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A dimension witness provides a device-independent certification of the minimal dimension required to
reproduce the observed data without imposing assumptions on the functioning of the devices used to generate
the experimental statistics. In this paper, we provide a family of Bell expressions where Alice and Bob perform
2n−1 and n number of dichotomic measurements, respectively, which serve as the device-independent dimension
witnesses of Hilbert space of 2m dimensions with m = 1, 2, . . . , 2�n/2�. The family of Bell expressions considered
here determines the success probability of a communication game known as the n-bit parity-oblivious random
access code. The parity obliviousness constraint is equivalent to the preparation noncontextuality assumption
in an ontological model of an operational theory. For any given n � 3, if such a constraint is imposed on
the encoding scheme of the random access code, then the local bound of the Bell expression reduces to the
preparation noncontextual bound. We provide explicit examples for the n = 4 and 5 case to demonstrate that
the relevant Bell expressions certify the qubit and two-qubit system, and for the n = 6 case to demonstrate that
the relevant Bell expression certifies the qubit, two-qubit, and three-qubit systems. We further demonstrate the
sharing of quantum preparation contextuality by multiple Bobs sequentially to examine whether the number of
Bobs sharing the preparation contextuality is dependent on the dimension of the system. We provide explicit
examples of n = 5 and 6 to demonstrate that the number of Bobs sequentially sharing the contextuality remains
the same for any of the 2m-dimensional systems.

DOI: 10.1103/PhysRevA.102.052221

I. INTRODUCTION

Dimensionality is a fundamental property of a quantum
system. The Hilbert space in which the quantum state belongs
is an abstract construction but the number of dimensions avail-
able to a system is a physical quantity and is considered to
be a resource for quantum computation and quantum infor-
mation theory [1]. A higher-dimensional system can make a
given protocol more efficient and, alternatively, the security
of many cryptographic protocols relies on the dimensional
characteristics of the system. For example, instead of a qubit
system, if four-dimensional states are used then the cele-
brated Bennett-Brassard (BB84) cryptographic protocol [2]
can be shown to be entirely compromised [3,4]. From the
fundamental perspective, there are quantum correlations the
simulations of which by classical resources inevitably require
dimensional superiority. The quantum dimension witness is a
criterion that provides a lower bound on the dimension that
is needed to reproduce a given measurement statistics. Of
late, the device-independent dimension witness has become
an important research area where the dimension of a quantum
system is certified without requiring a priori knowledge about
the devices used in the experiment.

The notion of the dimension witness was first intro-
duced in a seminal paper by Brunner et al. [5] in the
context of the bipartite Bell scenario, which involves two
spatially separated observers Alice and Bob, who access
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uncharacterized devices (black boxes). Alice and Bob receive
inputs x ∈ {1, 2, . . . , nA} and y ∈ {1, 2, . . . , nB}, respectively,
and the uncharacterized measurement device yielding re-
spective outputs a ∈ {0, 1} and b ∈ {0, 1}. The conditional
probability P(ab|xy) admits a d-dimensional representation if
it can be written as P(ab|xy) = tr[ρAB(Mx

a ⊗ My
b )] for the state

ρAB ∈ Cd ⊗ Cd shared between two parties and the local
measurements Mx

a and My
b acting on Cd . The reproduction

of every joint probability P(ab|xy) in quantum theory puts a
lower bound on the dimension of the Hilbert space.

Since then a flurry of interesting works along this direction
has been reported [6–24]. The work of Brunner et al. [5] was
further generalized and extended to the prepare and measure
scenario by Gallego et al. [7], who proposed a family of
inequalities which serve as classical and quantum dimension
witnesses given by

IN =
N−1∑
y=1

E1y +
N∑

x=2

N+1−x∑
y=1

αxyExy (1)

where αxy = 1 if x + y � N , and αxy = −1 otherwise. Here,
x ∈ {1, 2, . . . , N}, y ∈ {1, 2, . . . , N − 1}, and Exy is the corre-
lation. The problem of the dimension witness is meaningful if
the number of preparations (N ) is greater than the Hilbert-
space dimension of the system. For classical states of
dimension d � N it is found that algebraic bound IN � Ld ,
where Ld = N (N−3)

2 + 2d − 1. For example, for N = 3 and
d = 2 one finds the classical value is 3 and the quantum
value is 2

√
2 + 1. Further analysis found that the I3 inequity

achieves its optimal value for d = 3, which is 5. So this
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inequality has the ability to test the dimension as well as to
distinguish between the classical and quantum system.

Later, by assuming independence of the prepare and mea-
sure devices a nonlinear dimension witness is also proposed
[11] and a test of dimension in a communication network is
also proposed [12]. A connection to the random access code
(RAC) [6] and to state discrimination [9] are also pointed
out. In a recent proposal, by employing binary-outcome mea-
surements a certification of an arbitrary-dimensional quantum
system is proposed [20]. Experimental verifications of dimen-
sion witnesses including higher-dimensional systems have
also been performed [25–32].

In this paper we provide a family of quantum dimension
witnesses based on the parity-oblivious random access code
(PORAC) [33]. The parity-oblivious condition imposed on
Alice’s encoding scheme implies here that no parity infor-
mation of the inputs of Alice is shared to Bob. It can be
shown [34] that the success probability of a n-bit random
access code can be solely determined by a family of Bell
expressions (Bn) where Alice and Bob use 2n−1 and n number
of dichotomic measurements, respectively. Importantly, for a
given n, the optimal quantum value of Bn can only be achieved
for the quantum system having local Hilbert-space dimension
d = 2�n/2�. The parity-oblivious constraint is shown [36] to
be equivalent to the preparation noncontextuality assumption
in an ontological model, and for a given n such a constraint
on the encoding scheme reduces the local bound of the fam-
ily of Bell expressions Bn to the preparation noncontextual
bound [36]. This is due to the fact that such a condition puts
further restriction on free choices of the values of Alice’s
observables.

For n = 2 and 3, the Bell expressions are well-known
Clauser-Horne-Shimony-Holt (CHSH) [37] and elegant Bell
expressions [38], respectively. Since both the Bell expressions
for n = 2 and 3 can be optimized for the qubit system, they
cannot serve as dimension witnesses of Hilbert space. How-
ever, each of the Bell expressions for n � 4 has the potential
to distinguish the dimensions d = 2m of the Hilbert space
with m = 1, 2, . . . , 2�n/2�, thereby serving as dimension wit-
nesses of the Hilbert space. We provide explicit examples for
n = 4, 5, and 6 cases to demonstrate that the Bell expressions
for both n = 4 and 5 certify qubit and two-qubit systems
and for n = 6 the relevant Bell expression certifies the qubit,
two-qubit, and three-qubit local systems.

