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Experimental witnessing of the quantum channel capacity in the presence of correlated noise
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We present an experimental method to detect lower bounds to the quantum capacity of two-qubit commu-
nication channels. We consider an implementation with polarization degrees of freedom of two photons and
report on the efficiency of such a method in the presence of correlated noise for varying values of the correlation
strength. The procedure is based on the generation of separable states of two qubits and local measurements at
the output. We also compare the performance of the correlated two-qubit channel with the single-qubit channels
corresponding to the partial trace on each of the subsystems, thus showing the beneficial effect of properly taking
into account correlations to achieve a larger quantum capacity.
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I. INTRODUCTION

Quantum communication channels in the presence of
correlations among subsequent uses have attracted much at-
tention recently. Correlated qubit channels were originally
investigated in the context of classical information trans-
mission, showing that for certain ranges of the correlation
strengths the generation of entanglement among subsequent
uses is beneficial to enhance the amount of transmitted infor-
mation [1]. Interesting features then emerged in the study of
quantum memory (or correlated) channels by modeling of rel-
evant physical examples, including depolarizing channels [2],
Pauli channels [3–5], dephasing channels [6–10], amplitude
damping channels [11], Gaussian channels [12], lossy bosonic
channels [13,14], spin chains [15], collision models [16], and
a micromaser model [17] (for a recent review on quantum
channels with memory effects, see Ref. [18]).

Quantum channels can be characterized completely by
means of quantum process tomography [19], a well-
established technique that requires a number of measurement
settings (in an entanglement-based scenario or otherwise a
number of measurement settings times number of state prepa-
rations in a single system scenario) that scales as d4, where d
is the arbitrary finite dimension of the quantum system which
is sent through the communication channel [20–22].

Less expensive procedures, with a number of measure-
ment settings scaling as d2, have been recently proposed to
detect specific properties of a quantum channel that do not
need a complete characterization, such as, for example, its
entanglement breaking property [23] or its non-Markovian
character [24]. A central feature to quantify the channel ability
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to convey information is the channel capacity. Efficient proce-
dures have been recently proposed to detect lower bounds to
the capacity of an unknown quantum communication channel
that avoid quantum process tomography, in particular, for
the quantum capacity [25] and the classical capacity [26].
The performance of the procedure proposed in Ref. [25]
was demonstrated experimentally for single qubit channels in
Ref. [27].

In the present paper, we demonstrate experimentally that
channel capacity witnesses can capture correlations among
multiple quantum communication channels. The procedure
originally proposed in Ref. [25] efficiently detects lower
bounds to the quantum capacity of correlated two-qubit chan-
nels, which we compare with the theoretical values reported in
Ref. [28]. The two-qubit correlated channels are implemented
by acting with liquid crystals (LCs) affecting the polarization
of two photons. The correlation level is set by controlling the
relative operation conditions of the two LCs. The witnessing
procedure that works for unknown channels is demonstrated
without the need of generating entangled states.

II. CAPACITY WITNESS

We briefly review the general method introduced in
Ref. [25] to experimentally achieve lower bounds to the
quantum capacity of noisy channels by few local measure-
ments. This technique has been introduced to reduce the
experimental requirements on channel characterization. It is
part of an ongoing effort to make state [29–39] and process
[40–42] reconstruction more efficient. In addition, calculating
the channel capacity demands assessing infinite uses of the
channel, a task which cannot always be carried out analyti-
cally. This also motivates the search of more practical bounds
on the capacity.
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The method can adopt a fixed maximally bipartite en-
tangled state of two copies of the system, where just one
copy enters the quantum channel and suitable separable mea-
surements are jointly performed on the output copy and the
second untouched reference copy. Equivalently, the method
can also be carried out by suitable preparation of different
ensembles of a single copy at the input of the channel, with
corresponding output measurements. Since in the present ex-
perimental implementation the second option is followed, we
will specifically focus on this second scenario. We observe
that in both strategies the number of measurements is less than
the one for the process tomography of the channel [43], albeit
the separable-state case requires more measurements. On the
other hand, this alleviates the difficulty of generating multiple
entangled pairs at once.

Let us denote the action of a generic memoryless quantum
channel on a single system as E . The quantum capacity Q is
measured in qubits per channel use and is defined as [44–46]
Q = limN→∞ QN

N , where QN = maxρ Ic(ρ, E⊗N ), and Ic(ρ, E )
denotes the coherent information [47]:

Ic(ρ, E ) = S[E (ρ)] − Se(ρ, E ) . (1)

In Eq. (1), S(ρ) = −Tr[ρ log2 ρ] is the von Neumann en-
tropy and Se(ρ, E ) represents the entropy exchange [48], i.e.,
Se(ρ, E ) = S[(IR ⊗ E )(|�ρ〉〈�ρ |)], where |�ρ〉 is any purifi-
cation of ρ by means of a reference quantum system R,
namely, ρ = TrR[|�ρ〉〈�ρ |].

