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Dimensionality reduction algorithms, which reduce the dimensionality of a given data set whereas preserving
the information of the original data set as well as possible, play an important role in machine learning and data
mining. Duan et al. proposed a quantum version of the A-optimal projection algorithm (AOP) for dimensionality
reduction [Phys. Rev. A 99, 032311 (2019)] and claimed that the algorithm has exponential speedups on the
dimensionality of the original feature space n and the dimensionality of the reduced feature space k over
the classical algorithm. In this paper, we correct the time complexity of the algorithm of Duan et al. to
O[ κ4s

√
ks

εs polylogs( mn
ε

)], where κ is the condition number of a matrix that related to the original data set, s is
the number of iterations, m is the number of data points, and ε is the desired precision of the output state.
Since the time complexity has an exponential dependence on s, the quantum algorithm can only be beneficial for
high-dimensional problems with a small number of iterations s. To get a further speedup, we propose an improved
quantum AOP algorithm with time complexity O[ sκ6

√
k

ε
polylog( nm

ε
) + s2κ4

ε
polylog( κk

ε
)] and space complexity

O[log2(nk/ε) + s]. With space complexity slightly worse, our algorithm achieves, at least, a polynomial speedup
compared to the algorithm of Duan et al.. Also, our algorithm shows exponential speedups in n and m compared
with the classical algorithm when κ, k, and 1/ε are O[polylog(nm)].

DOI: 10.1103/PhysRevA.102.052402

I. INTRODUCTION

Quantum computing is more computationally powerful
than classical computing in solving specific problems, such
as the factoring problem [1], the unstructured data search
problem [2], and the matrix computation problems [3,4]. In
recent years, quantum machine learning (QML) has received
wide attention as an emerging research area that successfully
combines quantum physics and machine learning. An impor-
tant part of the study of QML focuses on designing quantum
algorithms to speed up the machine learning problems, such
as data classification [5–9], linear regression [10–14], associ-
ation rules mining [15], and anomaly detection [16].

In the big data era, most of the real-world data are high
dimensional, which requires high computational performance
and usually causes a problem called curse of dimensionality
[17]. Since the high-dimensional real-world data are often
confined to a region of the space having lower effective
dimensionality [17], a technique called dimensionality reduc-
tion (DR) which reduces the dimensionality of the given data
set whereas preserving the information of the original data set
as well as possible was proposed. The DR algorithm often
serves as a preprocessing step in data mining and machine
learning.

*qsujuan@bupt.edu.cn
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Based on the feature space that the data lie on and the
learning task that we want to handle, various DR algorithms
have been developed. Generally, when the data lie on a lin-
ear embedded manifold, principal component analysis (PCA)
[18], a DR algorithm maintaining the characteristics of the
data set that contribute the most to the variance, is guaran-
teed to uncover the intrinsic dimensionality of the manifold.
When the data lie on a nonlinearly embedded manifold, the
manifold learning techniques, such as isomap [19], locally
linear embedding [20], and the Laplacian eigenmap [21] can
be used to discover the nonlinear structure of the manifold.
Since the DR algorithms mentioned above aim to discover
the geometrical or cluster structure of the training data, these
algorithms are not directly related to the classification and
regression tasks which are the two most important tasks in
machine learning and data mining. For the classification task,
a famous DR technique called linear discriminant analysis
(LDA) was put forward, which maximizes the ratio of the
between-class variance and the within-class variance of the
training data [22]. For the regression task, He et al. proposed
a novel DR algorithm called A-optimal projection (AOP) that
aims to minimize the prediction error of a regression model
whereas reducing the dimensionality [23]. Their algorithm
improves the regression performance in the reduced space.

In the context of quantum computing, the quantum PCA
was proposed by Lloyd et al. to reveal in quantum form the
eigenvectors corresponding to the large eigenvalues of an un-
known low-rank density matrix [24]. Later, Yu et al. proposed
a quantum algorithm that compresses training data based on
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PCA [25]. When the dimensionality of the reduced space is
polylogarithmic in the training data, their quantum algorithm
achieves an exponential speedup compared with the classical
algorithm. Cong and Duan implemented a quantum LDA al-
gorithm which has an exponential speedup in the scales of
the original data set compared with the classical algorithm
[7]. In Ref. [26], Duan et al. studied the AOP algorithm and
proposed its quantum counterpart, called the Duan-Yuan-Xu-
Li (DYXL) algorithm. The DYXL algorithm is iterative and
was expected to have a time complexity O[spolylog(nk/ε)],
where s is the number of iterations, n is the dimensionality
of the original feature space, k is the dimensionality of the
reduced feature space, and ε is the desired precision of the
output state.

In this paper, we reanalyze the DYXL algorithm and cor-
rect the time complexity to O[ κ4s

√
ks

εs polylogs( mn
ε

)], where κ

is the condition number of a matrix that related to the original
data set, and m is the number of data points. We find that in the
DYXL algorithm multiple copies of the current candidate are
consumed to improve the candidate by quantum phase estima-
tion and postselection in each iteration, which results in the
total time complexity having exponential dependence on the
number of iterations s. Thus, the DYXL algorithm can only
be beneficial for high-dimensional problems with a small s,
which limits the practical application of the algorithm. To get
a further speedup and reduce the dependence on s, we propose
an improved quantum AOP algorithm with time complex-
ity O[ sκ6

√
k

ε
polylog( nm

ε
) + s2κ4

ε
polylog( κk

ε
)]. Note that in the

DYXL algorithm, one only changes the amplitude of the can-
didate in each iteration. In our algorithm, we process the
amplitude information of the candidate in computational basis
to reduce the consumption of the copies of the current candi-
date. Our algorithm has a quadratic dependence rather than
an exponential dependence on s in time complexity, which
achieves a significant speedup over the DYXL algorithm with
the space complexity slightly worse. Also, it shows exponen-
tial speedups over the classical algorithm on n and m when
κ, k, and 1/ε are O[polylog(nm)].

The rest of this paper is organized as follows. In Sec. II, we
review the classical AOP algorithm in Sec. II A, its quantum
version in Sec. II B, and analyze the complexity of the DYXL
algorithm in Sec. II C. We then propose our quantum AOP
algorithm and analyze the complexity in Sec. III. In Sec. IV,
we discuss the number of iterations of the two quantum algo-
rithms. The conclusion is given in Sec. V.

