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We study dissipative translationally invariant free-fermionic theories with quadratic Liouvillians. Using a
Lie-algebraic approach, we solve the Lindblad equation and find the density matrix at all times for arbitrary
time dependence of the Liouvillian. We then investigate the Liouvillian spectral properties and derive a generic
criterion for the closure of the dissipative gap, which is believed to be linked with nonequilibrium dissipative
phase transitions. We illustrate our findings with a few exotic examples. Particularly, we show the presence
of gapless modes with a linear spectrum for fermions with long-range hopping, which might be related to
nonunitary conformal field theories. The predicted effects can be probed in experiments with ultracold atomic
and quantum-optical systems using currently available experimental facilities.
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I. INTRODUCTION

Recent progress in the implementation of controllable
quantum systems has opened novel opportunities for studying
complex many-body dynamics [1–7]. The interplay be-
tween driving, dissipation, and many-body effects drastically
changes the nature of many-body regimes in these systems [8].
This opens fascinating prospects for providing insights about
the properties of quantum matter and generating exotic quan-
tum phases [9–11]. Moreover, driven-dissipative many-body
systems are ideal platforms for studying nonequilibrium phase
transitions that are far less understood than their equilibrium
counterparts [8–15]. At the same time, the implementation
of controllable dynamics of quantum many-body systems
is key for the realization of quantum computing algorithms
[11]. Clearly, any quantum computational protocol requires
external driving, and quantum computing devices are prone
to dissipation (decoherence). Consequently, understanding the
properties of driven-dissipative models plays a crucial role in
exploring the potential of noisy intermediate-scale quantum
devices. This puts the research on driven-dissipative quantum
dynamics on the forefront.

However, such a rich variety of appearing physical phe-
nomena in driven-dissipative systems requires a proper
description, which remains a challenge. Under the assumption
of Markovianity, the time evolution of dissipative quantum
systems is described by the Lindblad equation [16,17] with
the following form:

dρ

dt
= −i[H, ρ] + D[ρ] ≡ Lρ, (1)

where ρ is the density matrix, L is the Liouvillian superop-
erator, H is the Hamiltonian responsible for the unitary time
evolution, and D is the dissipator governing the nonunitary
evolution. Equation (1) has a formal solution in terms of the

time-ordered exponential:

ρ(t ) = T exp

(∫ t

0
dτL(τ )

)
ρ(0). (2)

In many cases of physical interest the Liouvillian has an
explicit time dependence, for instance, when some parameters
are modulated. The formal solution in Eq. (2) is then very hard
to deal with.

A remarkable simplification to Eq. (2) arises when differ-
ent terms in the Liouvillian can be identified with different
(possibly noncommuting) elements of a certain Lie algebra
acting in the space of density matrices (superoperator Lie
algebra) [18]. A solution of the Lindblad equation for the den-
sity matrix can then be converted into a product of ordinary
exponentials for an arbitrary Liouvillian time dependence
using the machinery of the theory of Lie groups [19–22].
Nevertheless, except for a few examples, this approach has
not been extensively used even for quite simple models
[23–30]. Thus, the problem of the extension of this approach
to relevant quantum models is of significant importance. We
note that theoretical investigation on driven-dissipative many-
body quantum dynamics has been supported by a number of
experimental proposals. Examples include cold-atom setups
[11,14,31–34] and quantum-optical systems [35] (e.g., arrays
of identical nonlinear cavities coupled via photon tunneling).
Recent findings related to these proposals include the analysis
of topological effects, which are induced or influenced by
dissipation [33,34] (in particular, in the absence of the unitary
dynamics [34]).

In this work, we study one-dimensional dissipative trans-
lationally invariant free-fermionic theories with quadratic
Liouvillians. This is one of the simplest yet experimen-
tally relevant quantum system that admits the Lie-algebraic
treatment. Although this system has been studied previously
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(see, e.g., [8] and references therein), some of the important
aspects still require more detailed investigation. In particu-
lar, we are focused on the investigation of the Liouvillian
spectral properties and derive a general criterion for the clo-
sure of the dissipative gap, which is believed to be linked
with nonequilibrium dissipative phase transitions. This simple
model allows us to gain insight into a variety of interesting
regimes. We provide a few examples of such regimes: (i) the
presence of gapless modes with a linear spectrum for fermions
with long-range hopping, which might be related to nonuni-
tary conformal field theories, and (ii) nonmonotonic rotonlike
spectrum closure, which is promising for the realization of
quantum computing algorithms in the presence of noise.

Our work is organized as follows. In Sec. II, we discuss
the aforementioned Lie-algebraic approach in more detail. We
apply this algebraic approach to a generic one-dimensional
translationally invariant quadratic fermionic Liouvillian and
find the density matrix at all times for an arbitrary time
dependence of the Liouvillian. In Sec. III, we consider the
Liouvillian spectral properties and derive a generic criterion
for the closure of the dissipative gap. We specifically analyze
a few exotic regimes of the spectrum closure. We conclude in
Sec. IV.

II. DRIVEN-DISSIPATIVE FERMIONS

A. Lie-algebraic approach: General case

Let us consider a Liouvillian that can be expressed as
a linear combination of the generators g j of some Lie
algebra A:

L(t ) =
∑

j

λ j (t )g j . (3)

The corresponding Lie group G is then nothing else but the
dynamical semigroup that governs the time evolution. Thus,
the time-ordered exponential in Eq. (2), being an element
in the dynamical semigroup, can be written as a product of
elements in G. In other words, the density matrix at all times
can be written as

ρ(t ) =
∏

j

ea j (t )g j ρ(0), (4)

where a j (t ) are yet unknown time-dependent c numbers. The
latter can be found with the following algorithm. One starts by
simply using Eq. (4) as an ansatz for the solution and plugging
it into Eq. (1). Carrying out the time derivative in Eq. (4) and
repeatedly using the identity

exy = (
eadx y

)
ex, (5)

where x, y ∈ A and adx · ≡ [x, · ], one brings ρ̇ to the form of
Eq. (1), i.e., ρ̇(t ) = L̃ρ(t ), where ρ(t ) is given by Eq. (4) and
L̃ is again some linear combination of the generators gi, with
the coefficients now depending on aj and ȧ j . Then, requiring
L̃ to coincide with the Liouvillian in Eq. (3), one obtains a
system of coupled ordinary (usually nonlinear) differential
equations for the functions a j (t ). For g j in a closed Lie al-
gebra, this procedure is guaranteed to work. In cases where
g j generate a more complicated algebra, e.g., polynomial, this
is not necessarily true. Note that the ordering of the various

exponentials in Eq. (4) can be arbitrary. However, the resulting
differential equations depend on the ordering. In some cases
it is possible to find an ordering that guarantees the simplest
functional form for the system of differential equations, e.g.,
as in Ref. [22].