Further, we examine the sharing of preparation con-
textuality by multiple sequential Bobs performing unsharp
measurements. Using the family of Bell expressions men-
tioned above, it was shown [39] that the sharing of preparation
contextuality can be demonstrated for an arbitrary number
of Bobs by using the optimal quantum value of the family
of Bell expressions, achieved for the d = 2�n/2�-dimensional
Hilbert space. We argue that there is a possibility of sharing
preparation contextuality by an arbitrary number of Bobs for
the system in lower-dimensional Hilbert space. We provide
an explicit example for n = 5 where the number of sequential
Bobs sharing preparation contextuality remains the same for
qubit and two-qubit systems. Similarly, for n = 6 the shar-
ing is for a possible same number of sequential Bobs for
qubit, two-qubit, and three qubit systems. However, the value
of the unsharpness parameter required for demonstrating

preparation contextuality by sequential Bobs is always higher
in a lower-dimensional system, as expected.

This paper is organized as follows. In Sec. II, we briefly
recapitulate the essence of the parity-oblivious random access
code and derivation of the family of preparation noncontex-
tual inequalities, i.e., the Bell inequalities that serve as the
dimension witnesses. In Sec. III, we provide the sum-of-
square (SOS) approach to optimize the dimension witnesses
for various dimensional quantum systems. We provide spe-
cific examples for n = 4, 5, and 6 to demonstrate how the
corresponding Bell inequalities certify the 2m-dimensional
systems in Sec. IV. For the dimension witnesses for n = 4, 5,
and 6, we examine the sharing of preparation contextuality by
multiple Bobs for qubit, two-qubit, and three-qubit systems in
Sec. V. Finally, we summarize our work in Sec. VI.

II. A FAMILY OF BELL EXPRESSIONS SERVING
AS DIMENSION WITNESSES

Since the family of dimension witnesses is based on the
PORAC and the parity-oblivious condition is equivalent to
the preparation noncontextuality assumption in an ontological
model of an operational theory, we first provide the essence of
preparation noncontextuality and then provide the derivation
of local and preparation noncontextual bounds of the afore-
mentioned family of Bell expressions.

We start by encapsulating the notion of an ontological
model reproducing the quantum statistics [36,40]. In quan-
tum theory, a preparation procedure (P) produces a density
matrix ρ and the measurement procedure (M ), which is in
general described by a suitable positive operator-valued mea-
sure (POVM) Ek , provides the probability of occurrence an
outcome k is given by p(k|P, M ) = Tr[ρEk], which is the
Born rule. In an ontological model of quantum theory, the
preparation of quantum state ρ by a specific preparation pro-
cedure P is equivalent to preparing a probability distribution
μP(λ|ρ) in the ontic state space, satisfying

∫
�

μP(λ|ρ)dλ = 1
where λ ∈ � and � is the ontic state space. The probability of
obtaining an outcome k is a response function ξM (k|λ, Ek ) sat-
isfying

∑
k ξM (k|λ, Ek ) = 1 where a measurement operator Ek

is realized through a measurement procedure M. The primary
requirement of such an ontological model is to reproduce the
Born rule, i.e., ∀ρ, ∀Ek , and ∀k,

∫
�

μP(λ|ρ)ξM (k|λ, Ek )dλ =
Tr[ρEk].

The notion of noncontextuality was reformulated and
generalized for any operational theory by Spekkens [36].
For our purpose, we focus on the quantum theory here.
An ontological model of quantum theory can be consid-
ered to be preparation noncontextual if ∀M : p(k|P, M ) =
p(k|P′, M ) ⇒ μP(λ|ρ) = μP′ (λ|ρ) is satisfied where P and
P′ are two distinct preparation procedures but in the same
equivalent class [41–44].

As mentioned, the family of dimension witnesses in the
present paper is derived through a two-party communication
game known as PORAC. It was shown by Spekkens et al. [33]
that the parity-oblivious condition in an operational theory
can equivalently be cast into the assumption of preparation
noncontextuality in an ontological model. It is already shown
in [34] that the success probability of a n-bit PORAC can
be solely linked with a family of Bell’s inequalities. For the
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FIG. 1. Schematic diagram of bipartite Bell scenario.

sake of completeness, we briefly encapsulate the essence of
the derivation.

In a n-bit PORAC, Alice chooses her bit xδ randomly
from {0, 1}n with δ ∈ {1, 2, . . . , 2n}. The relevant
ordered set Dn can be written as Dn = (xδ|xi ⊕ x j =
111, . . . , 11 and i + j = 2n + 1) and i ∈ {1, 2, . . . , 2n−1}.
Here, x1 = 00, . . . , 00; x2 = 00, . . . , 01, . . .; and so on. Bob
can choose any bit y ∈ {1, 2, . . . , n} and recover the bit xδ

y
with a probability. The condition of the task is the following:
Bob’s output must be the bit b = xδ

y . The parity-oblivious
constraint here is that no information about any parity of x
can be transmitted to Bob. Following [33], we define a parity
set Pn = {x|x ∈ {0, 1}n,

∑
r xr � 2} with r ∈ {1, 2, . . . , n}.

For any arbitrary s ∈ Pn, no information about s.x= ⊕r srxr (s
parity) is to be transmitted to Bob, where ⊕ is sum modulo 2.

In an operational theory, Alice encodes her n-bit string of
xδ prepared by a procedure Pxδ . Next, after receiving the parti-
cle, for every y ∈ {1, 2, . . . , n}, Bob performs a two-outcome
measurement Mn,y and reports outcome b as his output. Then
the probability of success is given by

p
(
b = xδ

y

) = 1

2nn

∑
x,y

p
(
b = xδ

y

∣∣Pxδ , Mn,y
)
. (2)

In quantum PORAC, Alice encodes her n-bit string of xδ

into quantum states ρxδ , prepared by a procedure Pxδ . On a
suitable entangled state ρAB = |ψAB〉〈ψAB| with |ψAB〉 ∈ Cd ⊗
Cd , Alice performs one of the 2n−1 projective measurements
{PAn,i , I − PAn,i} where i ∈ {1, 2, . . . , 2n−1} to encode her n bits
into 2n quantum states given by

1
2ρxi = TrA[(PAn,i ⊗ I)ρAB],

1
2ρx j = TrA[(I − PAn,i ⊗ I)ρAB] (3)

with i + j = 2n + 1.
In quantum theory, the parity-oblivious condition implies

that

∀s :
1

2n−1

∑
xδ |xδs=0

ρxδ = 1

2n−1

∑
xδ |xδs=1

ρxδ . (4)