II. REVIEW OF THE CLASSICAL AND QUANTUM
AOP ALGORITHM

In this section, we will briefly review the AOP algorithm
in Sec. II A. The DYXL algorithm will be introduced in Sec.
II B, and we will analyze its complexity in Sec. II C.

A. Review of the AOP algorithm

Suppose X = (x1, x2, . . . , xm) is a data matrix with dimen-
sion n × m, where n is the number of the features and m is
the number of data points. The objective of the AOP is to
find the optimal projection matrix A ∈ n × k which minimizes

the trace of the covariance matrix of regression parameters to
reduce the dimensionality of X .

In He et al. [23], a graph regularized regression model
was chosen, and, thus, the optimal projection matrix A can
be obtained by solving the following objective function:

min
A

Tr[(AT X (I + λ1L)X T A + λ2I )−1], (1)

where λ1 and λ2 are the regularized coefficients, L =
diag(S1) − S is the graph Laplacian where S is the weight
matrix of the data points and 1 is a vector of all ones. Let
Nk (x) denote the k nearest neighbors of x, a simple definition
of S is as follows:

Si, j =
{1, if xi ∈ Nk (x j ) or x j ∈ Nk (xi ),

0, otherwise. (2)

To solve the optimization problem (1), He et al. introduced a
variable B and proposed the following theorem [23]:

Theorem 1 (Theorem 4.3 in Ref. [23]). The optimiza-
tion problem (1) is equivalent to the following optimization
problem:

min
A,B

‖I − AT X̃B‖2 + λ‖B‖2, (3)

where X̃ = X� and � is defined by the equation I + λ1L =
��T .

Then we can use the iterative method to find the optimal
A. The procedure of computing the projection matrix A can be
summarized as follows:

(1) Initialize the matrix A by computing the PCA of the
data matrix X .

(2) Computing matrix B according to Eq. (4),

B = (X̃ T AAT X̃ + λ2I )−1X̃ T A. (4)

(3) Computing matrix A according to Eq. (5),

A = (X̃BBT X̃ T )−1X̃B. (5)

Normalize A to satisfy ‖A‖F � ρ (ρ is a constant and here we
set it to 1).

(4) Repeat steps 2 and 3 until convergence.
Since the AOP algorithm involves matrix multiplication

and inversion, the time complexity of the classical algorithm
is �[spoly(nm)], where s is the number of iterations.

B. Review of the DYXL algorithm

In Ref. [26], the authors reformulated the iterative method
of AOP to make the algorithm suitable for quantum settings.
They adjusted the initialization of matrix A and combined
steps 2 and 3 into one step to remove the variable B. Sup-
pose the singular value decomposition of matrix X̃ is X̃ =∑r−1

j=0 σ j |u j〉〈v j |, where r = O[polylog(m, n)] is the rank of

X̃ , |u j〉 and |v j〉 are the left and right singular vectors with
a corresponding singular value of σ j (1 = σ0 � σ1 � · · · �
σr−1 > 0). The reformulated AOP algorithm can be summa-
rized as follows:

(1) Initialize matrix A(0) by computing the PCA of the data
matrix X̃ ,

A(0) = PCA(X̃ ) =
k−1∑
j=0

|u j〉〈j|, (6)
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where A(i) is the matrix A of iteration i, k is the rank of A(0)

and |j〉 is the computational basis state.
(2) Update matrix A according to the following equation:

A(i) =
k−1∑
j=0

β
(i)
j |u j〉〈j| =

k−1∑
j=0

(
σ jβ

(i−1)
j

)2 + λ2

c(i)σ 2
j β

(i−1)
j

|u j〉〈j|, (7)

where β
(i)
j is the singular value of A(i) with corresponding left

and right singular vectors |u j〉 and |j〉, c(i) is a constant to
ensure that ‖A(i)‖F � 1.

(3) Repeat step 2 until convergence.
The DYXL algorithm can be summarized as follows:
(1) Initialize i = 0, and prepare state |ψA(0)〉, where

|ψA(0)〉 = 1√
k

k−1∑
j=0

|u j〉|j〉. (8)

(2) Suppose quantum state |ψA(i−1)〉 is given, prepare the
following state:∣∣ψ (i−1)

0

〉 = |0〉D(|0〉 · · · |0〉)C (|0〉 · · · |0〉)B|ψA(i−1)〉A

= |0〉D
k−1∑
j=0

β
(i−1)
j (|0〉 · · · |0〉)C (|0〉 · · · |0〉)B(|u j〉|j〉)A,

(9)

where the superscripts D, C, B, and A represent the registers
D, C, B, and A, respectively.

(3) Perform phase estimation on |ψ (i−1)
0 〉 for the unitary

eiX̃ X̃ †t0 and eiA(i−1)A(i−1)†
t0 ,∣∣ψ (i−1)

1

〉 = |0〉D
k−1∑
j=0

β
(i−1)
j

∣∣σ 2
j

〉C∣∣(β (i−1)
j

)2〉B
(|u j〉|j〉)A. (10)

(4) Perform an appropriate controlled rotation on the reg-
isters B, C, and D and transform the system to

∣∣ψ (i−1)
2

〉 = k−1∑
j=0

β
(i−1)
j

∣∣σ 2
j

〉C∣∣(β (i−1)
j

)2〉B
(|u j〉|j〉)A

× [√1 − ρ2 f
(
σ j, β

(i−1)
j

)2|0〉 + ρ f
(
σ j, β

(i−1)
j

)|1〉]D,

(11)

where ρ is a constant to ensure |ρ f (σ j, β
(i−1)
j )| �

1, f (σ j, β
(i−1)
j ) = (σ jβ

(i−1)
j )2+λ2

(σ jβ
(i−1)
j )2 .

(5) Measure the register D, then uncompute the registers
C, B, and A, and remove the registers C, B. Conditioned on
seeing 1 in D, we have the state,

∣∣ψ (i−1)
3

〉 = 1√
N (i)

k−1∑
j=0

(
σ jβ

(i−1)
j

)2 + λ2

σ 2
j β

(i−1)
j

|u j〉|j〉

=
k−1∑
j=0

β
(i)
j |u j〉|j〉 = |ψA(i)〉, (12)

where N (i) =∑k−1
j=0 (

(σ jβ
(i−1)
j )2+λ2

σ 2
j β

(i−1)
j

)
2

. Thus, β
(i)
j ∈ [0, 1] for j ∈

{0, 1, 2, . . . , k − 1} and i � 0.