The crucial advantage of the outlined algebraic approach
is that it can universally deal with any initial condition ρ(0)
and any time dependence of the coefficients in the Liouvillian.
Below we are going to apply this approach to a translationally
invariant free-fermionic model.

B. Lie-algebraic treatment for dissipative fermions

We consider the most generic one-dimensional translation-
ally invariant free-fermionic Hamiltonian:

H = −
∑

j

∑
n�1

(tnc†
j c j+n + γnc jc j+n + H.c.) − μ

∑
j

c†
j c j,

(6)
where c j and c†

j are fermionic annihilation and creation oper-
ators, μ is the chemical potential, and the complex parameters
tn and γn are the hopping and p-wave pairing amplitudes,
respectively. One can see that in the case of the nearest-
neighbor hopping and pairing, Hamiltonian (6) reduces to the
well-known Kitaev model [36]. Under the periodic boundary
conditions, the Hamiltonian (6) in momentum space reads

H = −
∑
k∈BZ

(ξkc†
kck + i�∗

kc†
−kc†

k − i�kckc−k ), (7)

where the summation is over momenta inside the Brillouin
zone, −π � k � π , and we denoted

ξk = μ + 2
∑
n�1

|tn| cos(kn + arg tn),

�k =
∑
n�1

γn sin kn. (8)

Note that ξk ∈ R, but ξ−k �= ξk , unless all tn are real. Also, one
always has �−k = −�k and, in general, �k ∈ C. However, it
can always be factorized as

�k = sin k |�̃k|ei arg �̃k , (9)

where �̃−k = �̃k ∈ C, and the phase of �̃k can be removed
from the Hamiltonian by a gauge transformation

ck = c̃k e−i arg �̃k/2. (10)

However, the phase will reappear in the coefficients of the
Liouvillian.

The dissipation is described by the dissipator

D[ρ] =
∑

j

(
LjρL†

j − 1
2 {L†

j L j, ρ}), (11)

where {·, ·} is the anticommutator and Lj is the jump opera-
tor whose explicit form depends on the specific type of the
dissipation process.

Let us take the jump operator in the most general form that
is compatible with translational invariance:

Lj =
∑

n

(u j−ncn + v j−nc†
n ), (12)
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where ux and vx are arbitrary functions. The jump operator
then has the following Fourier components:

Lk = ukck + vkc†
−k, (13)

where uk and vk are the Fourier components of ux and vx,
respectively.

We then write the dissipator (11) in momentum space as
D[ρ] = ∑

k Dk , where

Dk[ρ] = |uk|2 ck ρ c†
k + |vk|2 c†

−k ρ c−k

+ ukv
∗
k ckρc−k + u∗

kvkc†
−kρc†

k − 1
2 {L†

k Lk, ρ}, (14)

with

L†
k Lk = |uk|2c†

kck + |vk|2(1 − c†
−kc−k )

+ ukv
∗
k c−kck + u∗

kvkc†
kc†

−k . (15)

Thus, in momentum space the Liouvillian reads

L = 1

2

∑
k∈BZ

Lk, (16)

where the component Lk is given by

Lk = iξk (X1 − X2) + iξ−k (X3 − X4) + 2�∗
k (X5 − X6) − 2�k (X7 − X8)

− 1
2 [ak (X1 + X2) + a−k (X3 + X4) + bk (X5 + X6) + b∗

k (X7 + X8) + 	k1]

+ ckX9 + c−kX10 + dkX11 + d∗
kX12 + d−kX13 + d∗

−kX14 + ekX15 + e−kX16 (17)

and for brevity we denoted

ak = |uk|2 − |v−k|2, bk = u∗
kvk − u∗

−kv−k,

ck = |uk|2, dk = ukv
∗
k , ek = |vk|2. (18)

In Eq. (17) we also introduced the function

	k = |uk|2 + |vk|2 + |u−k|2 + |v−k|2 (19)

and a set of superoperators Xj , which act on the density matrix
ρ in the following way:

X1,3 ρ =
(

n±k − 1

2

)
ρ, X2,4 ρ = ρ

(
n±k − 1

2

)
,

X5 ρ = c†
k c†

−k ρ, X6 ρ = ρ c†
k c†

−k,

X7 ρ = c−k ck ρ, X8 ρ = ρ c−k ck,

X9 ρ = ck ρ c†
k , X10 ρ = c−k ρ c†

−k, (20)

X11 ρ = ck ρ c−k, X12 ρ = c†
−k ρ c†

k ,

X13 ρ = c−k ρ ck, X14 ρ = c†
k ρ c†

−k,

X15 ρ = c†
−k ρ c−k, X16 ρ = c†

k ρ ck,

where nq = c†
qcq.

Let us note at this point that the gauge transformation (10)
leads to

uk → uke−i arg �̃k/2, vk → vkei arg �̃k/2. (21)

Therefore, by removing the phase of the pairing amplitude
�k from the Hamiltonian (7), we reintroduce it in the dissi-
pator part of the Liouvillian via the functions bk and dk from
Eq. (18).

