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Classicality without local discriminability: Decoupling entanglement and complementarity
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An operational probabilistic theory where all systems are classical, and all pure states of composite systems are
entangled, is constructed. The theory is endowed with a rule for composing an arbitrary number of systems, and
with a nontrivial set of transformations. Hence, we demonstrate that the presence of entanglement is independent
of the existence of incompatible measurements. We then study a variety of phenomena occurring in the theory,
some of them contradicting both classical and quantum theories, including cloning, entanglement swapping,
dense coding, additivity of classical capacities, nonmonogamous entanglement, hypersignaling. We also prove
the existence, in the theory, of a universal processor. The theory is causal and satisfies the no-restriction
hypothesis. At the same time, it violates a number of information-theoretic principles enjoyed by quantum
theory, most notably, local discriminability, purity of parallel composition of states, and purification. Moreover,
we introduce an exhaustive procedure to construct generic operational probabilistic theories, and a sufficient
set of conditions to verify their consistency. In addition, we prove a characterization theorem for the parallel
composition rules of arbitrary theories, and specialize it to the case of bilocal-tomographic theories. We conclude
pointing out some open problems. In particular, on the basis of the fact that every separable state of the theory
is a statistical mixture of entangled states, we formulate a no-go conjecture for the existence of a local-realistic
ontological model.
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I. INTRODUCTION

In Ref. [1], a paper dating back to 1935, Schrödinger
provides a seminal description of the phenomenon of entan-
glement: “When two systems, of which we know the states by
their respective representatives, enter into temporary physical
interaction due to known forces between them, and when after
a time of mutual influence the systems separate again, then
they can no longer be described in the same way as before,
viz., by endowing each of them with a representative of its
own. I would not call that one but rather the characteristic
trait of quantum mechanics, the one that enforces its entire
departure from classical lines of thought.” Indeed, in classical
theory (CT), the state of affairs of every system admits of
a suitable description as a statistical mixture of products of
pure states. This means that in CT any bipartite state can be
prepared by two experimenters just by using local operations
and shared randomness. In other words, every state in CT is
separable. On the contrary, quantum theory (QT) allows for
states which are not separable, namely, which are entangled.
Actually, in the broad landscape of probabilistic theories [2],
entanglement is far from being the characteristic trait of QT.
Most notably, the so-called PR boxes [3,4] provided the first
example of a probabilistic model beyond QT and featuring
entangled states, initiating a fruitful research field in the scope
of foundations of physics. On top of this, it has been even
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argued that entanglement is an inevitable feature of any theory
superseding classical theory [5].

While entanglement can be considered a ubiquitous fea-
ture in the scope of probabilistic theories, one of the points
of this work is to question to which extent the presence of
entanglement in a physical theory enforces its entire departure
from classical lines of thought. One widespread notion of
classicality for a physical theory [2,5–7] is based on the set
of states of the theory. A theory is deemed classical if the
pure states of states for every system are (i) the vertices of a
simplex, and (ii) jointly perfectly discriminable. We present
a complete operational probabilistic theory, which we call
bilocal classical theory (BCT), that, in spite of being classical
in the above sense, features entangled states. Classical theo-
ries with entanglement have been characterized in Ref. [8].
Moreover, it is interesting to notice that BCT also complies
with the notion of classicality proposed in Ref. [9], admitting
of a noncontextual ontological model.

BCT represents the proof of concept that entanglement is
compatible with the absence of complementarity, i.e., with
the existence of incompatible measurements. The theory is
causal and satisfies the no-restriction hypothesis. However,
BCT violates the principles of local discriminability, purity
of parallel composition of states, and purification. The theory
also features nonmonogamous entanglement and hypersignal-
ing [10]. Furthermore, we show that in BCT it is possible to
perform entanglement swapping and dense coding, and we
prove a theorem of universal programmability for the theory.