TABLE I. The time complexity of each step of the DYXL
algorithm.

Stepsa Time complexity

Step 1 O[log2(ε−1) log2(nk)]
Step 3 O[(G(i−1)/ε1) log2(1/ε1)]+

O[(1/ε1)polylog(nm/ε1)]
Step 4 O[polylog(1/ε)]
Step 5 O(κ2) repetitions

aHere steps 3–5 are the steps of the ith iteration, and we neglect
the runtime of step 2. G(i−1) is the time complexity to prepare state
|ψA(i−1) 〉, κ is the condition number of X̃ , and ε is the desired preci-
sion of the output state ε1 = O( ε

κ2
√

k
).

(6) For i = 1 to s − 1, repeat steps 2–5.

C. Complexity analysis of the DYXL algorithm

In Ref. [26], the authors analyzed the time complexity of
each iteration (step 2–step 5 in this paper) and claimed that
the total time complexity is the product of the number of
iterations and the time complexity of each iteration. Actually,
in the ith iteration, the algorithm has to prepare state |ψA(i−1)〉
several times to perform phase estimation in step 3 and per-
form measurements to obtain an appropriate state in step 5,
which means that the total time complexity is exponential on
the number of iterations s. The time complexity of each step
can be seen in Table I, and the proof details can be seen in
Appendix A.

Putting it all together, the runtime of the ith iteration (i.e.,
preparing state |ψA(i)〉) is

G(i) = O

{[
G(i−1)

ε1
log2

(
1

ε1

)
+ 1

ε1
polylog

mn

ε1

+ polylog

(
1

ε

)]
κ2

}
= O

[
κ4

√
kG(i−1)

ε
polylog

(
mn

ε

)]
= O(T G(i−1)),

where T = (κ4
√

k/ε)polylog(mn/ε). Since G(0) =
O[log2(ε−1) log2(nk)], the overall time complexity of the
algorithm is

G(s) = O(T G(s−1)) = O(T sG(0) )

= O

(
κ4s

√
ks

εs
polylogs(mn/ε)

)
. (13)

As for the space complexity, O[ln(nk/ε)] qubits are used
to prepare initial state |ψA(0)〉. In steps 2 and 3, the quantum
phase estimations require O[ln(1/ε1)] qubits. In step 4, the
controlled rotation requires O[ln(1/ε)] ancillary qubits. Note
that the qubits in the current iteration can be reused in the
next iteration, thus, the space complexity of the algorithm is
O[ln(nk/ε)]. The details are shown in Appendix A.

III. AN IMPROVED QUANTUM AOP ALGORITHM

In this section, we present an improved quantum AOP
algorithm.
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In the DYXL algorithm, to get state |ψA(i)〉 from state
|ψA(i−1)〉, one performs phase estimation and postselection,
which consumes multiple copies of |ψA(i−1)〉, thus, the number
of copies of initial state |ψA(0)〉 required depends exponentially
on the number of iterations s. Note that, in each iteration of the
DYXL algorithm, one only changes the singular value β j for
j = 0, 1, . . . k − 1. In our algorithm, we put the calculation
into the computational basis to reduce the consumption of the
copies of |ψA(i−1)〉.

A. An improved quantum AOP algorithm

The specific process of our quantum algorithm is as fol-
lows:

(1) Initialization. Initialize i = 0, and prepare state
|ψA(0)〉 = 1√

k

∑k−1
j=0 |u j〉|j〉.

(2) Prepare state |ψ0〉. Perform phase estimation with pre-
cision parameter ε on state |ψA(0)〉 for the unitary eiX̃ X̃ †t0 , and
then append state | 1√

k
〉|0〉, thus, we obtain

|ψ0〉 = 1√
k

k−1∑
j=0

(|u j〉|j〉)A
∣∣σ 2

j

〉B∣∣∣∣ 1√
k

〉C
|0〉D

= 1√
k

k−1∑
j=0

(|u j〉|j〉)A
∣∣σ 2

j

〉B∣∣β (0)
j

〉C |0〉D, (14)

where β
(0)
j = 1√

k
for j = 0, 1, . . . , k − 1, the superscripts

A, B, C, and D represent the registers A, B, C, and D,
respectively (in the absence of ambiguity, we omit these su-
perscripts below for the sake of simplicity).

Assuming that we can prepare state |ψi−1〉, where

|ψi−1〉 = 1√
k

k−1∑
j=0

|u j〉|j〉
∣∣σ 2

j

〉∣∣β (i−1)
j

〉|0〉. (15)

Thus, we could perform quantum arithmetic operations to get

∣∣φ(i)
1

〉 = 1√
k

k−1∑
j=0

|u j〉|j〉
∣∣σ 2

j

〉∣∣β (i−1)
j

〉∣∣c(i)β
(i)
j

〉
, (16)

where c(i)β
(i)
j = (σ jβ

(i−1)
j )2+λ2

σ 2
j β

(i−1)
j

and
∑k−1

j=0(β (i)
j )2 = 1.

In order to obtain the information of β
(i)
j , we

will estimate c(i) first, then we can prepare state
1√
k

∑k−1
j=0 |u j〉|j〉|σ 2

j 〉|β (i−1)
j 〉|β (i)

j 〉 := |φ(i)
3 〉 from state |φ(i)

1 〉.
(3) Estimate c(i). Assuming that we can prepare state |ψi−1〉

in time Gi−1.
(i) Prepare state |φ(i)

1 〉 from state |ψi−1〉.
(ii) Add an ancillary qubit (register E ) and perform an

appropriate controlled rotation on the registers D and E , trans-
forms the system to

∣∣φ(i)
2

〉 = 1√
k

k−1∑
j=0

(|u j〉|j〉)A
∣∣σ 2

j

〉B∣∣β (i−1)
j

〉C∣∣c(i)β
(i)
j

〉D

×
⎡⎣
√√√√1 −

(
c(i)β

(i)
j

c

)2

|0〉 + c(i)β
(i)
j

c
|1〉
⎤⎦E

:= cos(θ )|a〉|0〉E + sin(θ )|b〉|1〉E , (17)

where the parameter c is a constant to ensure
c(i)β

(i)
j

c � 1,

|a〉 =
k−1∑
j=0

√
c2 − (c(i)β

(i)
j

)2
kc2 − (c(i) )2

|u j〉|j〉
∣∣σ 2

j

〉∣∣β (i−1)
j

〉∣∣c(i)β
(i)
j

〉
,

|b〉 =
k−1∑
j=0

β
(i)
j |u j〉|j〉

∣∣σ 2
j

〉∣∣β (i−1)
j

〉∣∣c(i)β
(i)
j

〉
, (18)

sin(θ ) = c(i)

c
√

k
.