Defining the commutator for two superoperators Xi and Xj

as

[Xi, Xj] ρ = Xi(Xjρ) − Xj (Xiρ), (22)

one can show that the superoperators in Eq. (20) form a
closed semisimple Lie algebra isomorphic to u(1) ⊗ sl(4,C).
Their commutation relations are given in Appendix A. Since
Liouvillian (17) is linear in the generators (20), we can use
the algebraic approach discussed in Sec. II A. In particular,

we can obtain an explicit solution for the density matrix at all
times, as we show in the next section.

C. Solution for the density matrix

We now proceed with constructing a solution to the Lind-
blad equation of the form in Eq. (4). For this purpose it is
convenient to exploit the structure of the algebra generated by
superoperators (20).

First of all, one can easily check that the u(1) generator is
simply the linear Casimir invariant given by

Y0 = X1 − X2 − X3 + X4, (23)

which commutes with all other superoperators from Eq. (20).
Second, for the sl(4,C) subalgebra it is useful to choose a
basis in the following way:

Y1 = −X10, Y6 = −X6, Y11 = X9,

Y2 = X13, Y7 = −(X2 + X4), Y12 = −X11,

Y3 = −X7, Y8 = X1 + X2, Y13 = −X5, (24)

Y4 = −X14, Y9 = −(X1 + X3), Y14 = X12,

Y5 = X16, Y10 = −X8, Y15 = −X15.

The above choice of the basis is motivated by the results of
Ref. [22] and corresponds to the Cartan decomposition of
the algebra sl(4,C) with respect to the Cartan subalgebra
spanned by the generators Y7, Y8, and Y9. In terms of super-
operators (23) and (24), the Liouvillian in Eq. (17) reads

Lk = −	k (t )

2
1 +

15∑
j=0

a j (t )Yj, (25)

where the coefficients a j are given by

a0 = i

2
(ξk − ξ−k ), a1 = −c−k,

a2 = d−k, a3 = 1

2
(b∗

k + 4�k ),

a4 = −a∗
2, a5 = e−k,
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a6 = a∗
3, a7 = 1

2
(a−k + iξ−k + iξk ),

a8 = 1

2
(a−k − ak ), a9 = a∗

7,

a10 = 1

2
(b∗

k − 4�k ), a11 = ck,

a12 = −d∗
k , a13 = a∗

10,

a14 = −a12, a15 = −ek . (26)

Let us emphasize once again that the method we are going to
use allows one to deal with arbitrary time dependence of the
parameters, and hence, all a j in Eqs. (25) and (26) can be time
dependent.

We now employ the algorithm described in Sec. II A and
seek the solution to the Lindblad equation (1) in the following
form:

ρ(t ) =
∏

k∈BZ

ρk (t ),

ρk (t ) = e f (t )1+u0(t )Y0 eu1(t )Y1 · · · eu15(t )Y15ρk (0), (27)

and the functions f (t ) and uj (t ) are yet unknown time- and
momentum-dependent functions. Essentially, the ansatz in
Eq. (27) is nothing other than the Gauss parametrization of
SL(4,C). Differentiating Eq. (27) and taking into account that
ρk for different k commute, we obtain

ρ̇(t ) =
∑
k∈BZ

ρ̇k (t )
∏
q �=k

ρq(t ). (28)

Keeping in mind that Y0 commutes with all other generators
Yj , we have for ρ̇k

ρ̇k =
(

ḟ1 + u̇0Y0 + u̇1Y1 + u̇2eu1adY1 Y2

+
15∑
j=3

u̇ je
u1adY1 · · · euj−1adYj−1 Yj

)
ρk, (29)

where, in order to obtain the last term in the first line and
the second line, we used Eq. (5). Then, using the results of
Appendix C to calculate various adjoint actions in the second
line of Eq. (29), we rewrite Eq. (28) as

ρ̇(t ) =
∑
k∈BZ

L̃k (t )ρ(t ), (30)

where we denoted

L̃k (t ) = ḟ (t )1 + u̇0(t )Y0 +
15∑
j=1

ϕ j ({u̇s(t )}, {ul (t )})Yj . (31)

The coefficients ϕ j ({u̇s(t )}, {ul (t )}) result from the adjoint
actions in Eq. (29). They are linear in u̇s but can be nonlinear
in ul (t ).

For the density matrix in Eq. (27) to satisfy the Lindblad
equation (1) with the Liouvillian given by Eqs. (16) and (25),
we have to require the superoperator L̃k in Eq. (31) to coincide
[up to a factor of 1/2; see Eq. (16)] with the Liouvillian (25).
Then, by matching the coefficients of 1 and Yj , we obtain a

set of equations for the functions f (t ) and u j (t ):

ḟ (t ) = −	k (t )/4, u̇0(t ) = a0(t )/2,

ϕ j ({u̇s(t )}, {ul (t )}) = a j (t )/2 ( j = 1, . . . , 15), (32)

where the inhomogeneities a j are given by Eq. (26). Obvi-
ously, all initial conditions are zero, f (0) = uj (0) = 0. For the
sake of readability, the explicit form of the equations for uj in
the second line of Eq. (32) is presented in Appendix D. Here
we mention only that the equations for u1, u2, and u3 form a
system of three coupled Riccati equations. Similarly, u4 and
u5 satisfy a system of two coupled Riccati equations. Finally,
u6 obeys a scalar Riccati equation, and all other functions
u7, . . . , u15 satisfy linear first-order equations that can be di-
rectly integrated once the solutions for the preceding functions
are known.

To summarize, we have reduced the Lindblad (operator)
equation (1) to a set of scalar equations (32). Once the so-
lutions to Eqs. (32) are known, one immediately obtains the
density matrix at all times from Eq. (27).

A few comments are in order. First of all, in general the
coupled Riccati equations in Eq. (32) cannot be solved in
quadratures, and one has to solve them numerically. Never-
theless, it might be easier to gain insight into the physics and
analyze the influence of various parameters via the solution of
Eqs. (32), rather than by a direct numerical integration of the
(vectorized) Lindblad equation in some basis.