The paper is organized as follows. In Sec. II we provide
a conceptual preview of the main results of the paper in a
nontechnical way. In Sec. III we review the framework of
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operational probabilistic theories (OPTs), which captures the
building blocks necessary to construct a theory of physical
processes. This can be done by resorting to category theory
[11]. Indeed, the categorical framework provided a powerful
toolbox for deriving quantum theory [12], reformulating it
[13], and also for modeling generic physical theories [14–16],
or more general kinds of theories [17,18]. In Sec. IV we make
a survey of the operational probabilistic structures that are
relevant to this work. We prove two first results, providing
in particular a characterization for the composition rule of the
system sizes in bilocal-tomographic theories. We then move
on to considering the construction of a probabilistic theory.
When a mathematical structure is constructed, one needs to
provide a procedure not only to build it, but also to make
sure that it is consistent. Accordingly, in Sec. V we set the
problem of consistency for the construction of an operational
probabilistic theory, proposing a building procedure, and iden-
tifying a sufficient set of conditions to check well posedness
and coherence. Thus, in Sec. VI we present bilocal classical
theory, also verifying its consistency, while in Sec. VII we
analyze a variety of information-theoretic properties of the
theory. In Sec. VIII we discuss our findings in the light of
the existing literature. Finally, in Sec. IX we draw our conclu-
sions, pointing out some open problems of foundational and
interpretative relevance.

II. CONCEPTUAL PREVIEW

In this paper we exhibit a complete probabilistic theory that
embodies features studied in Ref. [8], where classical theories
without local discriminability were investigated. Such theo-
ries, in particular, feature entanglement, and allow to study
its logical dependence on other properties that are commonly
associated with it. The first step that we take is to review the
framework of operational probabilistic theories (OPTs). OPTs
allow for the study of statistics of events, as in generalized
probabilistic theories (GPTs), but they also enable us to de-
scribe the transformations and their composition in parallel
and in sequence. Unlike most of the literature on GPTs, with
remarkable exceptions [9], OPTs formalize in a thorough
manner the compositional structure, and can be thus thought
as a completion of the framework of GPTs, emphasizing the
role of transformations. Introducing new structure on top of
the statistical content of a GPT, an OPT has to satisfy further
consistency constraints, that regard not only its coherence as
a probability theory [19], but, most importantly, the interplay
of compositional structures1 among themselves, and with the
probabilistic one.

Classical theories are OPTs that are locally classical,
i.e., the state space of every system is classical, but their
composition rule is not the usual one. Constructing such a
theory presents remarkable difficulties, in particular, abiding
by consistency constraints. For this reason the paper presents
an exhaustive discussion of such constraints, that are then
checked after introducing in detail an example of classical
theory with entanglement.

1The compositional structure of an OPT, in technical terms, corre-
sponds to that of a monoidal category [20].

We now provide a brief survey of the main results of
the paper. Theorem 1 provides necessary conditions that the
parallel composition rules for arbitrary theories must satisfy,
and Theorem 2 provides a characterization of those rules in
the case of bilocal-tomographic theories [21]. Bilocal dis-
criminability is particularly relevant in this work since the
theory here presented is bilocal tomographic. In Sec. V we
formulate a procedure to check the consistency of a given
theory, that turns out to be crucial in establishing the validity
of the theory constructed in Sec. VI. The latter, that we call
bilocal classical theory (BCT), represents the main result of
the paper. It constitutes a proof of concept that incompatibility
of measurements and entanglement are independent proper-
ties. In subsequent sections we analyze other relevant features
of BCT, some in common with quantum theory, e.g., dense
coding, entanglement swapping, some in common with clas-
sical theory, e.g., perfect clonability, full information without
disturbance, no Bell nonlocality, universal programming, in-
secure cryptography, and finally some which supersede both
theories, such as the violation of atomicity of parallel compo-
sition and of entanglement monogamy, hypersignaling.