(iii) Perform quantum amplitude estimation to estimate
sin(θ ). Then we can obtain the classical information of c(i)

by c(i) = √
kc sin(θ ).

(4) Prepare state |ψi〉.
(i) Since we have the classical information of c(i), we can

perform a quantum arithmetic operation to get

∣∣φ(i)
3

〉 = 1√
k

k−1∑
j=0

|u j〉|j〉
∣∣σ 2

j

〉B∣∣β (i−1)
j

〉C∣∣β (i)
j

〉D
. (19)

Note that by using the techniques from step
2 to stage (i) of step 4, we could prepare state

1√
k

∑k−1
j=0 |u j〉|j〉|σ 2

j 〉|β (0)
j 〉|β (1)

j 〉 · · · |β (s)
j 〉 from state |ψA(0)〉.

Then followed by controlled rotation, uncomputing, and
measurement, we could obtain the desired state |ψA(s)〉. How-
ever, it requires much more space resource than the DYXL
algorithm. To reduce the space complexity, we transform the
register C to |0〉 and only keep |β (i)

j 〉 after iteration i, i.e.,

obtain state |ψi〉 = 1√
k

∑k−1
j=0 |u j〉|j〉|σ 2

j 〉B|β (i)
j 〉D|0〉C .

(ii) Perform a quantum arithmetic operation on registers

B, C, and D, to get |ψi〉. Since c(i)β
(i)
j = (σ jβ

(i−1)
j )2+λ2

σ 2
j β

(i−1)
j

, we have

σ 2
j

(
β

(i−1)
j

)2 − c(i)σ 2
j β

(i)
j β

(i−1)
j + λ2 = 0, (20)

which is a one-variable quadratic equation about the variable
β

(i−1)
j . The solution of the equation is

β
(i−1)
j± =

c(i)σ 2
j β

(i)
j ±

√(
c(i)σ 2

j β
(i)
j

)2 − 4σ 2
j λ2

2σ 2
j

. (21)

Two cases are considered here. In case 1, when λ2 � 1,
then for x � 1, the function f (x) = (σ j x)2+λ2

σ 2
j x

is a monotonic

decreasing function, which means that β
(i−1)
j = β

(i−1)
j− . In case

2, when λ2 < 1, we add a qubit (register F ) to store the

magnitude relationship between β
(i−1)
j and

√
λ
σ 2 on the state

in Eq. (19), i.e.,

∣∣φi
4

〉 = 1√
k

k−1∑
j=0

|u j〉|j〉
∣∣σ 2

j

〉B∣∣β (i−1)
j

〉C∣∣β (i)
j

〉D∣∣γ (i)
j

〉F
,

where

∣∣γ (i)
j

〉 =
⎧⎨⎩|1〉, if β

(i−1)
j �

√
λ
σ 2 ,

|0〉, if β
(i−1)
j <

√
λ
σ 2 .

(22)
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Then, according to the information in register F , we could get

β
(i−1)
j =

{
β

(i−1)
j+ , if

∣∣γ (i)
j

〉 = |1〉,
β

(i−1)
j− , if

∣∣γ (i)
j

〉 = |0〉. (23)

Thus, we could transform the state of register C to |0〉 by a
simple quantum arithmetic operation on registers C and D.
We should keep in mind that we need an ancillary qubit in
each iteration for case 2.

(5) Iteration. For i = 1 to s − 2, repeat steps 2–4. Thus, we
obtain state,

|ψs−1〉 = 1√
k

k−1∑
j=0

|u j〉|j〉
∣∣σ 2

j

〉∣∣β (s−1)
j

〉|0〉. (24)

(6) Controlled rotation. Add an ancillary qubit (register E )
and perform an appropriate controlled rotation on the state
|ψs−1〉|0〉E , transform the system to

∣∣φ(s)
2

〉 = 1√
k

k−1∑
j=0

|u j〉|j〉
∣∣σ 2

j

〉∣∣β (s−1)
j

〉∣∣c(s)β
(s)
j

〉

×
⎡⎣
√√√√1 −

(
c(s)β

(s)
j

c

)2

|0〉 + c(s)β
(s)
j

c
|1〉
⎤⎦E

. (25)

(7) Uncomputing and measurement. Uncompute registers
B, C, and D, and measure register E to seeing 1, thus, obtain

|ψA(s)〉 =
k−1∑
j=0

β
(s)
j |u j〉|j〉. (26)

B. The complexity of the improved quantum AOP algorithm

We have described an improved quantum AOP algorithm
above. In this subsection, we will analyze the time complexity
and space complexity of the algorithm.

The time complexity and space complexity of step 1 are
O[log2(ε−1) log2(nk)] and O[log2(nk/ε)], the same as the
DYXL algorithm.

In step 2, similar to the complexity of the step 3 of
the DYXL algorithm, the phase estimation stage is of
time complexity O[ 1

ε1
polylog( nm

ε1
)] and space complexity

O[log2(1/ε1)] with error ε1. The stage of appending registers

| 1√
k
〉C |0〉D is of time complexity O[log2(1/ε1)] where the

number of qubits in registers B, C, and D is O[log2(1/ε1)].
Thus, the time complexity of this step is O[ 1

ε1
polylog( nm

ε1
)].

In step 3, since the time complexity of preparing state
|ψi−1〉 is much greater than the complexity of stages (i) and (ii)
(which is O[polylog(1/ε1)] and O[log2(1/ε1)] respectively),
we will neglect the complexity of these two stages. In stage
(iii), define

Ui−1:Ui−1|0〉 = ∣∣φ(i)
2

〉 = sin(θ )|a〉|0〉 + cos(θ )|b〉|1〉,
S: S0 = I − 2|0〉ABCDE 〈0|ABCDE ,

Sχ : Sχ = I − 2|1〉E 〈1|E .