Second, in order to proceed further one should specify
the initial condition ρ(0). Then, the action of the exponential
factors in Eq. (27) can be calculated. However, this is beyond
the scope of the present paper.

Finally, we would like to comment on the applicability
and the advantage of the Lie-algebraic method that we have
used. As we discussed in Sec. II A, the method can be applied
to any dissipative quantum system whose Liouvillian can be
expressed as a linear combination of the generators of some
closed Lie algebra. The method is especially useful in bosonic
theories, where the underlying Hilbert space is infinitely di-
mensional, and the numerical solution can be obtained only if
one truncates the Hilbert-space dimensionality.

For the fermionic theories that we are dealing with, the
Hilbert space is finite-dimensional, and this allows one to
construct the Liouvillian using a faithful matrix representation
in a physically meaningful basis. We do so in the next sec-
tion, with the purpose of investigating the Liouvillian spectral
properties.

III. LIOUVILLIAN SPECTRUM

We now proceed with constructing a faithful matrix rep-
resentation for the superoperators (20) in order to find the
Liouvillian spectrum. For a given k > 0 the Hilbert space
is four-dimensional, and we choose a basis spanned by the
vectors

|0k, 0−k〉 =
(

0
1

)
⊗

(
0
1

)
= (0, 0, 0, 1)T ,

|1k, 0−k〉 =
(

1
0

)
⊗

(
0
1

)
= (0, 1, 0, 0)T , (33)
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|0k, 1−k〉 =
(

0
1

)
⊗

(
1
0

)
= (0, 0, 1, 0)T ,

|1k, 1−k〉 =
(

1
0

)
⊗

(
1
0

)
= (1, 0, 0, 0)T .

The fermionic annihilation and creation operators for
modes k and −k in this basis are represented by

ck = σ− ⊗ σ0, c−k = −σ3 ⊗ σ−,

c†
k = σ+ ⊗ σ0, c†

−k = −σ3 ⊗ σ+, (34)

where ⊗ is the tensor product, σ± = (σ1 ± iσ2)/2, and σ j are
the Pauli matrices. One can easily check that the matrices in
Eq. (34) satisfy the canonical anticommutation relations. The
minus signs in the matrix representations for c−k and c†

−k in
Eq. (34) are needed to preserve the signs in the mapping be-
tween the basis states in Eq. (33). Then, using the well-known
vectorization property

|ABC〉〉 = (CT ⊗ A)|B〉〉, (35)

we write

|Xjρ〉〉 ≡ X j |ρ〉〉, (36)

where |ρ〉〉 is a vector formed from the columns of ρ and
the matrices X j are given in Appendix B. Then, applying the
outlined vectorization procedure to the Lindblad equation, we
obtain

| ρ̇〉〉 = 1

2

∑
k∈BZ

Lk|ρ〉〉, (37)

where Lk is a matrix representation for the Liouvillian Lk

from Eq. (17). Its explicit form is given in Appendix B.
It is now straightforward to find the spectrum of Lk by

direct diagonalization, which yields

λ0 = 0, λ1,2 = −1

2
	k ± i(ξk − ξ−k ),

λ3 = λ1 + λ2,

λ4,5 = −1

4
(	k + 2i(ξk − ξ−k ) ± √

Uk + iVk ),

λ6,7 = −1

4
(	k − 2i(ξk − ξ−k ) ± √

Uk − iVk ),

λ8,9 = −1

4
(3	k − 2i(ξk − ξ−k ) ± √

Uk + iVk ),

λ10,11 = −1

4
(3	k + 2i(ξk − ξ−k ) ± √

Uk − iVk ),

λ12,13 = −1

4

(
2	k ±

√
2

√
Uk +

√
U 2

k + V 2
k

)
,

λ14,15 = −1

4

(
2	k ± i

√
2

√
−Uk +

√
U 2

k + V 2
k

)
, (38)

where 	k is given by Eq. (19) and we denoted

Uk = �2
k + |k|2 − [4(ξk + ξ−k )2 + |8�k|2],

Vk = 2[2(ξk + ξ−k )�k + Im((8�k )∗k )], (39)

with

�k = |uk|2 − |vk|2 − |u−k|2 + |v−k|2,
k = 2(ukv

∗
k + u−kv

∗
−k ), (40)

and ξk , �k given by Eq. (8).
The functions 	k , �k , and k are related to each other via

�2
k + |k|2 = 	2

k − |�k|2, (41)

with

�k = 2(uku∗
−k − vkv

∗
−k ), (42)

and thus, Uk � 	2. Taking into account that

Re
(√

x + iy
) = 1√

2

√
x +

√
x2 + y2,

Im
(√

x + iy
) = sgn(y)√

2

√
−x +

√
x2 + y2, (43)

one finds the following relations between the eigenvalues:

λ2 = λ∗
1, λ6,7 = λ∗

4,5,

λ8,9 = λ1 + λ4,5, λ10,11 = λ∗
8,9, (44)

λ12,13 = 2Re(λ4,5), λ14 = λ∗
15 = λ4 + λ∗

5.

Therefore, the whole spectrum can be determined from the
knowledge of λ1, λ4, and λ5. Moreover, the eigenvalues can
be grouped into subbands by their real parts. Denoting ν j =
Re(λ j )/	k , we have

−1

2
� ν4,6 � −1

4
, −1

4
� ν5,7 � 0,

−1 � ν8,10 � −3

4
, −3

4
� ν9,11 � −1

2
, (45)

−1 � ν12 � −1

2
, −1

2
� ν13 � 0.

Thus, we immediately see that if 	k �= 0, the dissipative gap
closes when Re(λ5,7) = 0, which also forces the real part
of λ13 to vanish. On the other hand, if for some k one has
	k = 0, then Re(λ j ) = 0 for all j [37]. In other words, if
there exists a momentum mode at which the dissipative gap
closes, then there is either a quadruple degeneracy, λ0 =
Re(λ5) = Re(λ7) = Re(λ13) = 0, or a total degeneracy where
at this momentum mode all eigenvalues have a vanishing real
part.