In the ontological model of quantum theory, the parity
obliviousness in the Eq. (4) condition is equivalent to the
preparation noncontextual assumption, i.e.,

∀s :
1

2n−1

∑
xδ |xδ .s=0

μ(λ|ρxδ ) = 1

2n−1

∑
xδ |xδ .s=1

μ(λ|ρxδ ). (5)

Note that the number of parity-oblivious conditions for
the n-bit PORAC is the number of elements in Pn [34]. We
noticed that there are two types of parity-oblivious conditions.
One type arises from the natural construction, such as I =
P+

An,i
+ P−

An,i
. In that case, s ∈ Pn follow the property

∑
y sy =

2m with m ∈ N. For the rest of s ∈ Pn not satisfying the above
property, nontrivial constraints on Alice’s observables need to
be satisfied and are given by

2n−1∑
i=1

(−1)sxi
An,i = 0. (6)

The total number of such nontrivial constraints on Alice’s
observables is Cn = 2n−1 − n.

The measurements for the decoding scheme are taken to be

Mn,y =
{

Mi
n,y, when b = xi

y

M j
n,y, when b = x j

y
, (7)

Mi( j)
n,y =

{
PBn,y , when xi( j)

y = 0

I − PBn,y , when xi( j)
y = 1

. (8)

The quantum success probability can then be written as

pQ = 1

2nn

n∑
y=1

2n−1∑
i=1

p
(
b = xi

y

∣∣ρxi , Mi
y

) + p
(
b = x j

y

∣∣ρx j , M j
y

)

= 1

2
+ Bn

2nn
(9)

where Bn is the family of Bell expressions given by

Bn =
n∑

y=1

2n−1∑
i=1

(−1)xi
y An,i ⊗ Bn,y, (10)

which serve as the family of dimension witnesses in the
present paper. Note that the Bell expressions in Eq. (10) pro-
vide the CHSH and Gisin elegant Bell inequality for n = 2
and 3, respectively, and the corresponding local bounds are 2
and 6. The local bound of the family of Bell expressions for
any arbitrary n is given by [34]

(Bn)local � n

(
n − 1⌊

n−1
2

⌋)
. (11)

However, the parity-oblivious condition in the usual RAC
imposes a functional relationship between Alice’s observables
as given by Eq. (6). This means that Alice’s choices of values
are restricted and the local bound of Eq. (10) gets reduced
(which we call the preparation-noncontextual bound [33,34])
to

(Bn)PNC � 2n−1. (12)

Since for any n we have (Bn)PNC � (Bn)local then for a given
n even if optimal quantum value (Bn)Q does not violate the
local bound in Eq. (11) it may still reveal nonclassicality by
violating the preparation noncontextuality given by Eq. (12).
Note that it is already known [34] that the optimal quantum
value of Bn can be obtained for the local system having
dimension d = 2�n/2�. Our purpose here is to examine the
maximum quantum values of Bn that can be achieved for the
lower-dimensional systems having dimensions d < 2�n/2�.
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III. SUM-OF-SQUARE APPROACH FOR MAXIMIZATION

In order to find the quantum upper bound of the Bell
expression (Bn)d=2m for various dimensions, we use the SOS
approach (see, for example, [35]), so that (Bn)Q � βn for all
possible quantum states ρAB and measurement operators An,i

and Bn,y. Here βn is the upper bound on the quantum value
of (Bn)d=2m for the system having dimension d = 2m. This
is equivalent to showing that there is a positive semidefinite
operator γn � 0, that can be expressed as 〈γn〉Q = βn − (Bn)Q

where βn is a number. This can be proven by considering a
set of suitable positive operators Mi

n which are polynomial
functions of An,i and Bn,y, so that

γn =
2n−1∑
i=1

ωn,i

2

(
Mi

n

)†
Mi

n (13)

where ωn,i is positive semidefinite and to be specified shortly.
The maximum value of (Bn)Q for any given dimension is
obtained if 〈γn〉Q = 0, implying that

Mi
n|ψ〉 = 0. (14)

For the family of Bell expressions given by Eq. (10), the
operators Mi

n can be written as

Mi
n = 1

ωn,i

n∑
y=1

(−1)xi
y Bn,y − An,i (15)

where ωn,i = ||∑n
y=1(−1)xi

y Bn,y||. Plugging Eq. (15) into

Eq. (13) and by noting that A†
n,iAn,i = B†

n,yBn,y = I, we get

〈γn〉Q = −(Bn)Q +
2n−1∑
i=1

[
1

2ωn,i

(
n∑

y=1

(−1)xi
y Bn,y

)2

+ ωn,i

2

]
,

(16)

which can be rewritten in a simple form as

〈γn〉Q = −(Bn)Q +
2n−1∑
i=1

ωn,i. (17)

The maximum quantum value of (Bn)Q can be obtained when
〈γn〉Q = 0 which in turn provides

(Bn)max
Q = max

Bn,y

(
2n−1∑
i=1

ωn,i

)

= max
Bn,y

(
2n−1∑
i=1

∣∣∣∣∣
∣∣∣∣∣

n∑
y=1

(−1)xi
y Bn,y

∣∣∣∣∣
∣∣∣∣∣
)

, (18)

and the explicit condition obtained from Eq. (14) is given by

∀i
n∑

y=1

(−1)xi
y Bn,y|ψ〉 = ωn,iAn,i|ψ〉. (19)

To obtain the maximum quantum value from Eq. (18) for a
given dimensional system, we use the concavity inequality,
i.e.,

2n−1∑
i=1

ωn,i �

√√√√2n−1
2n−1∑
i=1

(ωn,i )2. (20)

In Eq. (20), the equality can be obtained only when ωn,i are
equal for each i, when Bn,y are mutually anticommuting, and
thus for n > 3 the optimal value cannot be obtained for the
qubit system.

Also, for satisfying the parity obliviousness conditions
Eq. (6) has to be satisfied by Alice’s observables An,i. This
implies that the optimal quantum value of the Bell expression
(Bn) can only be achieved for bounded dimension of the
Hilbert space. By using Eqs. (6) and (19) the condition that
is required to hold is given by

2n−1∑
i=1

n∑
y=1

(−1)s.xi+xi
y
Bn,y

ωn,i
= 0. (21)

Since Bn,ys are dichotomic, the quantity ωn,i can explicitly
be written as

ωn,i =
[

n +
{

(−1)xi
1 Bn,1,

n∑
y=2

(−1)xi
y Bn,y

}

+
{

(−1)xi
2 Bn,2,

n∑
y=3

(−1)xi
y Bn,y

}
+ · · ·

+{(−1)xi
n−1 Bn,n−1, (−1)xi

n Bn,n}
]−1/2

(22)

where {, } denotes the anticommutation.
As already mentioned, the optimal quantum value (Bn)opt

Q
of the family of Bell expressions can only be achieved when
Bob’s observables Bn,y are mutually anticommuting, and this
in turn fixes the dimension of the Hilbert space d = 2�n/2�.
In such a case ωn,i = √

n for every i and from Eq. (18) the
optimal quantum value can be calculated as

(Bn)opt
d=2�n/2� = 2n−1√n. (23)

For this, the required maximally entangled state having local
dimension 2�n/2� is given by

|φ〉AB = 1√
2�n/2�

2�n/2�∑
k=1

|k〉A|k〉B.