According to the quantum amplitude estimation algorithm
[27,28], the unitary operator Q = −Ui−1S0U

†
i−1Sχ acts as a ro-

tation on the two-dimensional space Span{|a〉|0〉, |b〉|1〉} with

eigenvalues e±2iθ and corresponding eigenvectors |a〉|0〉∓|b〉|1〉
2 ,

thus, the time complexity of Ui−1 is O(Gi−1). The quan-
tum amplitude estimation algorithm will generate θ within
error ε2, which means that O[log2(1/ε2)] qubits are re-
quired to store θ . The corresponding time complexity is
O[ 1

ε2
(2 + 1

2η
)Gi−1], where 1 − η is the probability to success

[we could simply choose η = O(1)] . Finally, we obtain the
classical information of c(i) within relative error O(κ2ε2) (see
Appendix D, here we use relative error to ensure that the
estimation of c(i) will not be influenced by the scale of c(i).

In step 4, for stage (i), similar to the analysis of the DYXL
algorithm (see Appendix A), we want to bind the relative
error of β

(i)
j (denoted as ε̃β) by O(ε). According to Ap-

pendix D, ε̃β = O(κ2
√

kε1 + ε̃c) = O(κ2
√

kε1 + κ2ε2), thus,
we can choose ε1 = O( ε

κ2
√

k
) and ε2 = O( ε

κ2 ) to ensure ε̃β =
O(ε). Since the classical information of c(i) is given by step
3, this stage is of time complexity O[Gi−1 + polylog( κk

ε
)].

As for stage (ii), the time complexity of the two cases is
O[polylog( κk

ε
)]. In the worst case [case 2 of stage (ii)], we

need an ancillary qubit (register F ) in each iteration.
In step 6, the time complexities of the two operations are

O[polylog(ε1)] = O[polylog( κk
ε

)] and O[log2(1/ε)], which is
similar with stage (i) and stage (ii) of step 3. Note that no extra
qubit is needed here since register E is reused.

In step 7, the time complexity of the uncomputing stage
is just the same as the time complexity to prepare state
|φ(s)

2 〉 [Eq. (25)] from state |ψA(0)〉. For c(s) = �(k) and c =
O(

√
kκ2), the probability of seeing 1 is

p(1) = 1

k

k−1∑
j=0

(
c(s)

c
β

(s)
j

)2

= �

(
1

κ4

)
. (27)

We can use the quantum amplitude amplification [27,28] to
reduce the repetition to O(κ2).

Now, we put all together. From the analysis of step 3, we
know that the time complexity to estimate c(i), i = 1, . . . , s
is Oc(i) = O( 1

ε2
Gi−1). Also, from step 4, given c(i), the time

complexity to prepare state |ψi〉 is

Gi = Gi−1 + 2polylog

(
κk

ε

)
. (28)

Thus, given c(i) for i = 1, 2, . . . , s − 1,

Gs−1 = G0 + 2(s − 1)polylog

(
κk

ε

)
, (29)

where G0 = κ2
√

k
ε

polylog( nm
ε

).
The time complexity to obtain state |ψA(s)〉 is as follows:

O|ψA(s) 〉 = O
(
κ22O|φ(s)

2 〉
)

= O

{
κ2

[
polylog

(
κk

ε

)
+ Gs−1 +

s−1∑
i=1

c(i)

]}

= O

[
sκ6

√
k

ε
polylog

(
nm

ε

)
+ s2κ4

ε
polylog

(
κk

ε

)]
.

(30)

As for the space complexity, O[log2(nk/ε)] qubits are re-
quired to obtain the classical information of c(i) in step 3.
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Given state |ψi−1〉, an ancillary qubit is required to prepare
state |ψi〉 in step 4 in iteration i when λ2 � 1. If λ2 � 1, no
ancillary qubit is needed. Since this ancillary qubit cannot
be reused by the other iterations, O(s) ancillary qubits are
required for all iterations. In step 5–step 7, no ancillary qubit
is needed. Putting all together, the space complexity of the
algorithm is O[log2(nk/ε) + s].

Since our algorithm and the DYXL algorithm are iterative
algorithms, we compare the number of iterations of the two
quantum algorithms with the same loss. In each iteration of
the DYXL algorithm, given state |ψA(i−1)〉, we can obtain state
|ψA(i)〉 within a relative error O(ε) in β

(i)
j (Appendix A). And

in each iteration of our algorithm, given |ψi−1〉, we obtain state
|ψi〉 within a relative error O(ε) in β

(i)
j , the same as the DYXL

algorithm. Thus, the two quantum algorithms will converge to
the same loss with the same number of iterations.

IV. DISCUSSION

The exponential speedup claimed by Duan et al. [26]
is based on the assumptions that κ, k, and 1/ε are
O[polylog(nm)]. We follow these assumptions to compare
the two quantum algorithms. The advantage of our algorithm
is that the time complexity is quadratically dependent on s,
whereas the DYXL algorithm has an exponential dependence
on s. If s is a constant, our algorithm has a polynomial speedup
over the DYXL algorithm. If s grows linearly with log2(mn),
our algorithm has exponential speedups on n and m compared
with the DYXL algorithm. Since the speedup of our algorithm
is strongly dependent on s, we now analyze the value of s
below.

Note that the steps of the two quantum algorithms are ex-
actly the same as those of the reformulated AOP algorithm in
Sec. II B. Thus, by controlling the precisions of each iteration
to the same level, the number of iterations of the quantum
algorithms is the same as the reformulated AOP algorithm.
We estimate the number of iterations of the reformulated
AOP algorithm in Appendix E by numerical experiments on
randomly generated datasets since it is difficult to determine
the value of s through theoretical analysis. The experimental
results show that s = �[k + κ + log2(1/ε)] may hold. If it
holds, s grows linearly with log2(mn), which means that the
exponential speedups on n and m of our algorithm hold. Note
that the experimental results are based on randomly generated
original datasets, it cannot rule out the possibility that param-
eter s may be less in the practical datasets.

