matrices, scales very fast with
the extension order t so that numerically the SDP soon be-
comes intractable. More specifically, whereas full separability
of two-qubit channels is a problem that is still tractable nu-
merically, already the SEP and EB cases turn out to be too
complex if we consider arbitrary qubit channels. Indeed, in
that case the variables involved are (xμ)1�μ�15 for the system
and (x′

μ)1�μ�15 for the ancilla. The number of decision vari-
ables in the SDP is the number of free entries of the extension
of the moment matrix we are looking for; in the order-t exten-
sion Mt (y), it is the number of monomials from 30 variables
up to degree 2t , given by

(30+2t
2t

)
[see Eq. (8)]. Moreover, the

polynomials defining the compact K for a two-qubit Hilbert
space (of dimension 4) are the ones given in Eq. (17), that is,
their degree is 4, and, thus, d0 = 2. Since the smallest moment
matrix containing all given moments is M1(y), the smallest
extension we have to consider in Theorem 4 is M3(y). The
size of this matrix is

(33
3

) = 5456, and the number of decision
variables is

(36
6

)
� 106. Therefore, the size of the SDP grows

very quickly, and, thus, the number of semidefinite constraints
requires too much time and memory.

Nevertheless, the algorithm can still be applied to families
of channels for which the number of variables involved is
smaller than in the general case. In the following we present
different examples of such families. We highlight their com-
plexities and computational cost, and explain in more detail
the role of the different factors mentioned above. We finally
outline some numerical results on their entangling or separa-
ble properties.

A. Fully symmetric Choi matrix

We start with a simple example which allows us to
highlight the connection between the TMS algorithm for
channels and for states. We consider quantum channels �

such that the Choi matrix C� has components only on the
symmetric subspace. In other words, we impose that the four-
qubit state associated with the two-qubit channel � via the
Choi-Jamiołkowski isomorphism be fully symmetric under
permutation of the qubits (in the sense that it is a mixture
of fully symmetric pure states). In that case, the Choi ma-
trix only has components on the subspace spanned by Dicke
states |D(m)

j 〉, which are the symmetrized tensor products of 2 j
qubits with j = 2 (four qubits) and − j � m � j. This means
that

(1 − P)C�(1 − P) = (1 − P)C�P = PC�(1 − P) = 0,

(17)
where P = ∑2

m=−2 |D(m)
4 〉〈D(m)

4 | is the projection operator
onto the symmetric subspace. The constraints in Eq. (17) fix
conditions on the superoperator M of which C� is a reshuf-
fling. For j = 2, only (2 j + 1)2 real independent parameters
remain.

Such a restriction has a clear physical interpretation in
the case of one-qubit channels. Indeed, the Choi matrix of a
nonunital one-qubit channel can be put in the form

1

2

⎛
⎜⎜⎜⎝

1 + λ3 + t3 0 t1 + it2 λ1 + λ2

0 1 − λ3 + t3 λ1 − λ2 t1 + it2

t1 − it2 λ1 − λ2 1 − λ3 − t3 0

λ1 + λ2 t1 − it2 0 1 + λ3 − t3

⎞
⎟⎟⎟⎠,

(18)
in the canonical basis [27]. Imposing that the matrix is asso-
ciated with a symmetric state is equivalent to imposing that it
has no component over the singlet state; this leads to the con-
ditions t1 = t2 = t3 = 0 (i.e., the channel is unital) and λ1 −
λ2 + λ3 = 1, which correspond to a face of the tetrahedron of
admissible values of the λi corresponding to unital channels,
given by the Fujiwara-Algoet conditions 1 ± λ3 � |λ1 ± λ2|
[48]. Such points on a face of the tetrahedron correspond to
channels whose Kraus rank is 3, which are characterized by
the fact that they are the only indivisible channels (that is,
they cannot be written as the composition of two nonunitary
channels) [49,50].