Thus, for the cases n � 4, the qubit system will not satisfy
the purpose and one requires a higher-dimensional system.
For example, the optimal value of the Bell expression for
n = 4 requires at least a two-qubit system and for the qubit
system an upper bound (B4)max

d=2 can be found, which is smaller
than the optimal quantum value. Hence, B4 serves as a di-
mension witness for certifying the qubit system. Similarly,
for any arbitrary n � 4, the Bell expression Bn given by
Eq. (10) certifies the d = 2m-dimensional local system with
m = 1, 2, . . . , �n/2�.

IV. DIMENSION WITNESSES FOR ONE-, TWO-,
AND THREE-QUBIT SYSTEMS

In the following, we provide several examples starting from
the case of n = 3 to 6. As already discussed, the optimal
values of Bell expressions Bn for n = 2 and 3 require two
and three mutually anticommuting observables, respectively,
which can be obtained for the qubit system, and thus B2
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and B3 cannot serve as dimension witness. But from n � 4
the Bell expression Bn serves as the dimension witness. We
explicitly demonstrate that the Bell expressions B4 and B5 for
n = 4 and 5, respectively, serve as dimension witnesses for
qubit and two-qubit systems, and the Bell expression for n =
6 serves as the dimension witness for qubit, two-qubit, and
three-qubit systems. We first provide the analysis for n = 3
to make the reader familiar with the optimization technique
and how parity-oblivious conditions are satisfied by Alice’s
observables when the optimal quantum value is achieved for
the qubit system.

A. Analysis for n = 3

For n = 3, from Eq. (10) we obtain Gisin’s elegant Bell
expression [38] given by

B3 = A3,1 ⊗ (B3,1 + B3,2 + B3,3)

+ A3,2 ⊗ (B3,1 + B3,2 − B3,3)

+ A3,3 ⊗ (B3,1 − B3,2 + B3,3)

+ A3,4 ⊗ (−B3,1 + B3,2 + B3,3).

The local bound of B3 is 6. The parity-oblivious condition
derived from Eq. (6) provides a functional relation between
Alice’s observables, i.e., A3,1 − A3,2 − A3,3 − A3,4 = 0. If this
condition is imposed, the local bound reduces to the prepara-
tion noncontextual bound 4. The optimal quantum value of the
relevant Bell expression is (B3)opt

Q = max(
∑4

i=1 ω3,i ) where
ω3,i can be written as

ω3,1 = √
3 + {B3,1, (B3,2 + B3,3)} + {B3,2, B3,3},

ω3,2 = √
3 + {B3,1, (B3,2 − B3,3) − {B3,2, B3,3},

ω3,3 = √
3 + {B3,1, (B3,2 − B3,3)} − {B3,2, B3,3},

ω3,4 = √
3 − {B3,1, (B3,2 + B3,3)} + {B3,2, B3,3}. (24)

For n = 3, by noting a symmetry, we have
∑4

i=1(ω3,i )2 = 12
which can only be available if B3,1, B3,2, and B3,3 are mutually
commuting. This in turn provides ω3,i = √

3 for each i and
thereby provides (B3)opt

d=2 = 4
√

3.
From Eq. (19), one can find the observables A3,i required

for Alice to obtain the optimal violation of the elegant Bell
inequality. Such a choice can be available for the qubit sys-
tem by taking mutually anticommuting observables of Bob,
viz., B3,1 = σx, B3,2 = σy, and B3,3 = σz. Using Eq. (19), Al-
ice’s choices of observables are the following: A3,1 = (σx +
σy + σz )/

√
3, A3,2 = (σx + σy − σz )/

√
3, A3,3 = (σx − σy +

σz )/
√

3, and A3,4 = (−σx + σy + σz )/
√

3.
Such choices of observables by Alice need to satisfy the

parity-oblivious condition given by Eq. (21). Using Eqs. (19)
and (21) we find that the following conditions have to be
satisfied by ω3,i = 1/α3,i and are given by

α3,1 − α3,2 − α3,3 + α3,4 = 0,

α3,1 − α3,2 + α3,3 − α3,4 = 0,

α3,1 + α3,2 − α3,3 − α3,4 = 0. (25)

The solutions of the Eq. (25) are ω3,1 = ω3,2 = ω3,3 = ω3,4 ≡
ω′

3. This is only possible if B3,y are mutually anticommuting,

and in this case ω′
3 = √

3, as expected. As mentioned, for
n = 3 the relevant Bell expression can be optimized for the
qubit system and hence does not serve as a dimension witness.
However, we demonstrate below that for n � 4 the family
of Bell expressions serves as the dimension witnesses of the
Hilbert space.

B. Dimension witness for n = 4

Next, we demonstrate that for n � 4 the Bell expressions
Eq. (10) serve as witnesses of the Hilbert space having dimen-
sion d = 2m where m = 1, 2, . . . , �n/2�. We first demonstrate
that for n = 4 the maximum quantum value of the Bell ex-
pression for the qubit system is smaller than the optimal value
obtained for the two-qubit system, i.e., (B4)max

d=2 � (B4)opt
d=22 .

The Bell expression for n = 4 can be written as

B4 = A4,1 ⊗ (B4,1 + B4,2 + B4,3 + B4,4)

+ A4,2 ⊗ (B4,1 + B4,2 + B4,3 − B4,4)

+ A4,3 ⊗ (B4,1 + B4,2 − B4,3 + B4,4)

+ A4,4 ⊗ (B4,1 − B4,2 + B4,3 + B4,4)

+ A4,5 ⊗ (−B4,1 + B4,2 + B4,3 + B4,4)

+ A4,6 ⊗ (B4,1 + B4,2 − B4,3 − B4,4)

+ A4,7 ⊗ (B4,1 − B4,2 + B4,3 − B4,4)

+ A4,8 ⊗ (B4,1 − B4,2 − B4,3 + B4,4), (26)

the local bound of which is 12 and the preparation noncon-
textual bound of which is 8. As already mentioned, by using
the concavity inequality Eq. (20) one finds the optimal value
(B3)opt

22 = 16 for the two-qubit system when all the ω4,i are
equal to 2. This happens when all four B4,y are mutually
anticommuting in the two-qubit system. One such choice
is B4,1 = σx ⊗ σx, B4,2 = σx ⊗ σy, B4,3 = σx ⊗ σz, and B4,4 =
σy ⊗ I, and three more such sets are possible. However, for
the qubit system there are only three mutually commuting
observables available and then B3 cannot reach the optimal
value for the qubit system.