III. OPERATIONAL PROBABILISTIC THEORIES:
A REVIEW

The primitive notions of an operational probabilistic theory
(OPT) are those of systems, tests, events, and probabilities.
Systems represent the physical entities which are probed in a
laboratory (e.g., an electron, a molecule, a radiation field, etc.
...). Tests represent the physical processes, occurring between
two systems, which experiments are made up of (such as the
single use of a physical device). Accordingly, an outcome
space is associated with each test, collecting all the possible
outcomes of the test itself. On the other hand, an event is asso-
ciated with each outcome, representing a possible occurrence
in a physical process. Finally, the goal of a physical theory is
to associate some probability distributions with each event.

In this section, we will provide a review of the main general
properties of an OPT. In particular, we will present the oper-
ational and compositional properties of the primitives, their
probabilistic structure, and the resulting linear structure.

A. Operational structure: Compositional properties of a theory

Let Sys(�), Test(�), and Event(�) denote the classes
of, respectively, the systems, the tests, and the events of a
theory �. Systems will be denoted using latin characters
A, B, C, . . . ∈ Sys(�), while tests from a system A to a
system B will be denoted by TA→B

X ∈ Test(A→B), where X
is the corresponding outcome space. A test having a single
outcome ∗ will be called a singleton test, and the singleton set
will be denoted by � := {∗}. Without loss of clarity, sometimes
we will use the shorthand notation T ≡ TX ≡ TA→B

X . Each test
TA→B

X is a collection of events from A to B, namely,

TA→B
X = {Tx}x∈X; ∀ x ∈ X, Tx : A → B.

The class of events from a system A to a system B will
be denoted by Event(A→B). Events T ∈ Event(A→B)
are represented as wired boxes, where the source and target
systems are the labels of the input and, respectively, the output
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wires:

As it is clear from the diagram above, the input-output direc-
tion is conventionally represented as going from left to right.

One requires that every test with, say, output system B,
can be sequentially composed with any other test having B as
input. This operation represents the consecutive occurrence of
two physical processes. That is, for all A, B, C ∈ Sys(�) and
all T1 ∈ Event(A→B),T2 ∈ Event(B→C), there exists an
associative map ◦, called sequential composition, and an event
T2T1 := T2 ◦ T1 ∈ Event(A→C), such that the sequential
composition of two tests TA→B

X , T′B→C
Y is defined as

(T′T)A→C
X×Y ≡ T′B→C

Y TA→B
X := {T ′

y ◦ Tx}(x,y)∈X×Y.

Sequential composition is pictorially represented by the hori-
zontal juxtaposition of boxes from left to right, connecting the
two consecutive input and output wires which carry the same
label:

Moreover, for all S ∈ Sys(�) there exists a (unique) singleton
test, denoted by IS→S

� = {IS} and called the identity of S,
satisfying, for all systems A and B, the following property:

IBTx = Tx = TxIA, ∀ TA→B
X , ∀ Tx ∈ TA→B

X . (1)

In the following, we will denote the identity family also by us-
ing the symbol I . Identity processes are equivalent to doing
nothing, and can be then conveniently represented just as an
extended wire carrying the respective system’s label:

One can compose two systems A and B to make the
new composite system AB. Correspondingly, any two arbi-
trary events T1 ∈ Event(A→B), T2 ∈ Event(C→D) can
be composed in parallel. This operation corresponds to an
associative map �, called parallel composition, that produces
the composite event T1 � T2 ∈ Event(AC→BD). The par-
allel composition of tests is then straightforwardly defined as

(T � T′)AC→BD
X×Y ≡ TA→B

X � T′C→D
Y := {Tx � T ′

y }(x,y)∈X×Y.

This can be thought as a composite test which is completely
described by two single tests performed in different labo-
ratories. Parallel composition is pictorially represented by
vertically juxtaposing transformations from top to bottom:

Moreover, the following properties are required for all
A, B, C, D, E, F ∈ Sys(�) and all T1 ∈ Event(A→B), T2 ∈
Event(B→C), T3 ∈ Event(D→E), T4 ∈ Event(E→F):

(2)

(3)

Equation (2) asserts that the parallel composition of the iden-
tities IA and IB is the identity IAB of the compound system
AB. Property (3) states that the operations of sequential and
parallel composition commute.