In the two-qubit channel case there is no such clear geo-
metrical picture of the fully symmetric Choi matrix. However,
since the Choi state is a fully symmetric state of N = 4 qubits,
if it is separable with respect to an arbitrary partition, then it
is fully separable, and it can be written as a convex sum of
N projectors on pure symmetric states (see, e.g., Ref. [51]).
This means that in this case we only need to consider the
fully separable case, which coincides with exploring the case
of spin-2 states (since those states can be seen as symmetric
states of four qubits). The tms algorithm for states was ex-
ploited in Ref. [21] to investigate multipartite entanglement of
such states. The problem can be formulated as in Eq. (7) with a
tms of degree 4 [thus, the smallest moment matrix to consider
in Theorem 4 is M2(y)] and a vector of variables (x1, x2, x3)
(as explained in Sec. III B since the state is fully symmetric
we only need the three variables associated with a single
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qubit). The semialgebraic set K is the Bloch sphere so that
d0 = 1. Thus, the first flatness condition in Theorem 4 reads
rk M3(y) = rk M2(y) with M2(y) and M3(y) of sizes 10 × 10
and 20 × 20, respectively. The algorithm usually stops at the
first extension, and it takes at about 1 s to give a certificate
of separability or entanglement of the channel (the time here
reported refers to running the algorithm on a standard com-
puter with a 64-bit Windows operating system, 4-GB RAM
and Intel Core i7 CPU 2.00–2.60 GHz). We refer to the results
obtained for states in Refs. [21,30] for more detail on the
implementation in that case.

B. Two-qubit planar channels

We now consider the case where the two-qubit channel
is a linear combination of tensor products of single-qubit
planar channels. Such one-qubit channels φpl send the (three-
dimensional) Bloch ball into a (two-dimensional) ellipse.
Note that, according to the so-called “no-pancake theorem”
a planar channel cannot map the Bloch ball to a disk touch-
ing the sphere unless it reduces to a point or a line (see
Refs.[49,52] ).

Any one-qubit channel can be described by a 4 × 4 matrix
of the form

M =

⎛
⎜⎜⎜⎝

1 0 0 0

t1 λ1 0 0

t2 0 λ2 0

t3 0 0 λ3

⎞
⎟⎟⎟⎠, (19)

where λ = (λ1, λ2, λ3) with λi � 0 is the distortion vector
and t = (t1, t2, t3) is the translation vector. Geometrically, the
channel maps the Bloch vector r to Mr + t , that is, the sphere
becomes an ellipsoid whose half-axes are given by the λi and
centered at t .

Planar channels are those where one of the λi is zero.
Geometrically, this means that they map the Bloch ball to a
disk. In Ref. [53] this type of channel was investigated, but
with focus on their entanglement-annihilating properties. In
what follows, we consider planar channels φpl with λ2 = 0.
We investigate whether linear combinations, such as

� = aφ
(1)
pl ⊗ φ

(1)
pl + bφ(2)

pl ⊗ φ
(2)
pl , (20)

with a, b ∈ R result in separable channels. We consider the
case in which both φ

(1)
pl and φ

(2)
pl are unital, one unital, the

other nonunital, and both nonunital. Note that states (20) are
not symmetric states, in general, as they are symmetrizations
of mixed states but not mixtures of symmetric pure states. The
condition of complete positivity in the case of a unital planar
channel (t = 0) is given by |λ1| � 1 − |λ3| with |λ1|, |λ3| the
half-axes of the ellipse. In the case of nonunital channels the
conditions for complete positivity can be found in Theorem
IV.1 of Ref. [49]. Here for simplicity we consider the case
where λ2 = 0 and t = (0, 0, t3). In such a case these condi-
tions simplify to

1 + λ1 + λ3 � 0, 1 + λ1 − λ3 � 0

1 − λ1 − λ3 � 0, 1 − λ1 + λ3 � 0,

t2
3 � 1 − λ2

1 + λ2
3 − 2|λ3|. (21)

The Choi matrix C� is then properly normalized (b = 1
16 − a)

in order to obtain a valid quantum state with trace 1, giv-
ing the Choi state on which we apply our algorithm. The
basis over which C� is expanded is chosen as the tensor
product σμ1 ⊗ σμ2 ⊗ σμ3 ⊗ σμ4 with 0 � μi � 2 and {σμi} =
{1, σx, σz}, σx, σz being the usual Pauli matrices (this is also
reasonable from the experimental point of view since Pauli
physical measurements are often used for multiqubit chan-
nels). The Choi states associated with states (20) turn out to
be equal to their partial transpose with respect to any qubit.
Invariance under partial transposition with respect to the first
qubit in 2 × N systems was shown in Ref. [54] to entail
separability. Therefore, the four-qubit Choi state is separable
across any bipartition into sets of one and three qubits.