A. Closure of the dissipative gap

Let us now analyze the dissipative gap and conditions of
its closure in more detail. As can be seen from Eq. (38),
in the general case the gap-closure condition reads 	k =
Re(

√
Uk ± iVk ), which yields

	4
k − Uk	

2
k − V 2

k /4 = 0, (46)

or, taking into account Eqs. (39), (41), and (43),

	2
k[|�k|2 + 4(ξk + ξ−k )2 + |8�k|2] = V 2

k /4. (47)

In the case of purely dissipative evolution, i.e., ξk =
�k ≡ 0, one has Vk = 0, and Eq. (47) reduces to 	k|�k| = 0.
Then, the dissipative gap closes if 	k = 0, leading to the
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totally degenerate case, or if uku∗
−k = vkv

∗
−k , leading to the

quadruple degeneracy.
In the simplest case, in which the coefficients uj−n and v j−n

in Eq. (12) are real, condition (47) simplifies. The Fourier
components then obviously satisfy

u−k = u∗
k , v−k = v∗

k , (48)

which leads to �k = 0 and k = 4Re(ukv
∗
k ). Note that prop-

erty (48) is violated by the gauge transformation (10), and for
this reason the case of complex �k should be treated with care.
Assuming that �k is real, we have Vk = 0, and the gap-closure
condition (47) can be satisfied by

ξk + ξ−k = �k = 0, uk = vk . (49)

Below we consider more nontrivial cases of the gap clo-
sure.

B. Gapless modes with a linear spectrum

Let us consider fermions with zero pairing (�k = 0) and a
long-range hopping of the following form:

ξk = μ +
+∞∑
n=1

2 cos kn

nα
= μ + 2Ciαk, (50)

where Ciαk is the Clausen function, which is related to the
polylogarithm as 2Ciαk = Liαeik + Liαe−ik . For 1 < α < 3 it
has the following expansion for small k:

Ciαk ≈ ζ (α) + �(1 − α) sin
πα

2
|k|α−1 − ζ (α − 2)

k2

2
, (51)

where ζ (x) is the Riemann ζ function.
For simplicity we take a jump operator of the form

Lj = √
g(c j + c†

j ), (52)

such that uk = vk = √
g. This corresponds to the case de-

scribed above. We have 	k = k = 4g, �k = 0. Therefore,
Vk = 0, and Uk = 16(g2 − ξ 2

k ). For Uk � 0 we thus have

�d ≡ Re(λ5,7) = 1
2 Re(λ13) = −g +

√
g2 − ξ 2

k . (53)

The dissipative gap �d closes if ξk = 0. From Eqs. (50)
and (51) we immediately see that this happens at k = 0 for
μ = −2ζ (α), and sufficiently close to zero, the gap behaves
as |k|2(α−1), which for α = 3/2 gives

�d ≈ −4π

g
|k|, μ = −2ζ (3/2). (54)

This linear behavior is demonstrated in Fig. 1. For μ <

−2ζ (3/2) the gap is open (�d �= 0), whereas as one in-
creases the chemical potential beyond μ = −2ζ (3/2), the
gap-closure point at k = 0 splits into two symmetrical points
at ±k∗, satisfying Ci3/2k∗ = −μ/2. In the vicinity of these
points the gap behavior changes from linear to quadratic:

�d ≈ − 1

2g
[iLi1/2eik∗ − iLi1/2e−ik∗ ]2(|k| − k∗)2. (55)

The function in the square brackets is non-negative for all
0 < k∗ � π , and it vanishes only for k∗ = π , corresponding

FIG. 1. The dissipative gap �d versus momentum k for the long-
range hopping model [see Eq. (50)] with the dissipation described
by jump operator (52). The dotted line shows the asymptotic linear
behavior according to Eq. (54). The dissipation strength is g = 5.

to μ = (2 − √
2)ζ (3/2). Thus, near the boundaries of the

Brillouin zone the gap behaves as

�d ≈ − (9 − 4
√

2)ζ
(− 1

2

)2

2g
(|k| − π )4. (56)

Finally, for μ > (2 − √
2)ζ (3/2) the gap opens again.

It would be interesting to investigate whether such regimes
can be related to nonunitary conformal field theories. How-
ever, this question is beyond the scope of the present work,
and we leave it to future investigations.

C. Multiple gap-closure points

An interesting situation appears when the spectrum closes
simultaneously at zero and finite momenta. In these cases
the Liouvillian spectrum exhibits a feature resembling rotons,
which are a special kind of elementary excitation forming a
minimum of energy at finite momentum in quantum liquids,
such as 4He and dipolar quantum ensembles.

This “rotonlike” form of the Liouvillian spectrum can be
achieved in a number of different ways. Here we restrict
ourselves to one of the simplest cases, namely, the dissipative
Kitaev model described by Hamiltonian (7) with

ξk = μ + 2 cos k, �k = γ sin k, (57)

and the following jump operator:

Lj = √
g[c j + δ1c†

j + δ2(c j+1 + δ3c†
j+1)]. (58)

In the momentum space [see Eq. (13)] it has the coefficients

uk = √
g(1 + δ2eik ), vk = √

g(δ1 + δ2δ3eik ). (59)

Using Eqs. (38), one can easily show that by choosing

δ1 = δ3 = i, δ2 = −1 (60)

for an arbitrary value of the pairing amplitude γ and −2 �
μ � 2 the dissipative gap closes simultaneously at k = 0 and
at a nonzero momentum inside the Brillouin zone. This is
demonstrated in Fig. 2. In the vicinity of both gap-closure
points the gap behaves as �d ∼ k2.

052220-6



LIE-ALGEBRAIC APPROACH TO ONE-DIMENSIONAL … PHYSICAL REVIEW A 102, 052220 (2020)

FIG. 2. The dissipative gap �d versus momentum k for the
Kitaev model with the dissipation described by jump operator (58).
One can clearly see the rotonlike feature leading to the simultaneous
gap closure at zero and finite momenta. The choice of parameters
corresponds to Eq. (60). The pairing amplitude is γ = 0.2 and the
dissipation strength is g = 0.1.