V. CONCLUSION

In this paper, we reanalyzed the DYXL algorithm in detail
and corrected the complexity calculation. It was shown that
the DYXL algorithm has an exponential dependence on the
number of iterations s, thus, the quantum algorithm may lose
its advantage as s increases. To get a further speedup, we
presented an improved quantum AOP algorithm with a time
complexity quadratic on s. Our algorithm achieves, at least,
a polynomial speedup over the DYXL algorithm. When κ, k,
and 1/ε are O[polylog(nm)], our algorithm achieves exponen-
tial speedups compared with the classical algorithm on n and
m. As for the space complexity, our algorithm is slightly worse
than the DYXL algorithm.

The speedups of our algorithm mainly come from the idea
of putting the information to be updated into computational
basis, which saves the consumption of the current candidates.
We hope this idea could inspire more iterative algorithms to
get a quantum speedup. We will explore the possibility in the
future.
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APPENDIX A: THE COMPLEXITY OF EACH STEP OF
THE DYXL ALGORITHM

In this Appendix, we analyze the time complexity of each
step of the DYXL algorithm in detail. Different from the orig-
inal paper [26], on one hand, we use the best-known results
on Hamiltonian simulation to get a tight bound of the time
complexity, on the other hand, we estimate the parameters
which have not been estimated in the original paper or need to
be correct.

In step 1, |ψA(0)〉 can be written in computational basis
as
∑

x1x2··· xl ∈{0,1}l αx1x2···xl |x1x2 · · · xl〉, where l = k log2 n. By
the assumption that the elements of A(0) and ω(i) are given
and stored in quantum random access memory, where ω(i) is

defined as cos2(2πωi ) = (
αx1x2 ···xi−10

x1x2···xi−1
)
2 + O[poly(ε)], and the

time complexity and space complexity for preparing |ψA(0)〉
are O[log2(ε−1) log2(nk)] and O[log2(nk/ε)] [26].

In step 3, assume the condition number of X̃ and A(i−1)

is κ and κ (i−1), then κ (i−1) = O(κ2) (the proof is given in
Appendix B. We should mention that, in the original paper
[26], the author gave a wrong estimate of κ (i−1), which influ-
enced the total complexity). Note that

tr2(|ψA(i−1)〉〈ψA(i−1) |) =
k∑

j=1

(
β

(i−1)
j

)2|u j〉〈u j |

= A(i−1)A(i−1)†
. (A1)

According to Corollary 1 (Corollary 17 of Ref. [29]), the

time complexity to simulate eiA(i−1)A(i−1)†
t0 within error ε0

is O{[t0 + ln(1/ε0)]G(i−1)}, where G(i−1) is the time com-
plexity to prepare state |ψA(i−1)〉. For the simulation of
X̃ X̃ †, assume there is a quantum circuit to prepare state
|ψX̃ 〉 = 1

|X̃ |F
∑n−1

i=0

∑m−1
j=0 X̃i j |i〉| j〉 = 1

|X̃ |F
∑r−1

j=0 σ j |u j〉|v j〉 in

time O[polylog(nm)]. Note that X̃ X̃ † = |X̃ |2F tr2(|ψX̃ 〉〈ψX̃ |),
where |X̃ |F =

√∑r−1
j=0 σ 2

j � √
r = O[polylog(nm)]. Thus,

the time complexity to simulate eiX̃ X̃ †t0 within ε0 is
O{polylog(nm)[|X̃ |2Ft0 + ln(1/ε0)]}.

052402-6



IMPROVED QUANTUM ALGORITHM FOR A-OPTIMAL … PHYSICAL REVIEW A 102, 052402 (2020)

Corollary 1 (Ref. [29]). Given access to the oracle Ĝ spec-
ifying a Hamiltonian Ĥ = ρ̂ that is a density-matrix ρ̂, where

Ĝ|0〉a = |G〉a =
∑

j

√
α j | j〉a1 |χ j〉a2 ,

(A2)
ρ̂ = tr|G〉〈G|a1 =

∑
j

α j |χ j〉〈χ j |,

time evolution by Ĥ can be simulated for time t and error ε

with O[t + log2 (1/ε)] queries.
According to Refs. [27,30,31], taking O(1/ε1) times of

controlled eiA(i−1)A(i−1)†
t0 to perform phase estimation ensures

that the singular value β
(i−1)
j being estimated within error

O(ε1), so as the phase estimation on eiX̃ X̃ †t0 . Let ε0 = ε2
1 and

t0 = O(1), the time complexity of the two phase estimations
be O[(G(i−1)/ε1) log2(1/ε1)] and O[(1/ε1)polylog(nm/ε1)],
respectively, whereas the space complexity of these two phase
estimations are O[log2(1/ε1)].

The implementation of controlled rotation of step 4 can
be divided into two stages [26]. The first stage is a quantum

circuit to compute y j = ρ
(σ jβ

(i−1)
j )2+λ2

(σ jβ
(i−1)
j )2 and store in an auxiliary

register L with O[ln(1/ε)] qubits, where ρ = O( 1
2λ2kκ4 ) (the

proof is given in Appendix C, we should mention that in the
original paper [26], the authors did not analyze parameter
ρ which has a strong correlation with the total complexity).
Since β

(i−1)
j and σ j is estimated with error O(ε1), the relative

error of estimating y j is

ε̃y = O

(
λ2
(
β

(i−1)
j

)2
σ j + λ2β

(i−1)
j σ 2

j(
β

(i−1)
j

)4 + σ 4
j + λ2

(
β

(i−1)
j

)2
σ 2

j

ε1

)

= O

(
λ2
(
β

(i−1)
j + σ j

)
β

(i−1)
j σ j

(λ2 + 2)
(
β

(i−1)
j

)2
σ 2

j

ε1

)

= O(κ2
√

kε1), (A3)

in the first equation, and we neglect the terms with the power
of ε1 greater than 1, and in the last equation, we use the
conclusion of Eq. (C1). To ensure that the final error of this
iteration is within O(ε), we could take ε̃y = O(ε), which
means ε1 = O( ε

κ2
√

k
). Following the result of Ref. [32], the

time complexity of this stage is O[polylog(1/ε)]. The sec-
ond stage is to perform controlled rotation CR on the state,
where CR|y j〉L|0〉D = |y j〉L(

√
1 − y2

j |0〉 + y j |1〉)D. The time
complexity of this stage is O[log2(1/ε)] [3,9–11,13,14].