Furthermore, one requires the possibility to consider phys-
ical processes having no input or output. The corresponding
tests are those where the experimenter disregards everything
that, from the viewpoint of the input-output direction, has
occurred before or, respectively, will occur after, the physical
process considered. In order to capture this notion, there exists
a (unique) system I, called the trivial system, satisfying IA =
A = AI for all A ∈ Sys(�). Also, the parallel composition
of any test with the identity of I amounts to doing nothing.
Indeed, one can conveniently omit an explicit diagrammatic
representation of both I and II, leaving blank spaces. Ac-
cordingly, events ρ ∈ Event(I→A), a ∈ Event(A→ I) will
be represented, respectively, as

Such events are called, respectively, preparations and
observations.

Finally, we introduce one last relevant feature. One can
think to each system as being controlled by an agent. Ac-
cordingly, one also requires the possibility of exchanging
systems between agents. This operation is captured by the
notion of braiding, namely, a family S of invertible singleton
tests defined in the following way. For any two systems X, Y,
the braiding S contains two tests, SXY→YX

� = {SX,Y} and its
inverse (S−1

� )YX→XY = {S −1
X,Y}, whose associated events will

be denoted as follows:

The above graphical representation as a twisting of systems
is due to the fact that the braiding is required to obey, for
all A, B, C, D ∈ Sys(�) and all T1 ∈ Event(A→B), T2 ∈
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Event(C→D), to the following “sliding property”:

(4)

In the following, we will denote a braiding also by using
the symbol S , identifying it with the family of events that
defines S. In the case where the members of the braiding sat-
isfy S −1

A,B = SB,A for all A, B ∈ Sys(�), the OPT is called
symmetric. Notice that all the theories developed so far are
symmetric. In analogy to the cases of CT and QT, symmetric-
ity has been assumed in the literature, for both physical and
process theories.

B. Probabilistic structure: Linear properties of a theory

Tests PX = {px}x∈X ∈ Test(I→ I) are probability distribu-
tions. For all p ∈ Event(I→ I) and all T ∈ Event(A→B),
one can define an operation, called multiplication by a scalar,
as follows:

(5)

Notice that the equality can be shown to hold using the prop-
erties of parallel composition and of the trivial system. In the
case of preparations ρ and observations a, one can also show
that p � ρ = ρ ◦ p and p � a = p ◦ a. On the other hand, the
following is required:

p � q := pq, ∀ p, q ∈ Event(I→ I), (6)

where pq is the usual multiplication on real numbers. More-
over, an experimenter is allowed to perform a test TA→B

X
disregarding the different outcomes within an arbitrary sub-
set Y ⊆ X. This amounts to merging the events in Y into a
single event. Such a possibility is captured by the notion of
coarse graining. The probability of the coarse-grained event
Y amounts to the sum of the probabilities of all the outcomes
in the subset Y. Then, for each test TA→B

X and every subset
Y ⊆ X, there exists a coarse-grained event formally given by

TY :=
∑
y∈Y

Ty, (7)

where sequential and parallel composition distribute over
sums. The coarse-graining operation (7) clearly boils down
to the usual sum over real when A = I = B.

Now, let � be an OPT. For all systems A, B ∈
Sys(�), we define the following equivalence relation for
every T1,T2 ∈ Event(A→B): T1 ∼ T2 if for all E ∈
Sys(�), ρ ∈ Event(I→AE), a ∈ Event(BE→ I) one has

(8)

The members of the quotient class

Transf(A→B) := Event(A→B)/ ∼

are called the transformations from A to B. Quotient classes of
preparations St(A) := Transf(I→A) are called the states of
A, while those of observations Eff(A) := Transf(A→ I) the
effects of A. Finally, equivalence classes of tests are called
instruments, and are collected by the quotient class Instr(�).
We will often denote the states of A as |ρ)A, and the effects
of A as (a|A. In the case of the parallel composition of states
or effects, we will safely omit the symbol � without loss of
clarity, simply writing |ρ1)A1 |ρ2)A2 or (a1|A1 (a2|A2 , while the
sequential composition between a state and an effect will be
given by the pairing (a|ρ)A := (a|A ◦ |ρ)A ∈ [0, 1].