The configurations discussed in this section are promising
for the realization of quantum computing algorithms in the
presence of noise.

IV. CONCLUSION AND OUTLOOK

In conclusion, we have investigated dissipative trans-
lationally invariant free-fermionic theories with quadratic
Liouvillians. We have demonstrated the applicability of the
Lie-algebraic approach for the description of dissipative trans-
lationally invariant free-fermionic theories with quadratic
Liouvillians. We have derived the criterion for the closure
of the dissipative gap, which is believed to be linked with

nonequilibrium dissipative phase transitions. We have also
provided a few examples of exotic regimes of the spectrum
closure: (i) the presence of gapless modes with a linear spec-
trum for fermions with long-range hopping, which might be
related to nonunitary conformal field theories, and (ii) a non-
monotonic rotonlike spectrum closure, which is promising
for the realization of quantum computing algorithms in the
presence of noise.

Further directions of our studies are related to including the
topological effects in the consideration. In addition, it is an in-
teresting point to understand the potential role of the obtained
configurations with the nonmonotonic spectrum closure for
quantum computing.

We expect that the predicted effects can be probed in ex-
periments with ultracold atomic and quantum-optical systems
using currently available experimental facilities. Recently pro-
posed setups for the realization of the Kitaev model used
systems with a sufficient degree of tunability, such as atomic
quantum wires and arrays of identical nonlinear cavities cou-
pled through nearest-neighbor photon tunneling. These setups
can be extended for the realization of the model, which is
considered in our work, which makes it realistic to observe
predicted phenomena.
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APPENDIX A: SUPEROPERATOR ALGEBRA

In this Appendix we present a table with the commutation relations for the algebra generated by the superoperators defined
in Eq. (20).

In Table I we denote

A = X1 + X3, C = X1 + X2, E = X1 − X4,

B = X2 + X4, D = X3 + X4, F = X2 − X3.

APPENDIX B: MATRIX REPRESENTATION

In this Appendix we present a matrix representation for the superoperators defined in Eq. (20) and for the Liouvillian in
Eq. (17). As discussed in Sec. III of the main text, this matrix representation corresponds to choosing a basis (33) in the Hilbert
space for a given momentum mode k. Then, using Eqs. (20) and (34)–(36), one obtains

X1 = σ0 ⊗ σ0 ⊗ (σ+σ−) ⊗ σ0 − 1

2
1, X2 = (σ+σ−) ⊗ σ0 ⊗ σ0 ⊗ σ0 − 1

2
1,

X3 = σ0 ⊗ σ0 ⊗ σ0 ⊗ (σ+σ−) − 1

2
1, X4 = σ0 ⊗ (σ+σ−) ⊗ σ0 ⊗ σ0 − 1

2
1,

X5 = −σ0 ⊗ σ0 ⊗ (σ+σ3) ⊗ σ+, X6 = −(σ3σ
−) ⊗ σ− ⊗ σ0 ⊗ σ0,

X7 = σ0 ⊗ σ0 ⊗ (σ−σ3) ⊗ σ−, X8 = (σ3σ
+) ⊗ σ+ ⊗ σ0 ⊗ σ0,

X9 = σ− ⊗ σ0 ⊗ σ− ⊗ σ0, X10 = σ3 ⊗ σ− ⊗ σ3 ⊗ σ−, (B1)
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TABLE I. Commutation relations for the algebra generated by the superoperators defined in Eq. (20).

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16

X1 0
X2 0 0
X3 0 0 0
X4 0 0 0 0
X5 −X5 0 −X5 0 0
X6 0 X6 0 X6 0 0
X7 X7 0 X7 0 −A 0 0
X8 0 −X8 0 −X8 0 B 0 0
X9 X9 X9 0 0 X12 0 0 X11 0
X10 0 0 X10 X10 −X14 0 0 −X13 0 0
X11 X11 0 0 −X11 X15 X9 0 0 0 −X7 0
X12 0 X12 −X12 0 0 0 X9 X15 0 −X6 0 0
X13 0 −X13 X13 0 −X16 −X10 0 0 X7 0 0 F 0
X14 −X14 0 0 X14 0 0 −X10 −X16 X6 0 E 0 0 0
X15 0 0 −X15 −X15 0 X12 X11 0 0 D 0 0 −X8 −X5 0
X16 −X16 −X16 0 0 0 −X14 −X13 0 C 0 X8 X5 0 0 0 0

X11 = −σ3 ⊗ σ+ ⊗ σ− ⊗ σ0, X12 = −σ− ⊗ σ0 ⊗ σ3 ⊗ σ+,

X13 = −σ+ ⊗ σ0 ⊗ σ3 ⊗ σ−, X14 = −σ3 ⊗ σ− ⊗ σ+ ⊗ σ0,

X15 = σ3 ⊗ σ+ ⊗ σ3 ⊗ σ+, X16 = σ+ ⊗ σ0 ⊗ σ+ ⊗ σ0,

where ⊗ is the tensor product, σ j are the Pauli matrices, σ± = (σ1 ± iσ2)/2, and 1 is the 16 × 16 identity matrix.
Using Eqs. (B1) and (17), we immediately obtain the following matrix representation for the Liouvillian itself:

Lk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dk,1 0 0 A∗
k,+ 0 ek 0 0 0 0 e−k 0 Ak,+ 0 0 0