We recall that for any complete set of orthogonal projec-
tors {�i} one has [49] S(ρ) � S(

∑
i �iρ�i ). It follows that

from any orthonormal basis {|�i〉} for the tensor product of
the reference and the system Hilbert spaces one obtains the
following bound to the entropy exchange:

Se(ρ, E ) � H ( �p) , (2)

where H ( �p) denotes the Shannon entropy H ( �p) =
−∑

i pi log2 pi for the vector of probabilities {pi}, with

pi = Tr[(IR ⊗ E )(|�ρ〉〈�ρ |)|�i〉〈�i|] . (3)

Therefore, from Eq. (2) it follows that for any ρ and �p one has
the chain of bounds

Q � Q1 � Ic(ρ, E ) � S[E (ρ)] − H ( �p) ≡ QDET . (4)

A capacity witness QDET for the quantum capacity Q can then
be accessed without requiring full process tomography of the
quantum channel as long as the entropy of the output state
of the system and a set of probabilities {pi} as in Eq. (3) are
experimentally measured.

The experimental measurement of QDET can then be per-
formed, based on a maximally entangled state as the input
[27]. We consider a complete set of observables {Xi} for
the space of system operators and the maximally entangled
state |φ+〉 = 1√

d

∑d−1
k=0 |k〉|k〉, with respect to the bipartite

space HR ⊗ H, with d = dim(H) = dim(HR). By compari-
son with Eq. (3), with the identification |�ρ〉 = |φ+〉 (i.e.,
ρ = I/d), the input/output correlations allow us to recon-
struct probability vectors �p for all possible inequivalent
bipartite orthonormal bases {|�i〉} that can be spanned by
the set of measured observables {X τ

i ⊗ Xi}, where τ denotes
the transposition operation. The detection method is then

supplemented by classical optimization over all such possible
bases. Moreover, the measurement setting with observables
{Xi} clearly allows us to reconstruct E (I/d ), and then to eval-
uate the entropy contribution S[E (I/d )].

Alternatively, one can devise a detection method that does
not require initial entanglement, and thus an additional refer-
ence system. Indeed, one can easily verify the identity [50]

〈X τ
i ⊗ Xi〉 ≡ Tr[(IR ⊗ E )(|φ+〉〈φ+|)(X τ

i ⊗ Xi )]

= 1

d
Tr[XiE (Xi )] . (5)

Then, the expectation values 〈X τ
i ⊗ Xi〉 can be reconstructed

by preparing the system in the eigenstates of Xi and measuring
Xi at the output of the channel, without need of using entan-
gled input states. These still give access to the probabilities pi

in Eq. (3) with a classical optimisation, as described before.
In the case of single-qubit channels, a measurement setting

based on the customary Pauli operators {σX , σY , σZ} provides
probability vectors pertaining to the following inequivalent
bases [25]:

B1 = {a|�+〉 + b|�−〉,−b|�+〉 + a|�−〉, (6)

c|�+〉 + d|�−〉,−d|�+〉 + c|�−〉};
B2 = {a|�+〉 + b|�+〉,−b|�+〉 + a|�+〉, (7)

c|�−〉 + d|�−〉,−d|�−〉 + c|�−〉};
B3 = {a|�+〉 + ib|�−〉, ib|�+〉 + a|�−〉, (8)

c|�−〉 + id|�+〉, id|�−〉 + c|�+〉};

where |�±〉 = 1/
√

2(|00〉 ± |11〉) and |�±〉 = 1/
√

2(|01〉 ±
|10〉) denote the Bell states and a, b, c, d are real num-
bers such that a2 + b2 = c2 + d2 = 1. After collecting the
measurement outcomes, the capacity witness QDET is then
maximized over the three bases B1, B2, B3, and by varying the
independent parameters b and d , namely,

QDET = max
j=1,2,3

max
b,d

QDET(Bj, b, d )

= S[E (I/2)] − min
j=1,2,3

min
b,d

H[ �p(Bj, b, d )] , (9)

where for each j, the ith component of the four-dimensional
probability vector �p(Bj, b, d ) corresponds to Eq. (3), where
|�i〉 is one of the four states in the basis Bj . As detailed
above, the input entangled state can be replaced with the set
of eigenvectors of σX , σY , and σZ , leading to an equivalent
reconstruction.