Remark 1. We observe that an arbitrary transformation
T ∈ Transf(A→B) is indeed defined by the entire class of
transformations {T � IE}E∈Sys(�). This means that, given
two transformations T1,T2 ∈ Transf(A→B), the following
holds:

T1 = T2 ⇐⇒ T1 � IE = T2 � IE, ∀ E ∈ Sys(�).
(9)

Remark 2. Two tests associated with the same probability
distribution in every possible experiment are said to be op-
erationally equivalent. Importantly, in the construction and
characterization of an OPT, one is interested in equivalence
classes of tests, namely, in instruments. Thus, as it will be
explicitly shown in Secs. V and VI, an OPT can be defined
by specifying (i) the systems Sys(�), (ii) a parallel compo-
sition rule � for systems and states, and (iii) the instruments
Instr(�) and their parallel composition �.

Now, say that we have a preparation with output system
A, an observation with input system B, and in-between a test
from A to B: this scenario corresponds to a joint probability
distribution of the events that may occur in the experiment.
More generally, the goal of a physical theory is to associate a
probability with each event of a composite test as the above-
described one. In particular,

(10)

where ρx,Ty, az are transformations of, respectively, the in-
struments ρI→A

X , TA→B
Y , aB→I

Z . The above definition shows the
parametric dependence of the joint probability distribution of
outcomes on the whole closed circuit representing a test I→ I.
Along with condition (6), Eq. (10) amounts to say that discon-
nected circuits represent statistically independent processes or
experiments.

By virtue of Eq. (8), effects separate states and, vice versa,
states separate effects. This means that, for every pair of
states |ρ)A, |σ )A ∈ St(A) such that |ρ)A = |σ )A, there exists
an effect (a|A ∈ Eff(A) such that (a|ρ)A = (a|σ )A (and vice
versa for every pair of different effects). The latter amounts
to say that, given two different states (or effects), there exists
an experiment producing different statistics for them. States
(effects) can be seen as functionals from effects (states) to
probabilities. Consequently, in the light of definitions (5), (6),
and (7), one can take linear combinations of them. In particu-
lar, the pairing between states and effects defines a complete
class of linearly independent vectors in St(A), spanning a
real vector space StR(A) := SpanRSt(A). Similarly, Eff(A)
is a class of non-negative linear functionals on St(A), and
spans the dual space EffR(A) := SpanREff(A) = StR(A)∨.
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The members of StR(A) and EffR(A) are called, respectively,
generalized states and generalized effects. The dimension
DA := dim StR(A) is called the size (or dimension) of the
system A. In the following, every system A will be always
thought as accompanied by its associated size DA. A type of
system is an infinite collection of systems with a given size
D. In an OPT, DA is the minimum number of probabilities
that must be ascertained to determine the state of a system A.
For instance, in QT, for a system A whose associated Hilbert
space has dimension dA, one has DA = d2

A. In this work we
will restrict to the case of finite-dimensional OPTs, namely,
theories � where DA < +∞ for all A ∈ Sys(�). In this case,
for all systems A one has dim StR(A) = dim EffR(A).