0 Ck 0 0 0 0 0 0 −d−k 0 0 e−k 0 Ak,+ 0 0
0 0 C−k 0 −dk 0 0 −ek 0 0 0 0 0 0 Ak,+ 0

Ak,− 0 0 Fk,+ 0 −dk 0 0 0 0 d−k 0 0 0 0 Ak,+
0 0 −d∗

−k 0 C∗
k 0 0 A∗

k,+ 0 0 0 0 0 0 e−k 0
c−k 0 0 −d∗

−k 0 Dk,2 0 0 0 0 0 0 −d−k 0 0 e−k

0 0 0 0 0 0 Fk,− 0 0 0 0 0 0 0 0 0
0 0 −c−k 0 Ak,− 0 0 Ek 0 0 0 0 0 0 d−k 0
0 −d∗

k 0 0 0 0 0 0 C∗
−k 0 0 A∗

k,+ 0 −ek 0 0
0 0 0 0 0 0 0 0 0 F∗

k,− 0 0 0 0 0 0
ck 0 0 d∗

k 0 0 0 0 0 0 D−k,2 0 dk 0 0 ek

0 ck 0 0 0 0 0 0 Ak,− 0 0 E−k 0 dk 0 0
A∗

k,− 0 0 0 0 −d∗
k 0 0 0 0 d∗

−k 0 F∗
k,+ 0 0 A∗

k,+
0 A∗

k,− 0 0 0 0 0 0 −c−k 0 0 d∗
−k 0 E∗

k 0 0
0 0 A∗

k,− 0 ck 0 0 dk
∗ 0 0 0 0 0 0 E∗

−k 0
0 0 0 A∗

k,− 0 ck 0 0 0 0 c−k 0 Ak,− 0 0 Dk,3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B2)
where the functions ck, dk , and ek are given by Eq. (18) and for brevity we introduced the following quantities:

Ak,σ = d−k

2
− dk

2
− 2σ�k, Dk,1 = −c−k − ck,

Ck = − c−k

2
− ck − ek

2
− iξ−k, Dk,2 = −ck − ek,

Ek = − ck

2
− e−k

2
− ek − iξk, Dk,3 = −e−k − ek,

Fσ = − c−k

2
− ck

2
− e−k

2
− ek

2
− iσξ−k − iξk, (B3)

with σ = ±1.
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APPENDIX C: NONTRIVIAL ADJOINT ACTIONS
FOR sl(4,C)

In this Appendix we present all nontrivial adjoint actions
of the superoperators defined in Eq. (24):

eτadY1 Y7 = Y7 − τY1,

eτadY1 Y9 = Y9 − τY1,

eτadY1 Y10 = Y10 − τY2,

eτadY1 Y12 = Y12 − τY3,

eτadY1 Y13 = Y13 + τY4,

eτadY1 Y14 = Y14 + τY6,

eτadY1 Y15 = Y15 + τ (Y7 + Y8 + Y9) − τ 2Y1,

eτadY2 Y6 = Y6 − τY1,

eτadY2 Y7 = Y7 + τY2,

eτadY2 Y8 = Y8 − τY2,

eτadY2 Y9 = Y9 − τY2,

eτadY2 Y11 = Y11 − τY3,

eτadY2 Y13 = Y13 + τY5,

eτadY2 Y14 = Y14 + τ (Y8 + Y9) − τ 2Y2,

eτadY2 Y15 = Y15 + τY10,

eτadY3 Y4 = Y4 − τY1,

eτadY3 Y5 = Y5 − τY2,

eτadY3 Y8 = Y8 + τY3,

eτadY3 Y9 = Y9 − 2τY3,

eτadY3 Y13 = Y13 + τY9 − τ 2Y3,

eτadY3 Y14 = Y14 + τY11,

eτadY3 Y15 = Y15 + τY12,

eτadY4 Y3 = Y3 + τY1,

eτadY4 Y7 = Y7 − τY4,

eτadY4 Y8 = Y8 − τY4,

eτadY4 Y9 = Y9 + τY4,

eτadY4 Y10 = Y10 − τY5,

eτadY4 Y11 = Y11 + τY6,

eτadY4 Y12 = Y12 + τ (Y7 + Y8) − τ 2Y4,

eτadY4 Y15 = Y15 − τY13,

eτadY5 Y3 = Y3 + τY2,

eτadY5 Y6 = Y6 − τY4,

eτadY5 Y7 = Y7 + τY5,

eτadY5 Y8 = Y8 − 2τY5,

eτadY5 Y9 = Y9 + τY5,

eτadY5 Y11 = Y11 + τY8 − τ 2Y5,

eτadY5 Y12 = Y12 + τY10,

eτadY5 Y14 = Y14 − τY13,

eτadY6 Y2 = Y2 + τY1,

eτadY6 Y5 = Y5 + τY4,

eτadY6 Y7 = Y7 − 2τY6,

eτadY6 Y8 = Y8 + τY6,

eτadY6 Y10 = Y10 + τY7 − τ 2Y6,

eτadY6 Y12 = Y12 − τY11,

eτadY6 Y15 = Y15 − τY14,

eτadY7 Y1 = eτY1,

eτadY7 Y2 = e−τY2,

eτadY7 Y4 = eτY4,

eτadY7 Y5 = e−τY5,

eτadY7 Y6 = e2τY6,

eτadY7 Y10 = e−2τY10,

eτadY7 Y11 = eτY11,

eτadY7 Y12 = e−τY12,

eτadY7 Y14 = eτY14,

eτadY7 Y15 = e−τY15,

eτadY8 Y2 = eτY2,

eτadY8 Y3 = e−τY3,

eτadY8 Y4 = eτY4,

eτadY8 Y5 = e2τY5,

eτadY8 Y6 = e−τY6,

eτadY8 Y10 = eτY10,

eτadY8 Y11 = e−2τY11,

eτadY8 Y12 = e−τY12,

eτadY8 Y13 = eτY13,

eτadY8 Y14 = e−τY14,

eτadY9 Y1 = eτY1,

eτadY9 Y2 = eτY2,

eτadY9 Y3 = e2τY3,

eτadY9 Y4 = e−τY4,

eτadY9 Y5 = e−τY5,

eτadY9 Y11 = eτY11,
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eτadY9 Y12 = eτY12,