For a two-qubit channel, as in the present experimental
implementation, the set of observables is chosen as {σi ⊗ σ j},
with i, j = X,Y, Z . The input/output correlation allows us
to obtain probability vectors �p(Bj, b j, d j ; Bl , bl , dl ) with 16
elements, corresponding to the bases obtained by the tensor
product of Bj and Bl . The optimization of the capacity wit-
ness is then obtained by maximisation over nine bases, each
of them continuously parametrized by four independent real
variables.
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III. EXPERIMENT

In our experiment, we consider a correlated two-qubit uni-
tal channel, where a Pauli X operation acts on each qubit with
a certain probability p, jointly or separately, thus defining a
degree of correlation μ. More specifically, the Kraus decom-
position of the channel takes the form

E2(ρ) =
∑

i1,i2=0,X

Ai1,i2σi1 ⊗ σi2ρσi1 ⊗ σi2, (10)

where σ0 is the identity and all coefficients of the Pauli oper-
ations other than A0,0, A0,X , AX,0, AX,X vanish. In the above
form, we have A0,X = AX,0, and we can express the action of
the channel in terms of the two parameters

p = 1 − A0,0 − AX,0 (11)

and

μ = 1 − AX,0

p(1 − p)
. (12)

The above two-qubit channel is unitarily equivalent to a cor-
related dephasing channel and the quantum capacity is known
to be [7,8]

Q = 2 − pH2[(1 − p)(1 − μ)]

− (1 − p)H2[p(1 − μ)] − H2(p), (13)

where H2(p) denotes the binary Shannon entropy. For this
case, the capacity witness QDET is expected to provide a strict
bound to the actual capacity [28].

Note that the channel acts locally on each single qubit,
up to a unitary operation, as a dephasing operation E1(ρ1) =
pρ1 + (1 − p)σX ρ1σX , independently of the value of μ. If the
two single-qubit channels are independent, their combined
capacity could simply be found by setting μ = 0 in Eq. (13);
also in this case, the detectable bound on the capacity is tight.

The channels’ effect on the photon statistics is simulated
using mixtures of operations on the polarization of single
photons. This is for our purposes equivalent to test the wit-
nessing method after a direct implementation of the channel.
Photon pairs are produced by parametric down conversion
source [Continuous Wave (CW)-pumped at λp = 405 nm,
degenerate type-I emission at λ = 2λp = 810 nm with 7.5-
nm-bandwidth filters, see Fig. 1(a)]. The active elements are
LC plates whose birefringence can be varied by applying
a voltage. We thus set two different levels for the voltage,
namely, V0, corresponding to the identity, and VX , correspond-
ing to the Pauli X, for different times t0 and tX , respectively,
thus defining p.

The key to introducing correlations between the two chan-
nels is the control of the relative timings of the LCs. Consider,
for instance, the case for p = 1/2: During the total counting
time Tc = 8 s, on each channel the LCs remain, overall, at
VX for tX = 4 s and at V0 for t0 = 4 s. In the first arm, we
simply switch between the two voltage levels halfway dur-
ing the measurement [Fig. 1(b)]. The two channels will be
maximally correlated, μ = 1, if we change settings of the LC
in the second arm at exactly the same time [Fig. 1(b)]; on the
opposite extreme, the channels act independently, μ = 0 if the
four possible settings (VX ,VX ), (VX ,V0), (V0,VX ), and (V0,V0)

FIG. 1. The experiment. (a) The setup adopts a nonlinear crystal
to generate two-photon states. These are then prepared in the quo-
rum of polarization states for the capacity witness by means of a
polarising beam splitter (PBS), a quarter-wave plate (QWP), and a
half-wave plate (HWP). The channel Eq. (10) is implemented by a
pair of liquid crystal (LC) elements subject to time-varying voltage
levels V0 and VX . Polarization measurements are carried out by a
sequence of QWP-HWP-PBS and single-photon detection. Coin-
cidence measurements are then performed. (b) Voltage sequences
applied on the two channels for p = 1/2, in the perfectly correlated
μ = 1 (left) and uncorrelated μ = 0 (right) cases.

all occur for same duration [Fig. 1(b)]. We can access interme-
diate values of μ by anticipating the switching time from V0 to
VX in channel two, ensuring it is switched back again to main-
tain an equal amount of time for both settings; this also guar-
antees that A0,X = AX,0. The same reasoning can be applied to
other values of p and μ, following the prescriptions detailed in
Table I of the Appendix. Our implementation of the channels
is a simple one, and has the advantage of providing good con-
trol of the level of correlations. However, we can rely on such
realization for our goal of testing the channel capacity witness.