We derive the maximum quantum value of (B4)max
d=2 for the

qubit system. It is straightforward to understand that all of
the eight ω4,i from Eq. (18) cannot be equal for the qubit
system. The question is how many of them are equal to each
other. Using the concavity inequality in Eq. (20) two times
one finds that there are two optimal sets for which at most four
of them are equal to each other. For example, ω4,1 = ω4,4 =
ω4,5 = ω4,6 ≡ ω′

4 and ω4,2 = ω4,3 = ω4,7 = ω4,8 ≡ ω′′
4 . This

provides the condition on Bob’s observables given by

{B4,1, B4,2} = {B4,1, B4,3} = {B4,1, B4,4} = 0,

{B4,2, B4,3} = {B4,2, B4,4} = 0. (27)

From Eq. (18), we can then write

(B4)Q � 4(ω′
4 + ω′′

4 )

= 4(
√

4 + {B4,3, B4,4} + √
4 − {B4,3, B4,4}). (28)

It is easy to check from Eq. (28) that the optimal value
(B4)opt

Q can be obtained only when {B4,3, B4,4} = 0 along
with the relations in Eq. (27), i.e., all four B4,y are mutually
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anticommuting. Such a requirement cannot be fulfilled for a
qubit system and one needs at least a two-qubit system.

Now, for a qubit system, it can be checked that B4 reaches
its maximum value

(B4)max
d=2 = 4(

√
2 +

√
6) � (B4)opt

d=22 = 16 (29)

when {B4,3, B4,4} = ±1. Explicitly, the choices of B4,y are
B4,1 = σx, B4,1 = σy, B4,1 = σz, and B4,1 = ±σz. Thus, the
Bell expression B4 is a dimension witness distinguishing
the dimension between qubit and two-qubit Hilbert space.
In Appendix A, we demonstrate how Alice’s choices of
observables required to obtain the maximum quantum
values of B4 for qubit and two-qubit systems satisfy the
parity-oblivious condition.

C. Dimension witness for n = 5

We now demonstrate that the Bell expression in Eq. (10)
for n = 5 also serves as a dimension witness for the qubit
system. The explicit form of B5 is given in Eq. (B1) of
Appendix B. Following the same technique adopted for
n = 3 and 4 we can find that for optimizing B5 the following
relations between B5,y have to be satisfied: {B5,1, B5,2} =
{B5,2, B5,3} = {B5,1, B5,3} = {B5,3, B5,4} = {B5,3, B5,5} =
{B5,4, B5,5} = 0, {B5,1, B5,4} = {B5,1, B5,5}, and {B5,2, B5,4} =
−{B5,2, B5,5}. Using those relations, from Eq. (18), we find

(B5)Q � 4
√

5 + {(B5,1 + B5,2), (B5,4 + B5,5)}
+ 4

√
5 + {(B5,1 − B5,2), (B5,4 − B5,5)}. (30)

Note that the optimal quantum value can be reached
if {B5,1, B5,4} = {B5,1, B5,5} = {B5,2, B5,4} = {B5,2, B5,5} = 0
which means all B5,y are mutually anticommuting observables
providing (B5)opt

d=22 = 16
√

5. Again, such choices cannot be
obtained for a qubit system and one requires at least a

two-qubit system. A choice of such a set of observables
is given by B5,1 = σx ⊗ σx, B5,2 = σx ⊗ σy, B5,3 = σx ⊗ σz,

B5,4 = σy ⊗ I, and B5,5 = σz ⊗ I.
Now, for the qubit system the maximum quantum

value can be obtained for the following choices of the
observables: B5,1 = σx, B5,2 = σy, B5,3 = σy, B5,4 = (σx + σz )/√

2, and B5,5 = (σx − σz )/
√

2 and the maximum quantum
value is

(B5)max
d=2 = 8(

√
5 + 2

√
2 +

√
5 − 2

√
2)

� (B5)opt
d=22 = 16

√
5. (31)

Alice’s observables can be found by using Eq. (19). In order
to examine whether Alice’s observables satisfy the parity-
oblivious conditions at the maximum quantum values for
qubit and two-qubit systems, we follow similar procedures as
those adopted for the cases n = 3 and 4. The details of the
argument are given in Appendix B.

D. Dimension witness (for n = 6)

We have just demonstrated that the Bell inequalities for
n = 4 and 5 certify the qubit and two-qubit systems. Next,
we demonstrate that the Bell expression B6 for n = 6 cer-
tifies qubit, two-qubit, and three-qubit systems. The explicit
form of B6 is quite lengthy but can easily be obtained from
Eq. (10). Once again, to obtain the optimal quantum value
of (B6)opt

Q = 32
√

6 one requires all the 32 values of ω6,i in
Eq. (22) to be equal. This can only be obtained if all six B6,y

are mutually anticommuting and we thus require at least a
three-qubit system. For qubit and two-qubit systems we can
obtain two upper bounds. Using the concavity relation eight
times, we find that the following relations between B6,y have to
be satisfied: {B6,1, B6,2} = {B6,3, B6,4} = {B6,5, B6,6} = 0 and
{B6,1, B6,3} = {B6,1, B6,4} = −{B6,2, B6,3} − {B6,2, B6,4}. This
provides

(B6)Q � 4[
√

6 + {(B6,1 + B6,2 + B6,3 + B6,4), (B6,5 + B6,6)} + √
6 − {(B6,1 + B6,2 + B6,3 + B6,4), (B6,5 + B6,6)}]

+ 4[
√

6 + {(B6,1 − B6,2 + B6,3 + B6,4), (B6,5 + B6,6)} + √
6 − {(B6,1 − B6,2 + B6,3 + B6,4), (B6,5 + B6,6)}]

+ 4[
√

6 + {(B6,1 + B6,2 + B6,3 − B6,4), (B6,5 − B6,6)} + √
6 − {(B6,1 + B6,2 + B6,3 − B6,4), (B6,5 − B6,6)}]

+ 4[
√

6 + {(B6,1 + B6,2 − B6,3 + B6,4), (B6,5 − B6,6)} + √
6 − {(B6,1 + B6,2 − B6,3 + B6,4), (B6,5 − B6,6)}]. (32)

The optimal value for the qubit is (B6)max
d=2 = 12

√
2 + 8

√
6 +

12
√

10 and choices of observables required are given by

B6,1 = (σy + σx )√
2

, B6,2 = (σy − σx )√
2

, B6,3 = (σx + σz )√
2

,

B6,4 = (σx − σz )√
2

, B6,5 = (σz + σy)√
2

, B6,6 = (σz − σy)√
2

.