eτadY9 Y13 = e−2τY13,

eτadY9 Y14 = e−τY14,

eτadY9 Y15 = e−τY15,

eτadY10 Y1 = Y1 + τY2,

eτadY10 Y4 = Y4 + τY5,

eτadY10 Y6 = Y6 − τY7 − τ 2Y10,

eτadY10 Y7 = Y7 + 2τY10,

eτadY10 Y8 = Y8 − τY10,

eτadY10 Y11 = Y11 − τY12,

eτadY10 Y14 = Y14 − τY15,

eτadY11 Y2 = Y2 + τY3,

eτadY11 Y4 = Y4 − τY6,

eτadY11 Y5 = Y5 − τY8 − τ 2Y11,

eτadY11 Y7 = Y7 − τY11,

eτadY11 Y8 = Y8 + 2τY11,

eτadY11 Y9 = Y9 − τY11,

eτadY11 Y10 = Y10 + τY12,

eτadY11 Y13 = Y13 − τY14,

eτadY12 Y1 = Y1 + τY3,

eτadY12 Y4 = Y4 − τ (Y7 + Y8) − τ 2Y12,

eτadY12 Y5 = Y5 − τY10,

eτadY12 Y6 = Y6 + τY11,

eτadY12 Y7 = Y7 + τY12,

eτadY12 Y8 = Y8 + τY12,

eτadY12 Y9 = Y9 − τY12,

eτadY12 Y13 = Y13 − τY15,

eτadY13 Y1 = Y1 − τY4,

eτadY13 Y2 = Y2 − τY5,

eτadY13 Y3 = Y3 − τY9 − τ 2Y13,

eτadY13 Y8 = Y8 − τY13,

eτadY13 Y9 = Y9 + 2τY13,

eτadY13 Y11 = Y11 + τY14,

eτadY13 Y12 = Y12 + τY15,

eτadY14 Y1 = Y1 − τY6,

eτadY14 Y2 = Y2 − τ (Y8 + Y9) − τ 2Y14,

eτadY14 Y3 = Y3 − τY11,

eτadY14 Y5 = Y5 + τY13,

eτadY14 Y7 = Y7 − τY14,

eτadY14 Y8 = Y8 + τY14,

eτadY14 Y9 = Y9 + τY14,

eτadY14 Y10 = Y10 + τY15,

eτadY15 Y1 = Y1 − τ (Y7 + Y8 + Y9) − τ 2Y15,

eτadY15 Y2 = Y2 − τY10,

eτadY15 Y3 = Y3 − τY12,

eτadY15 Y4 = Y4 + τY13,

eτadY15 Y6 = Y6 + τY14,

eτadY15 Y7 = Y7 + τY15,

eτadY15 Y9 = Y9 + τY15.

APPENDIX D: DISENTANGLEMENT EQUATIONS FOR sl(4,C)

In this Appendix we present the explicit form of the equations for u1, u2, . . . , u15 from Eq. (32). The functions u1, u2, and u3

satisfy the following set of three coupled Riccati equations:

2u̇(1) = a(1) + C(1)u(1) + u(1)uT
(1) · b(1), (D1)

with

u(1) =
⎛
⎝u1

u2

u3

⎞
⎠, a(1) =

⎛
⎝a1

a2

a3

⎞
⎠, b(1) =

⎛
⎝−a15

−a14

−a13

⎞
⎠, (D2)

and

C(1) =
⎛
⎝a7 + a9 a6 a4

a10 −a7 + a8 + a9 a5

a12 a11 −a8 + 2a9

⎞
⎠. (D3)
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The functions u4 and u5 satisfy a set of two coupled Riccati equations:

2u̇(2) = a(2) + C(2)u(2) + u(2)uT
(2) · b(2), (D4)

with

u(2) =
(

u4

u5

)
, a(2) =

(
a4 − a13u1

a5 − a13u2

)
, b(2) =

(−a12 + a15u3

−a11 + a14u3

)
, (D5)

and

C(2) =
(

a7 + a8 − a9 + a13u3 − a15u1 a6 − a14u1

a10 − a15u2 −a7 + 2a8 − a9 − a14u2 + a13u3

)
. (D6)

The function u6 satisfies a scalar Riccati equation,

2u̇6 = u2
6[a15u2 + u5(a12 − a15u3) − a10] − a14u1 + u4(a14u3 − a11) + a6

+ u6[−a15u1 + a14u2 + u4(a15u3 − a12) + u5(a11 − a14u3) + 2a7 − a8]. (D7)

Once the solutions to Eqs. (D1), (D4), and (D7) are known, the remaining functions u7, . . . , u15 can be found by direct
integration. Specifically, we have a set of three differential equations, completely determined by solutions of the previous six
equations,

2u̇7 = −a15u1 − a12u4 + u6(a15u2 + a12u5 − a10) + u3(a15u4 − a15u5u6) + a7,

2u̇8 = −a15u1 − a14u2 − a12u4 − a11u5 + u3(a15u4 + a14u5) + a8, (D8)

2u̇9 = −a15u1 − a14u2 − a13u3 + a9;

a set of two differential equations determined by the previous nine solutions,

2u̇10 = e2u7−u8 [a10 − a15u2 − u5(a12 − a15u3)],

2u̇11 = e−u7+2u8−u9 [a11 + a12u6 − u3(a14 + a15u6)];
(D9)

and, finally, a set of four differential equations, completely determined by the solutions to the previous eleven equations,

2u̇12 = e−u7+u8−u9{eu8 u10[a11 + a12u6 − u3(a14 + a15u6)] + e2u7 (a12 − a15u3)},
2u̇13 = e2u9−u8 (a15u4 + a14u5 + a13),

2u̇14 = e−u7−u8+u9 [eu7+u9 u11(a13 + a15u4 + a14u5) + e2u8 (a15u6 + a14)],

2u̇15 = e−u7−u8+u9 [eu7+u9 u12(a13 + a15u4 + a14u5) + e2u8 u10(a15u6 + a14) + a15e2u7+u8 ]. (D10)
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