To avoid recurring to four-qubit entangled states, the ca-
pacity witness has been measured by using the separable-input
strategy described in the previous section. In our scheme,
we encode the eigenvalues of σZ as the horizontal |H〉 and
vertical |V 〉 polarizations; the eigenvalues of σX as |D〉 =
(|H〉 + |V 〉)/

√
2, and |A〉 = (|H〉 + |V 〉)/

√
2; the eigenvalues

of σY as |L〉 = (|H〉 + i|V 〉)/
√

2 and |R〉 = (|H〉 − i|V 〉)/
√

2.
All these states can be prepared and measured by a suitable
combination of half- and quarter-wave plates [51]. All relevant
probabilities are then evaluated based on coincidence count
rates; no correction for accidental events and dark counts has
been implemented.

When estimating the probabilities in Eq. (3), experimental
imperfections may lead to small negative values. These are
well-known artifacts that may occur also in quantum tomogra-
phy [47]. When these are used in the expression of the entropy,
they lead to imaginary values; we found that just considering
the real part provides a sufficient regularization.

We use the single-qubit and two-qubit witness for the
combined capacity of the two channels Qtot, as well as the
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FIG. 2. Experimental bounds on the quantum capacity. In all
panels, the blue columns represent the experimental values of Qtot ,
to be compared to the green columns indicating the limit Qlim for
an independent use of the channels, when ignoring correlations.
Thecyan edges are the theoretical predictions for the ideal channel
Eq. (10) given by Eq. (13). Errors are of the order of 0.005, and
hence are not visible on this scale.

capacities of the individual channels Q1 and Q2. As these
bounds are known to be tight, we can adopt Qlim=Q1 + Q2 as
the capacity for the independent use of the channels, namely,
without exploiting the presence of correlations. Therefore, as
far as the channel is modelled by Eq. (10), we can assess
whether the channels present correlations based on the ex-
perimental data. Without any assumption on the form of the
channel, the experimental data can only show that the joint use
of the channels (whatever they are) provides better bounds to
the quantum capacity.

Our experimental results are depicted in Fig. 2 for the
different values of p and μ considered in our experiment.
Whenever the experimental imperfections force a negative
lower bound to the capacity, this is replaced with zero. Some
discrepancies with respect to the theoretical expectations can
be appreciated, mostly due to the fact that the LCs do not
implement the operations σ0 and σX exactly. The Appendix
reports more experimental details. A direct comparison be-

tween theoretical and experimental bounds for Qtot shows that
one can not be used as a limit for the other.

IV. DISCUSSION

As we can see from the results reported in Fig. 2, the green
columns refer to the witness for the total quantum capac-
ity of the local channels that corresponds to the theoretical
values reported in Eq. (13) for μ = 0. It is clear from the
theoretical expression that for fixed value of p the capacity
of the correlated channel is lower bounded by the value of
the total capacity of the local channels and, in particular. it
is an increasing function of μ at fixed p. If the channel that
we are observing is guaranteed to be of the form Eq. (10), the
detection of a capacity larger than the corresponding theoreti-
cal value for μ = 0 signals the presence of correlations in the
channel. This behavior can also be qualitatively identified in
the results reported in Fig. 2, where it is apparent that the blue
columns get closer to the green ones for decreasing values of
μ. We want to stress, however, that the detection method that
we implemented works for any form of channel. In realistic
experimental scenarios, a noisy channel will present devia-
tions from its expected model, and in the extreme case the
noise could even be completely unknown. Predictions based
on a model can give useful indications but would fail at giving
a reliable knowledge. On the contrary, the presented method
certifies a lower bound to the quantum channel capacity by
means of the only experimental data. The major advantage of
our method is that it does not need a complete experimental
reconstruction of the channel. In fact, this would require full
process tomography and would then be much more demand-
ing in terms of measurements required.
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APPENDIX

Here we report the measured values of the quantities in Eq. (5), pertaining to the operators Xi, j = σi ⊗ σ j ,with i, j = X,Y, Z .
Theoretical predictions for the ideal channel in Eq. (10) are

⎛
⎝

1 −1 + 2p 1 − 2p
−1 + 2p 1 − 4p(1 − p)(1 − μ) −1 + 4p(1 − p)(1 − μ)
1 − 2p −1 + 4p(1 − p)(1 − μ) 1 − 4p(1 − p)(1 − μ)