(33)

For the two-qubit system, we additionally have
{B6,1, B6,5} = {B6,2, B6,5} = {B6,3, B6,5} = {B6,4, B6,5} =
{B6,2, B6,6} = {B6,3, B6,6} = {B6,4, B6,6} = {B6,5, B6,6} = 0.

We can then write Eq. (33) as

(B6)d=22 � 16(
√

6 + {B6,1, B6,6} + √
6 − {B6,1, B6,6}). (34)

In order to get the maximum quantum value of B6 for the
two-qubit system we need to choose B6,y = B5,y for y =
1, 2, . . . , 5 and B6,6 = ±σz ⊗ I and the maximum quantum
value will be (B6)max

d=22 = 32(1 + √
2). For a three-qubit sys-

tem, we additionally have {B6,1, B6,6} = 0, i.e., six mutually
anticommuting observables available for the three-qubit sys-
tem are given by

B6,y = σx ⊗ B5,y for y = 1, 2, . . . , 5,

B6,6 = σy ⊗ I ⊗ I. (35)
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TABLE I. The maximum quantum values of the Bell expressions
for n = 2 to 6 are provided for qubit, two-qubit, and three-qubit
systems. Here PNC in the second column denotes the preparation
noncontextuality. It is shown that the Bell expressions for n =
4 and 5 certify the qubit and two-qubit systems, and the Bell expres-
sion for n = 6 certifies the qubit, two-qubit, and three-qubit systems.

n value PNC bound Qubit Two-qubit Three-qubit

2 2 2
√

2 2
√

2 2
√

2
3 4 4

√
3 4

√
3 4

√
3

4 8 15.45 16 16
5 16 34.17 35.77 35.77
6 32 71.79 77.25 78.11

We can then summarize the quantum values of (B6)Q for
qubit, two-qubit, and three-qubit systems as

(B6)max
d=2 = 12

√
2 + 8

√
6 + 12

√
10

� (B6)max
d=22 = 32(1 +

√
2)

� (B6)opt
d=23 = 32

√
6. (36)

Hence, the Bell expression B6 can certify the qubit, two-qubit,
and three-qubit system.

The relevant results obtained for n = 3 to 6 are given in
Table I.

V. SHARING OF PREPARATION CONTEXTUALITY
BY MULTIPLE BOBS

Let us now examine how many Bobs can sequentially
share preparation contextuality if the dimension of the sys-
tem is lower than the dimension required in obtaining the
optimal quantum value (Bn)Q. The notion of sharing of non-
local quantum correlation by multiple Bobs was recently put
forward [45], where an entangled pair of particles is shared
between a single Alice and multiple Bobs performing unsharp
measurements on the same particle sequentially. Sharing the
nonlocal correlation by a larger number of sequential Bobs
requires their sequential measurements to be as unsharp as
possible but just enough for violating the preparation non-
contextual bound of the family of Bell expressions. In [45],
it is demonstrated that nonlocality through the violation the
CHSH inequality can be shared by at most two Bobs for the
unbiased choices of measurement settings and experimental
verification is also reported [46,47]. This initiated the studies
of sharing of entanglement [48] and steering [49]. For a suit-
able choice of entangled state in higher dimensions, steering
can be shared by an unbounded number of Bobs [50]. One of
the authors has earlier demonstrated [39] the sharing of prepa-
ration contextuality by an arbitrary number of Bobs by using
the family of Bell expressions given by Eq. (10). However, the
2�n/2�-dimensional system was taken for optimizing the Bell
expression in Eq. (10).

A relevant question could be to examine the sharing of
preparation contextuality by considering the dimension of
the system lower than the dimension d = 2�n/2�. Here, we
demonstrate the sharing of preparation contextuality using the

Bell expressions in Eq. (10) for n = 4, 5, and 6 for the system
having dimensions d = 2m where m = 1, 2, . . . , �n/2�.

In order to find the number of independent sequential Bobs
(k) who can share the preparation contextuality, let us con-
sider that there is one Alice who performs sharp measurement
and k number of Bobs who perform unsharp measurement
sequentially. However, the kth Bob may perform a projective
measurement. For the Bell expression Bn Alice and each
Bob perform the measurements for 2n−1 and n number of
dichotomic observables, respectively. Given a n value, each
Bob is required to perform the same set of n number of observ-
ables. We also consider that Bob’s choices of measurement
settings are completely random. Consider that Alice and first
Bob (say, Bob1) share a maximally entangled state and k − 1
number of Bobs perform the unsharp measurements of the
observables Bn,y given by

E±
Bn,y, j = 1 ± λn, j

2
M0

Bn,y + 1 ∓ λn, j

2
M1

Bn,y (37)

where E±
Bn,y, j are unbiased POVMs and M0

Bn,y and M1
Bn,y are

the projectors of Bob’s observable. Here, λn, j ∈ [0, 1] is the
unsharpness parameter for j th Bob where j = 1, 2, . . . , k − 1
[51,52]. We consider that for a given n the unsharpness pa-
rameters are the same for each of Bob’s observables Bn,y and
independent of y.

The shared state between Alice and kth Bob is obtained
after the unsharp measurements of k − 1 Bobs given by

ρn,k = 1

n

∑
b∈{+,−}

n∑
y=1

(
I ⊗

√
Eb

Bn,y,k−1

)
ρn,k−1

(
I ⊗

√
Eb

Bn,y,k−1

)

=
√

1 − λ2
n,k−1ρn,k−1 +

(
1 −

√
1 − λ2

n,k−1

)
n

×
∑

b∈{+,−}

n∑
y=1

(I ⊗ �b
Bn,y,k−1

)ρn,k−1
(
I ⊗ �b

Bn,y,k−1

)
(38)

where ρn,k−1 is the state shared between Alice and (k − 1)th
Bob before (k − 1)th Bob’s unsharp measurement. For kth
sequential Bob the maximum quantum value of the Bell ex-
pression given by Eq. (10) for the d = 2m-dimensional system
can be written as

(
Bk

n

)λ

Q = (Bn)max
d=2m

(
k−1∏
j=1

[
1 + (n − 1)