Separability for the bipartitions into two sets of two qubits,
required from the definition of EB and SEP channels, corre-
sponds to the situation of Theorem 4 and can be explored with
our algorithm as follows. In contrast to the symmetric case ad-
dressed in Subsec. IV A, there are now different variables xi in
Eq. (12) for the system A and the ancilla A′ (and equivalently
for B and B′)

Let us first consider the question of full separability. In
that case, since each system qubit and ancilla qubit, respec-
tively, is described by two variables (xA

μ)1�μ�2, (xB
μ)1�μ�2

and (xA′
μ )1�μ�2, (xB′

μ )1�μ�2, the vector of variables has length
8. The moments yα are given by entries of the Choi matrix,
the tms has degree 4, so that formula (8) applies with n = 8
and 2d = 4. The semialgebraic set is given by the choice of
basis matrices for the Choi matrix. Since we expanded it over
Pauli matrices, the constraint for each set of variable is the
one for qubits, i.e., the vector of variables is restricted to the
Bloch ball. The compact K is, therefore, the product of four
unit disks.

Since all polynomials defining K are of degree 2, we have
d0 = 1, and, thus, the first rank condition reads rk M3(y) =
rk M2(y) where the moment matrices have size

(n+t
t

)
, i.e.,

respectively 165 and 45. A first hint on the computational
complexity of the SDPs we need to solve is given by the
number of decision variables of the optimization, which in
our case corresponds to the number of monomials from eight
variables up to degree 6, the latter being the degree of the
extension of the tms needed to construct M3(y). Moreover,
SDP are usually solved with the interior point method; each
iteration in the primal-dual interior point algorithm requires
the solution of a linear system, which is the most expensive
operation with O(N3) complexity, solvable using Gaussian
elimination. Here N is the number of linear constraints in
the SDP, and efficiency drops with the growing number of
semidefinite terms involved in these linear constraints, which
in the case here considered are ∼103. This, in general, has a
big impact on the time and memory requested for a single
run of the algorithm [46]. Nevertheless, we could run our
algorithm in that case, which allowed us to test for separability
of channels of the form (20). The algorithm still performs very
well (on a machine with same characteristics as described
above in Sec. IV A); for all the examples tested a certificate
of separability was found either at the first relaxation order
rk M3 = rk M2 (with a time of ∼10s for a single run) or at the
second relaxation order rk M4 = rk M3 (with a running time
of ∼6 min).
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We tested ∼103 cases, which were chosen
uniformly at random in the range of parameters
(λ(1)

1 , λ
(1)
3 , λ

(2)
1 , λ

(2)
3 , t (1)

3 , t (2)
3 , and a) allowed by the

complete-positivity conditions of the quantum channels
considered [see Eq. (22) and above it]. All the Choi states
tested result fully separable for all the three cases listed above
(where channels φpli can be unital or not); as a consequence,
all these states are both EB and SEP. Based on the available
numerical evidence we conjecture that all states of the form
(20) are fully separable.

C. Qutrit channels

We now study the case of qutrit channels. More specif-
ically, we apply our algorithm to a family of channels
presented in Ref. [55] where EB properties of qutrit gates
were studied through the negativity N (ρ) = 1

2 (‖ρTH ‖1 − 1)
with ‖ρTH ‖1 the trace norm of the partial transpose with re-
spect to the system qutrit. The negativity N (ρ) cannot detect
PPT-entangled states; in other words there exist entangled
states with N (ρ) = 0. For such states, our algorithm is able
to give a certificate of separability as we illustrate below.
Note that, even though in this case the system is not bipartite,
the definition of entanglement breaking still applies since it
involves the presence of an ancilla, as explored for one-qubit
channels in Ref. [52]; on the other hand, the definition of SEP
separability cannot be applied to this example.

As a basis for qutrit density operators, we use Gell-Mann

matrices {λi}8
i=1 together with λ0 =

√
2
31. In this basis, an

arbitrary qutrit density matrix can be written as

ρ = 1

3

(
1 +

8∑
i=1

ζiλi

)
, (22)

with ζi = 3
2 tr(ρλi ).

The channel we consider is a damping qutrit channel, i.e.,
a channel that can be written as an affine transformation on
the generalized (qutrit) Bloch vector as �D: ζ → ζ′ = �ζ,
where � = diag(�1, . . . , �8) is the damping matrix. The
�i cannot take any arbitrary value because �D has to be
completely positive, thus, leading to the constraints |�i| �
1. More specifically, we consider the family of damping
channels given in Ref. [55] and parametrized by �i �=3,8 =
x, �i=3 = y, �i=8 = y2. The Choi state corresponding to �D

can be written by transforming the propagator to the canonical
basis, then reshuffling and normalizing (it corresponds to a
maximally mixed state for x = y = 0 and to a maximally
entangled state of two qutrits for x = y = 1). The region of
parameters for which C�D is positive semidefinite together
with the values of the corresponding negativity is shown in
Fig. 2.