In step 5, the probability of seeing 1 in register D is p(1) =
ρ2∑

j (
(σ jβ

(i−1)
j )2+λ2

σ 2
j β

(i−1)
j

)
2

= O( 1
κ4 ) as shown in Appendix C (we

should mention that in the original paper [26], the authors did
not analyze this probability which is directly related to the
total complexity). Using amplitude amplification [28], we find
that O(κ2) repetitions are sufficient.

APPENDIX B: ESTIMATE THE PARAMETER κ(i)

In this Appendix, we analyze the condition number κ (i) of
A(i). First, we give the following theorem:

Theorem 2. If β
(i−1)
j > β

(i−1)
j′ , then β

(i)
j > β

(i)
j′ .

Proof. (1) Note that β
(0)
0 = β

(0)
1 = · · · = β

(0)
k−1 and

1 = σ0 � σ1 � · · · � σk−1 = 1
κ

. For j > j′, the following
inequalities hold:

β
(0)
j � β

(0)
j′ ,

(B1)
σ 2

j β
(0)
j � σ 2

j′β
(0)
j′ .

(2) Assuming that for i � 1, the following inequalities
hold:

β
(i−1)
j � β

(i−1)
j′ ,

(B2)
σ 2

j β
(i−1)
j � σ 2

j′β
(i−1)
j′ .

Then,

σ 2
j β

(i)
j = σ 2

j

(
σ jβ

(i−1)
j

)2 + λ2

c(i−1)σ 2
j β

(i−1)
j

= 1

c(i−1)
σ 2

j β
(i−1)
j + λ2

c(i−1)β
(i−1)
j

� 1

c(i−1)
σ 2

j′β
(i−1)
j′ + λ2

c(i−1)β
(i−1)
j′

= σ 2
j′β

(i)
j′ . (B3)

Also,

β
(i)
j =

(
σ jβ

(i−1)
j

)2 + λ2

c(i−1)σ 2
j β

(i−1)
j

= 1

c(i−1)

(
β

(i−1)
j + λ2

σ 2
j β

(i−1)
j

)

� 1

c(i−1)

(
β

(i−1)
j′ + λ2

σ 2
j′β

(i−1)
j′

)
= β

(i)
j′ . (B4)

Thus, the theorem holds. �
According to Theorem 2, we have as follows:

max
j

β
(i)
j = max j

(
β

(i−1)
j

)2 + λ2κ
2

c(i−1) max j β
(i−1)
j

,

min
j

β
(i)
j = min j

(
β

(i−1)
j

)2 + λ2

c(i−1) min j β
(i−1)
j

. (B5)

Let max j (β
(i)
j )2 = a(i) � 1, thus,

κ (i) = max j β
(i)
j

min j β
(i)
j

= max j
(
β

(i−1)
j

)2 + λ2κ
2

c(i−1) max j β
(i−1)
j

c(i−1) min j β
(i−1)
j

min j
(
β

(i−1)
j

)2 + λ2

= (a(i−1) + λ2κ
2)κ (i−1)

a(i−1) + λ2(κ (i−1))2
. (B6)

Note that β
(0)
j takes the same value for j = 0, 1, . . . k −

1, thus, κ (0) = 1, κ (1) = a(0)+λ2κ2

a(0)+λ2
. According to Eq. (B6), the
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following equation holds:

κ (i−1)κ (i) = (a(i−1) + λ2κ
2)(κ (i−1))2

a(i−1) + λ2(κ (i−1))2
. (B7)

According to Eqs. (B6) and (B7), we have as follows:

κ (i)κ (i−1) � κ2, if κ (i−1) � κ,

κ (i)κ (i−1) � κ2, if κ (i−1) � κ, (B8)

Since κ = O[polylog(NM )], λ2 = O(1), we assume that

λ2κ > 1, thus, κ (0) = 1 � κ, κ (1) = a(0)+λ2κ2

a(0)+λ2
� κ . Then,

κ (2l )κ (2l+1) � κ2

(B9)
κ (2l+1)κ (2l+2) � κ2.

Furthermore,

1 = κ (0) � κ (2) � · · · � κ (2l ) � κ

� κ (2l+1) � · · · � κ (3) � κ (1)

= a(0)+λ2κ
2

a(0) + λ2
= O(κ2). (B10)

The sequence κ (2l ) (l = 0, 1, 2, . . . ,∞) is monotonically in-
creasing with upper bound κ , and the sequence κ (2l+1) (l =
0, 1, 2, . . . ∞) is monotonically decreasing with lower bound
κ , thus, the sequence κ (i) (i = 0, 1, 2, . . . ,∞) converges on
κ , i.e., limi→∞ κ (i) = κ .

In conclusion, we get κ (i) = O(κ2) for i � 0.

APPENDIX C: ESTIMATE THE PARAMETER ρ AND THE
p(1) OF STEP 5 IN THE DYXL ALGORITHM

In this Appendix, we analyze the value of parameter ρ

which first appeared in step 4 of the DYXL algorithm.
It is obvious that

∑k
j=1(β i−1

j )2 = 1 for β
(i−1)
j ( j =

0, 1, . . . , k − 1) is the amplitude of quantum state |ψ (i−1)
A 〉.

Thus,

1√
k

� max
j

β
(i−1)
j � 1,

(C1)1

κ i−1
√

k
� min

j
β

(i−1)
j � 1√

k
.

Since ρ
(σ jβ

(i−1)
j )2+λ2

(σ jβ
(i−1)
j )2 � 1, ρ � min j

(σ jβ
(i−1)
j )2

(σ jβ
(i−1)
j )2+λ2

. Note that

min
j

(
σ jβ

(i−1)
j

)2(
σ jβ

(i−1)
j

)2 + λ2

= min
j

β
(i−1)
j

β
(i−1)
j + λ2

σ 2
j β

(i−1)
j

�
min j β

(i−1)
j

max j
(
β

(i−1)
j + λ2

σ 2
j β

(i−1)
j

) = min j β
(i−1)
j max j β

(i−1)
j

max j
(
β

(i−1)
j

)2 + λ2κ2
� 1/(κ (i−1)k)