√
1 − λ2

n, j

])
λn,k (39)

where m = 1, 2, . . . , 2�n/2�. Now, by considering the prepa-
ration noncontextual bound (Bn)PNC = 2n−1, the condition on
the unsharpness parameter for sharing the preparation contex-
tuality by k th Bob is given by

λn,k >
2n−1

(Bn)max
d=2m

{∏k−1
j=1

[
1 + (n − 1)

√
1 − λ2

n, j

]} . (40)

In order to find how many Bobs can sequentially share
preparation contextuality for a given dimension m =
1, 2, . . . , 2�n/2�, we just need to find the values of λn, j within
its valid range [0,1]. For this, one needs to use the critical
value of the λn, j for jth Bob so that it is just enough to violate
the preparation contextuality.
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FIG. 2. Critical values of unsharpness parameter λk required for
violating the preparation noncontextual bound are plotted for kth Bob
in the case of n = 5. Here, blue and red dots denote the critical values
corresponding to the two-qubit and qubit system, respectively.

For n = 5, if the dimension of Hilbert space for the local
system is d = 2, i.e., the qubit system, we find that the sharing
of preparation contextuality is possible for at most seven Bobs
(Fig. 1). Importantly, instead of the qubit system, if the two-
qubit system is taken, the number of Bobs sharing preparation
contextuality remains the same. Note that the Bell expression
for n = 5 reaches its optimal value for the two-qubit system.
However, for every j, the value of the unsharpness parameter
required for sequential violation of the preparation noncontex-
tual bound is larger for the qubit system, as shown in Fig. 1.
A similar feature is also obtained from the Bell expression
for n = 6. It can be seen from Fig. 2 that an equal number of
Bobs can sequentially share the preparation contextuality for
qubit, two-qubit, and three-qubit systems. We may conjecture
that this feature remains the same for any arbitrary n. For this,
one needs to find the maximum quantum value of (Bn)Q for
the d = 2m-dimensional systems where m = 1, 2, . . . , �n/2�.
Thus, sharing of preparation contextuality using the qubit
system is advantageous in the sense that one is required to
deal with a lower-dimensional system.

VI. SUMMARY AND DISCUSSIONS

In summary, we have provided a family of Bell expressions
that can certify various dimensions of the quantum system.
Such Bell expressions were derived based on a two-party
communication game known as the n-bit parity-oblivious
random access code [33]. It can be shown that the success
probability of that game can be solely determined by the
aforementioned family of Bell expressions (Bn) where Alice
and Bob use 2n−1 and n number of dichotomic measurements,
respectively. In a RAC, the parity-oblivious condition implies
that Alice may communicate any number (<n) of bits but
such a communication does not allow Bob to retrieve the
information about the parity of Alice’s inputs. It is shown
[33] that the parity-oblivious constraint is [36] equivalent to
the preparation noncontextuality assumption in an ontological
model. We have shown that for a given n such a constraint on
the encoding scheme reduces the local bound of the family of
Bell expressions Bn to the preparation noncontextual bound

FIG. 3. Critical values of unsharpness parameter λk required for
violating the preparation noncontextual bound are plotted for kth Bob
in the case of n = 6. Here, blue, red, and green dots denote the critical
values corresponding to the three-qubit, two-qubit, and qubit system,
respectively.

[36]. For a given n, the optimal quantum value of the Bell
expression Bn can only be achieved for the quantum system
having local Hilbert-space dimension d = 2�n/2�.

Note that the Bell expressions for n = 2 and 3 reduce to
CHSH [37] and elegant Bell expressions [38], respectively,
which cannot serve as dimension witnesses as they can be
optimized for the qubit system. However, each of the Bell
inequalities for n � 4 distinguishes the dimensions d = 2m

of the Hilbert space with m = 1, 2, . . . , 2�n/2�. We provided
explicit examples by considering the Bell expressions for n =
4, 5, and 6. It is shown that for both n = 4 and 5 the respec-
tive Bell expressions B4 and B5 certify qubit and two-qubit
systems. But, for n = 6, we have found that the relevant Bell
expression B6 certifies the qubit, two-qubit, and three-qubit
local systems, as can be seen in Fig. 3.

Further, we have examined the sharing of preparation con-
textuality by multiple sequential Bobs through the violation
of (Bn)PNC in Eq. (12) when the dimension of the system is
lower than what is required for achieving the optimal quantum
value (Bn)opt

Q . One of us has shown [39] that the sharing of
preparation contextuality can be demonstrated by an arbitrary
number of Bobs by using the optimal quantum value (Bn)opt

Q

for d = 2�n/2�-dimensional Hilbert space. Here, by providing
the examples of n = 5 and 6, we have demonstrated that even
for a lower-dimensional system the number of Bobs who can
share the preparation contextuality remains the same but the
value of the unsharpness parameter required is always higher
in a lower-dimensional system.

Finally, we remark that from our paper it is straightfor-
ward to understand that for any arbitrary n the family of
Bell expressions Bn can certify the Hilbert space having
dimension 2m with m = 1, 2, . . . , 2�n/2�. For this, follow-
ing the scheme presented here the maximum quantum value
(Bn)d=2m for different m values has to be derived. The an-
alytical derivation can be lengthy with increasing value of
n but it is doable to some extent. The numerical technique
can also be an obvious option. It would then be interesting
to examine if the sharing of preparation contextuality can be
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demonstrated through the Bell expression Bn by an un-
bounded number of Bobs even for a qubit system. This calls
for an experimental test of the sharing of preparation con-
textuality for an unbounded number of sequential observers.
Studies along this line could be an interesting avenue for
further research.
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APPENDIX A: EXPLICIT PARITY-OBLIVIOUS CONDITIONS FOR n = 4

Here we provide the details of the calculation of how the choices of Alice’s observables that provide the maximum quantum
value of B4,y for qubit and two-qubit systems satisfy the parity-oblivious condition given by Eq. (6). Alice’s choices of
observables can be found by using Eq. (19) given the choices of B4,ys. In order to examine this issue, we consider the nontrivial
elements of the parity set s4 ∈ P4 where s4 = 1110, 1101, 1011, and 0111. This dictates that corresponding to each element of
s4 we have four different functional relations between Alice’s observables satisfying the parity-oblivious condition in Eq. (6),
which are the following:

A4,1 + A4,2 − A4,3 − A4,4 − A4,5 − A4,6 − A4,7 + A4,8 = 0,

A4,1 − A4,2 + A4,3 − A4,4 − A4,5 − A4,6 + A4,7 − A4,8 = 0,

A4,1 − A4,2 − A4,3 + A4,4 − A4,5 + A4,6 − A4,7 − A4,8 = 0,

A4,1 − A4,2 − A4,3 − A4,4 + A4,5 + A4,6 + A4,7 + A4,8 = 0. (A1)