Any two-qutrit state can be expanded over the basis formed
by tensor products of Gell-Mann matrices [56]. This setting is
analogous to the one described in Sec. III B for two spin-1
states. The vector of variables is x = (x1, x2, . . . , x16), where
x1, . . . , x8 are the coordinates αi associated with the system
qutrit, and x9, . . . , x16 are associated with the ancilla qutrit.
Since there are two subsystems, and the tms has degree 2.
The characteristic polynomial for a qutrit density matrix has
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–1.0

–0.5

0.0

0.5

1.0
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y

0

0.2

0.4

0.6

0.8

1.0

FIG. 2. Region of x and y parameters for which C�D of the
damping qutrit channel is positive semidefinite; the color function
corresponds to the negativity values in the range of [0,1] with steps
for the contour lines of 0.02. The central plateau corresponds to the
region of zero negativity where the PPT criterion remains incon-
clusive. Gray points correspond to states found separable by our
algorithm, signifying entanglement breaking channels; red points
correspond to states where the algorithm needs to go to a higher ex-
tension order and remains inconclusive with our numerical resources.
The white point marks the maximally mixed state.

degree 3, therefore, the semialgebraic set is given by the con-
ditions tr ρ2 � 1 and det ρ � 0 with ρ as the density operator
in Eq. (22). It follows that the corresponding polynomials of
the variable xi have maximal degree 3, and, thus, d0 = 2. This
gives the rank shift in Theorem 4: At the first iteration of the
algorithm the flatness condition reads rk M3(y) = rk M1(y).
These moment matrices have size 969 and 17, respectively.
The number of decision variables in the SDP corresponds
to the number of monomials from 16 variables up to degree
6 (∼7 × 104) and the number of semidefinite constraints is
given by

(n+t
t

) + m
(n+t−1

t−1

) + m
(n+t−2

t−2

)
, that is, the size of the

moment matrix of the first extension (t = 3) and the size of the
localizing matrices multiplied by the number m of inequalities
in the semialgebraic set for each set of variables.

The tms algorithm can be exploited to investigate, in
particular, the Choi states with zero negativity for which
the PPT criterion alone is inconclusive. The results for
some pairs of parameters with (x = 0, y ∈ [−1, 1]) and
(x ∈ [− 2

25 , 2
25 ], y = − 1

2 ) are explored and they are shown in
Fig. 2. The points highlighted in gray are the points tested
with the algorithm which give a certificate of separability,
including the white point which corresponds to a Choi state
equal to the maximally mixed state of two qutrits. In the
latter cases the SDP is feasible and the flatness condition
rk M3(y) = rk M1(y) is satisfied, meaning that the correspond-
ing �D’s are EB; on the other hand, the algorithm remains
inconclusive for the red points at the first iteration, leading to
the necessity for higher-order extensions, which are beyond
our computational resources. We did not detect PPT entan-
gled states among the tests performed; the algorithm confirms
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entanglement for negativity greater than zero for all the states
tested. A single run of the algorithm in this case takes about
5h and between 150 and 300 GB of RAM.

V. CONCLUSIONS

In this paper we have discussed an algorithm that deter-
ministically detects whether a quantum channel is separable
or not, or whether it is entanglement breaking or not. Such an
algorithm finds its motivation in important questions relative
to modern quantum technology as the verification of devices
which should work in a properly quantum way, often leading
to the necessity of detecting whether a quantum channel is
able to generate entanglement or not also over a certain time
(as explained in the Introduction). We were able to explore
in a unifying framework three classes of separability across
different cuts between systems and ancillae (SEP, EB, or FS);
indeed, with only a small modification in the input we can
switch between these different classes. This algorithm is the
numerical counterpart of a theorem that provides a neces-
sary and sufficient separability criterion based on a mapping
between coordinates of the Choi matrix of the channel, ex-
pressed in a given basis and a truncated moment sequence.
Low-order moments are fixed by measurements performed
on the channel, and the separability problem is equivalent
to finding whether these moments are those of a measure
supported on a certain compact set.