⎞
⎠, (A1)

where the (i, j) element in the matrix refers to σi ⊗ σ j , with the index taken in the same order as above.
The recorded values are as follows (errors in brackets):
p = 1/2, μ = 0

⎛
⎝

0.9687(5) 0.020(2) 0.008(2)
0.002(2) 0.000(2) 0.003(2)
0.006(2) −0.002(2) 0.002(2)

⎞
⎠,
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TABLE I. Parameters of the channel. The coefficients in (10) are reported for different choices of p and μ, along with a pictorial
representation of the sequences of the voltages to channel 1 (blue) and channel 2 (green).

p μ A0,0 A0,X AX,0 AX,X Voltage

1/2 0 1/4 1/4 1/4 1/4

1/4 5/16 3/16 3/16 5/16

1/2 3/8 1/8 1/8 3/8

3/4 7/16 1/16 1/16 7/16 *

1 1/2 0 0 1/2

3/8 1/5 3/16 3/16 3/16 7/16

7/15 1/4 1/8 1/8 1/2

11/15 5/16 1/16 1/16 9/16

1 3/8 0 0 5/8

1/4 1/3 1/8 1/8 1/8 5/8

2/3 3/16 1/16 1/16 11/16

1 1/4 0 0 3/4

1/8 3/7 1/16 1/16 1/16 13/16 *

1 1/8 0 0 7/8

p = 1/2, μ = 1/4

⎛
⎝

0.9685(5) 0.012(2) 0.009(2)
0.007(2) 0.243(2) −0.243(2)
0.006(2) −0.240(2) 0.246(2)

⎞
⎠,

p = 1/2, μ = 1/2

⎛
⎝

0.9683(4) 0.009(2) 0.013(2)
0.007(2) 0.483(2) −0.487(2)
0.011(2) −0.483(2) 0.487(2)

⎞
⎠,

p = 1/2, μ = 3/4

⎛
⎝

0.9680(5) 0.011(2) 0.015(2)
0.009(2) 0.721(2) −0.733(2)
0.007(2) −0.726(2) 0.732(2)

⎞
⎠,
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p = 1/2, μ = 1
⎛
⎝

0.9686(4) 0.014(2) 0.013(2)
0.002(2) 0.9640(4) −0.9791(4)
0.009(2) −0.9653(4) 0.9720(5)

⎞
⎠,

p = 3/8, μ = 1/5
⎛
⎝

0.9688(6) −0.224(2) 0.253(2)
−0.236(2) 0.237(2) −0.245(2)
0.248(2) −0.239(2) 0.244(2)

⎞
⎠,

p = 3/8, μ = 7/15
⎛
⎝

0.9695(5) −0.225(2) 0.253(2)
−0.237(2) 0.477(2) −0.490(2)
0.249(2) −0.479(2) 0.499(2)

⎞
⎠,

p = 3/8, μ = 11/15
⎛
⎝

0.9695(5) −0.225(2) 0.247(2)
−0.237(2) 0.718(2) −0.734(2)
0.247(2) −0.720(2) 0.731(2)

⎞
⎠,

p = 3/8, μ = 1
⎛
⎝

0.9686(5) −0.230(2) 0.254(2)
−0.238(2) 0.9600(6) −0.9784(4)
0.247(2) −0.9614(6) 0.9731(6)

⎞
⎠,

p = 1/4, μ = 1/3
⎛
⎝

0.9683(5) −0.468(2) 0.494(2)
−0.484(2) 0.473(2) −0.486(2)
0.489(2) −0.476(2) 0.485(2)

⎞
⎠,

p = 1/4, μ = 2/3
⎛
⎝

0.9681(6) −0.469(2) 0.496(2)
−0.487(2) 0.711(2) −0.732(2)
0.489(2) −0.713(2) 0.734(2)

⎞
⎠,

p = 1/4, μ = 1
⎛
⎝

0.9686(5) −0.468(2) 0.495(2)
−0.483(2) 0.9528(5) −0.9764(4)
0.490(2) −0.9574(6) 0.9744(6)

⎞
⎠,

p = 1/8, μ = 3/7
⎛
⎝

0.9693(5) −0.704(2) 0.734(2)
−0.722(2) 0.708(2) −0.732(2)
0.729(2) −0.710(2) 0.736(2)

⎞
⎠,

p = 1/8, μ = 1
⎛
⎝

0.9686(5) −0.707(2) 0.738(2)
−0.719(2) 0.9478(5) −0.9755(4)
0.729(2) −0.9529(6) 0.9756(4)

⎞
⎠.
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