For a particular case, say, s = 1110, using Eq. (21) we find that the relations between ω4,i required to be satisfied are given by

α4,1 + α4,2 − α4,3 − α4,4 + α4,5 − α4,6 − α4,7 + α4,8 = 0,

α4,1 + α4,2 − α4,3 + α4,4 − α4,5 − α4,6 + α4,7 − α4,8 = 0,

α4,1 + α4,2 + α4,3 − α4,4 − α4,5 + α4,6 − α4,7 − α4,8 = 0,

α4,1 − α4,2 − α4,3 − α4,4 − α4,5 + α4,6 + α4,7 + α4,8 = 0. (A2)

Here α4,i = 1/ω4,i. A similar set of four relations between α4,i can be found for each of the other elements of s4. There are two
conditions on ω4,is available for which four equations in Eq. (A2) will be simultaneously satisfied: first, if ω4,1 = ω4,2 = ω4,5 =
ω4,6 = ω′

4 and ω4,2 = ω4,3 = ω4,7 = ω4,8 = ω′′
4 ; and second, if for every i the ω4,i is the same. Note that the second condition

requires four mutually anticommuting observables and thus cannot be satisfied for the qubit system. Similar relations can be
obtained for the other three elements of s4. Using the first restriction on ω4,i, we obtain Eq. (28) and this in turn proves that the
parity-oblivious condition is satisfied by Alice’s choices of observables.

APPENDIX B: DETAILED CALCULATION FOR n = 5

For n = 5 the Bell expression involves the measurements of eight and five dichotomic observables by Alice and Bob,
respectively. From Eq. (10), the Bell expression can be written as

B5 = A1 ⊗ (B1 + B2 + B3 + B4 + B5) + A2 ⊗ (B1 + B2 + B3 + B4 − B5) + A3 ⊗ (B1 + B2 + B3 − B4 + B5)

+ A4 ⊗ (B1 + B2 + B3 − B4 − B5) + A5 ⊗ (B1 + B2 − B3 + B4 + B5) + A6 ⊗ (B1 + B2 − B3 + B4 − B5)

+ A7 ⊗ (B1 + B2 + B3 − B4 − B5) + A8 ⊗ (B1 + B2 − B3 − B4 + B5) + A9 ⊗ (B1 − B2 − B3 + B4 + B5)

+ A10 ⊗ (−B1 − B2 + B3 + B4 + B5) + A11 ⊗ (B1 + B2 − B3 + B4 − B5) + A12 ⊗ (B1 − B2 + B3 − B4 + B5)

+ A13 ⊗ (B1 − B2 + B3 + B4 − B5) + A14 ⊗ (−B1 + B2 − B3 + B4 + B5) + A15 ⊗ (−B1 + B2 + B3 + B4 − B5)

+ A16 ⊗ (−B1 + B2 + B3 − B4 + B5), (B1)

the preparation noncontextual bound of which is (B5)PNC � 16. As mentioned in the main text, Alice’s observables need to
satisfy the parity-oblivious conditions given by Eq. (21). The parity set P5 contains 11 nontrivial elements and each of them
provides a functional relationship between Alice’s choice of observables A5,i. For example, if we take one of the elements, say,
11111, a functional relation between An,is has to be satisfied by Alice’s observables, given by

A4,1 − A4,2 − A4,3 − A4,4 − A4,5 − A4,6 +
16∑

i=7

An,i = 0. (B2)
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A similar ten more such constraints can be found for other elements s5 ∈ Pn. Note that the condition for optimization required
for the SOS approach is given by

∀i
n∑

y=1

(−1)xi
yαn,iBn,y|ψ〉 = An,i|ψ〉 (B3)

where α5,i = 1/ω5,i. In the present case of n = 5, by using Eq. (B3), from Eq. (B2) we have the following conditions on α5,is
that need to be satisfied, given by

α5,1 − α5,2 − α5,3 − α5,4 − α5,5 + α5,6 + α5,7 + α5,8 + α5,9 − α5,10 + α5,11 + α5,12 + α5,13 − α5,14 − α5,15 − α5,16 = 0, (B4)

α5,1 − α5,2 − α5,3 − α5,4 + α5,5 − α5,6 + α5,7 + α5,8 − α5,9 − α5,10 + α5,11 − α5,12 − α5,13 + α5,14 + α5,15 + α5,16 = 0, (B5)

α5,1 − α5,2 − α5,3 + α5,4 − α5,5 − α5,6 + α5,7 − α5,8 − α5,9 + α5,10 − α5,11 + α5,12 + α5,13 − α5,14 + α5,15 + α5,16 = 0, (B6)

α5,1 − α5,2 + α5,3 − α5,4 − α5,5 − α5,6 − α5,7 − α5,8 + α5,9 + α5,10 + α5,11 − α5,12 + α5,13 + α5,14 + α5,15 − α5,16 = 0, (B7)

α5,1 + α5,2 − α5,3 − α5,4 − α5,5 − α5,6 − α5,7 + α5,8 + α5,9 + α5,10 − α5,11 + α5,12 − α5,13 + α5,14 − α5,15 + α5,16 = 0. (B8)

The functional relations between ω5,i given by Eqs. (B4)–(B8) provide two solutions: first, ω5,1 = ω5,2 = ω5,4 = ω5,5 =
ω5,9 = ω5,11 = ω5,12 = ω5,15 = ω′

5 and ω5,3 = ω5,6 = ω5,7 = ω5,8 = ω5,10 = ω5,13 = ω5,14 = ω5,16 = ω′′
5 ; and second, ω5,i val-

ues are equal to each other for every i. Note that the second condition cannot be satisfied by the observables in a qubit system.
Using the first solution, we find that the following relations between B5,y need to be satisfied: {B5,1, B5,2} = {B5,2, B5,3} =
{B5,1, B5,3} = {B5,3, B5,4} = {B5,3, B5,5} = {B5,4, B5,5} = 0, {B5,1, B5,4} = {B5,1, B5,5}, and {B5,2, B5,4} = −{B5,2, B5,5}. Using
those relations and Eq. (18), we can write

(B5)Q � 4(ω′
5 + ω′′

5 ) = [
√

5 + {(B5,1 + B5,2), (B5,4 + B5,5)} + √
5 + {(B5,1 − B5,2), (B5,4 − B5,5)}] (B9)

which is Eq. (30) in the main text. Thus, Alice’s observables maximizing (B5)Q satisfy the parity-oblivious condition.
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