In the case of fully symmetric Choi matrices for qubit
channels where the aim is to find a decomposition over the
Bloch sphere, the number of variables in the tms is n = 3 so
that the size of a moment matrix of order t is

(n+t
t

) ∼ t3/6.
On the other hand, in the simplest case of detection of EB
or SEP in a generic two-qubit channel, there are n = 30 vari-
ables involved, and, thus, the size of the moment matrix is(n+t

t

) = 5456 for t = 3. Moreover, the number of independent
entries in Mt (y) is given by

(n+2t
2t

) ∼ 2 × 106 for t = 3. Nev-
ertheless, we can consider families of channels for which the
number of free parameters in each subsystem is smaller than
in the general case. Then, the number of variables involved in
the mapping to tms is reduced and the matrices in the SDP
become amenable to numerical investigation. As we showed
here, this is the case for planar channels (where one dimension
is suppressed) or qutrit channels (which live in the symmetric
space of two qubits). Our algorithm is then able to decide
whether the channel is EB or SEP. For instance, in the case of
qutrit channels we were able to provide a certificate of separa-
bility in cases where the negativity of the Choi matrix vanishes
and, thus, is unable to yield a conclusion. Since calculations
are costly, this approach could be used as a numerical tool to
explore possible conjectures or produce counterexamples.

APPENDIX A: SKETCH OF THE PROOF OF THEOREM 3

Suppose rk Mt (y) = r with Mt (y) � 0 and there exists a
flat extension Mt+d0 (y) with Mt (g j � y) � 0 for 1 � j � m.
Then Mt+1(y) is also a flat extension of Mt (y), and we then
know from Theorem 2 that y admits a (unique) r-atomic rep-
resenting measure supported by xk ∈ V[ker Mt (y)]. All what
remains to show is that positivity of the localizing matrices

enforces that the x j belong to K , that is, g j (xk ) � 0 for 1 �
j � m and 1 � k � r.

This can be performed as follows. First, observe that since
Mt (y) is of rank r, one can find a nonsingular r × r principal
submatrix of Mt (y). If B is the set of labels α of the rows of
that matrix, then the image of Mt (y) is spanned by the xα, α ∈
B, and by definition these xα are on the order less than or
equal to t . Since the whole vector space of polynomials can
be decomposed as a direct sum of the image and the kernel of
Mt (y), an arbitrary polynomial p can be decomposed as p =
q + p̃ with q = ∑

α∈B qαxα ∈ Im Mt (y) and p̃ ∈ ker Mt (y).
Now let pk be interpolating polynomials of the xk′ , which

are the atoms supporting the representing measure of y. That
is, pk (xk′ ) = δkk′ for 1 � k, k′ � r. One can decompose them
as above as pk = qk + p̃k with p̃k ∈ ker Mt (y) and qk of
degree less than t . By definition, the xk′ are roots of all poly-
nomials in ker Mt (y), and, thus, one has p̃k (xk′ ) = 0, which
implies qk (xk′ ) = δkk′ for 1 � k, k′ � r.

Now, for y = ∫
xαdμ(x) and for arbitrary polynomials rep-

resented by vectors p, q ∈ RSt ,

qT Mt (y)p = qαMαβ pβ

= qαyα+β pβ

=
∫

qαxα+β pβdμ(x)

=
∫

p(x)q(x)dμ(x) (A1)

(with Einstein summation convention) and

qT Mt (g ∗ y)p = qαgγ yα+β+γ pβ

=
∫

qαgγ pβxα+β+γ dμ(x)

=
∫

p(x)q(x)g(x)dμ(x). (A2)

Thus, Mt (g j � y) � 0 and dμ(x) = ∑
i ωiδ(x − xi )dx entail

∀ k, j,

0 � qT
k Mt (g j � y)qk

=
∫

qk (x)2g j (x)dμ(x)

=
r∑

i=1

ωi

∫
dx qk (x)2g j (x)δ(x − xi )

=
r∑

i=1

ωiqk (xi )
2g j (xi )

= ωkg j (xk ), (A3)

since qk (xi ) = δki. As all ωk > 0 this implies that g j (xk ) � 0
and, thus, xk ∈ K , which completes the proof.

APPENDIX B: RANK PROPERTY OF EXTENSIONS

Let us show that the rank condition rk Mt ′ (y) = rk Mt (y)
implies the fact that positivity of Mt (y) and Mt ′ (y) are equiva-
lent.

Since Mt (y) is a principal submatrix of Mt ′ (y) one
direction is obvious. To show the converse, suppose
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Mt (y) � 0 and rk Mt (y) = r = rk Mt ′ (y). Then, as in Ap-
pendix A, there exists a nonsingular r × r principal sub-
matrix of Mt (y) indexed by labels α ∈ B with |α| � t .
This r × r submatrix is also a nonsingular principal sub-

matrix of Mt ′ (y). Since Mt ′ (y) has rank r, the correspond-
ing r monomials xα are, therefore, a basis of Im Mt ′ (y).
Since the submatrix is positive because Mt (y) is, then so
is Mt ′ (y).
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