1 + λ2κ2

= 1

κ (i−1)k + λ2kκ2κ (i−1)
>

1

2λ2kκ2κ (i−1)
(C2)

for the κ (i) = O(κ2), we could choose the parameter ρ = O( 1
2λ2kκ4 ). Then the probability of seeing 1 in register D in step 5 is

p(1) = ρ2
∑

j

(
(σ jβ

(i−1)
j )2 + λ2

σ 2
j β

(i−1)
j

)2

� ρ2k

[(
1
κ

max j β
(i−1)
j

)2 + λ2

1
κ2 max j β

(i−1)
j

]2

� ρ2k

(
1 + λ2κ

2

max j β
(i−1)
j

)2

� ρ2k2(1 + λ2κ
2)2

�
(

1

2λ2kκ4

)2

k2(1 + λ2κ
2)2 = O

(
1

κ4

)
. (C3)

APPENDIX D: ESTIMATE THE PARAMETER c(i) AND ANALYZE THE RELATIVE ERROR OF c(i) AND β
(i)
j

In this Appendix, we analyze the value of parameter c(i) and θ first and then analyze the relative errors of c(i) and β
(i)
j of our

algorithm.
Note that

c(i)β
(i)
j =

(
σ jβ

(i−1)
j

)2 + λ2

σ 2
j β

(i−1)
j

= β
(i−1)
j + λ2

σ 2
j β

(i−1)
j

. (D1)

According to Theorem 2, we have

c(i)β
(i)
j � min

j
c(i)β

(i)
j = min

j

(
β

(i−1)
j + λ2

σ 2
j β

(i−1)
j

)
= min

j
β

(i−1)
j + λ2

min j β
(i−1)
j

. (D2)

Similarly, we have c(i)β
(i)
j � max j β

(i−1)
j + λ2κ

2

max j β
(i−1)
j

. Because c > c(i)β
(i)
j , we can choose c � max j β

(i−1)
j + λ2κ

2

max j β
(i−1)
j

. Since

max
j

β
(i−1)
j + λ2κ

2

max j β
(i−1)
j

� 1 + λ2

√
kκ2, (D3)

we can take c = 1 + λ2

√
kκ2 = O(

√
kκ2).
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FIG. 1. The relationship of the condition number κ and the number of iterations s when ε = 10−20 (a) and k = 100 (b), respectively.

Based on Eq. (C1),

(c(i) )2 = (c(i) )2
∑

j

(
β

(i)
j

)2 =
∑

j

(
β

(i−1)
j + λ2

σ 2
j β

(i−1)
j

)2

=
∑

j

((
β

(i−1)
j

)2 + 2λ2

σ 2
j

+
(

λ2

σ 2
j β

(i−1)
j

)2)
� 1 + 2kλ2 + λ2

2k2 = �(k2), (D4)

thus, c(i) = �(k). Then according to Eq. (19),

sin(θ ) = c(i)

c
√

k
= �

(
k

kκ2

)
= �

(
1

κ2

)
. (D5)

The relative error of c(i) is

ε̃c =
∣∣∣∣c(i) − c̃(i)

c(i)

∣∣∣∣ = ∣∣∣∣c
√

k sin(θ ) − c
√

k sin(θ̃ )

c
√

k sin(θ )

∣∣∣∣ � ∣∣∣ �θ

sin(θ )

∣∣∣ = O(κ2ε2). (D6)

Thus, the relative error of β
(i)
j of step 4 is

∣∣∣∣∣β
(i)
j − β̃

(i)
j

β
(i)
j

∣∣∣∣∣ =

∣∣∣∣∣∣∣
(σ jβ

(i−1)
j )2+λ2

c(i)σ 2
j β

(i−1)
j

− (σ̃ j β̃
(i−1)
j )2+λ2

c̃(i)σ̃ 2
j β̃

(i−1)
j

(σ jβ
(i−1)
j )2+λ2

c(i)σ 2
j β

(i−1)
j

∣∣∣∣∣∣∣ = O

[∣∣∣∣∣σ
2
j λ2 + 2σ jβ

(i−1)
j λ2 − σ 4

j

(
β

(i−1)
j

)2
σ 4

j

(
β

(i−1)
j

)3 + σ j
(
β

(i−1)
j

)
λ2

∣∣∣∣∣ε1 + ε̃c

]

= O

(
σ jλ2 + 2β

(i−1)
j λ2

σ j
(
β

(i−1)
j

)
λ2

ε1 + ε̃c

)
= O(κ2

√
kε1 + ε̃c), (D7)

where we neglect the quadratic terms of ε1 in the second
equation and ε1 is the absolute error of β j and σ j .

APPENDIX E: THE NUMBER OF ITERATIONS OF THE
REFORMULATED AOP ALGORITHM

In this Appendix, we evaluate the number of iterations s
of the reformulated AOP algorithm through numerical exper-
iments on randomly generated datasets with respect to three
parameters, i.e., the condition number κ of X̃ , the precision
ε, and the number of the principal components k of X̃ (or the

dimensionality of the reduced feature space). By analyzing
the steps of the algorithm, we find that the parameters n and
m (the dimensionality of X̃ ) will not influence the number of
iteration directly.

We evaluate the relationship of s and κ first. Note that
the first step of the reformulated AOP algorithm is comput-
ing the PCA of the data matrix X̃ and then selecting the
k largest eigenvalues (i.e., the σ 2

0 , σ 2
1 , . . . , σ 2

k−1) to perform
the later steps. To reduce the running time, we randomly
generate k positive numbers as the k largest eigenvalues
of X̃ to remove the process of PCA. The experimental
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FIG. 2. Evolution of the number of iterations s with respect to the parameter ε [(a) and (b)] and k [(c) and (d)].

results are shown in Fig. 1. We set ε = 10−20 and k =
{40, 80, 120, 160} in Fig. 1(a) and set k = 100 and ε =
{10−10, 10−15, 10−20, 10−25} in Fig. 1(b). The experimental
results show that s may have a superlinear dependence on
κ when κ � 20. Note that the exponential speedups of the
two quantum algorithms are based on κ = O[polylog(mn)]
and the quantum algorithms have advantages when n and m

are large. Thus, the situation that the value of κ is large, i.e.,
κ � 20, deserves more attention.

The relationship of ε and s is shown in Figs. 2(a) and 2(b),
and the relationship of k and s is shown in Figs. 2(c) and 2(d).
The experimental results in Fig. 2 show that s may be linearly
dependent on log2(1/ε) and k. Put all the three parameters
together, s = �[κ + log2(1/ε) + k] may hold.
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