Every transformation T from A to B maps St(A) to
St(B). Accordingly, transformations from A to B span a
real vector space TransfR(A→B) := SpanRTransf(A→B),
whose members are called generalized transformations.
Given A, B, C, D ∈ Sys(�), the transformations of the
form T � T ′ ∈ Transf(AC→BD) are called local trans-
formations. The transformations of the form T � IC ∈
Transf(AC→BC) and IA � T ′ ∈ Transf(AC→AD) are
called, respectively, local transformations from the system
A to the system B and from the system C to the system D.
A transformation R ∈ Transf(A→B) is called reversible if
there exists a transformation R−1 ∈ Transf(B→A) such that
R−1R = IA and RR−1 = IB. The class of reversible trans-
formations of a theory � will be denoted by RevTransf(�).

Now, for all p ∈ St(I) and T ∈ Transf(A→B), we will
write the following:

(11)

where pT represents the scalar multiplication on the vector
space TransfR(A→B). One has that StR(I) ∼= R, implying
DI = 1. Then, for all p ∈ St(I), A, B ∈ Sys(�), and T ∈
Transf(A→B), one has I � A = I ⊗ A = A = A � I = A ⊗
I and p � T = p ⊗ T , where ⊗ is the standard tensor prod-
uct. The identity of the trivial system is clearly given by
the unit, i.e., II = 1. Finally, the braiding S satisfies the
following relation:

SA,I = IA = S −1
A,I , ∀ A ∈ Sys(�). (12)

The transformations from a system A to a system B are
contained in a convex and bounded subset of TransfR(A→B)
[22]. Then, it is often convenient to consider the convex
cone generated by the convex combinations of transfor-
mations in Transf(A→B). The latter will be denoted by
Transf+(A→B); clearly, St+(A) and Eff+(A) will be used
in the case of the convex cones generated by, respectively,
St(A) and Eff(A). A transformation T ∈ Transf(A→B) is
called atomic if, given T1,T2 ∈ Transf(A→B), one has the
following implication:

T = T1 + T2 ⇒ T1 ∝ T2. (13)

A transformation T ∈ Transf(A→B) is called extremal if,
given T1,T2 ∈ Transf(A→B) and p ∈ (0, 1), the condition
T = pT1 + (1 − p)T2 implies T1 = T2. On the other hand,
we call a refinement of T a set {Ti}i∈R ⊆ Transf(A→B)
such that T = ∑

i∈R Ti, and similarly we define a convex
refinement of T a set {Ti}i∈R ⊆ Transf(A→B) such that

T = ∑
i∈R piTi for some probability distribution {pi}i∈R.

Finally, Ref(T ) and ConvRef(T ) will denote the union of,
respectively, all the refinements and all the convex refinements
of T .

We assume that 0 ∈ Transf(I→ I), so that events as-
sociated with a zero probability can be considered in a
theory. Accordingly, the existence of parallel composition
implies that the null generalized transformation εA→B ∈
TransfR(A→B), such that (a|BE(εA→B � IE)|ρ)AE = 0 for
every E ∈ Sys(�), |ρ)AE ∈ St(AE), (a|BE ∈ Eff(BE), is in-
cluded in the transformations Transf(A→B) for all A, B. A
null transformation always occurs with null marginal proba-
bility. A transformation T ∈ Transf(A→B) such that there
exists a singleton instrument T� = {T } ∈ Instr(A→B) is
called deterministic. In continuity with the past literature, we
will often call channels those deterministic transformations
which are not states or effects. Oppositely to the case of
null transformations, a deterministic physical process happens
with certainty, i.e., with marginal probability 1. For instance,
a state is deterministic if and only if it gives probability
1 on every deterministic effect, or, in other words, if and
only if it is normalized. We will denote by Transf1(A→B)
the class of deterministic transformations from system A
to system B; clearly, St1(A) and Eff1(A) will be used in
the case of, respectively, deterministic states and effects of
system A. For any given instrument TA→B

X , one has clearly
that

∑
x∈X Tx ∈ Transf1(A→B), and, as a particular case,

Transf1(I→ I) = {II} = {1}. In the light of the definition of
null transformation, we will assume that TA→B

X ∈ Instr(�) if
and only if εA→B ∪ TA→B

X ∈ Instr(�). The reason why this is
a convenient assumption is the following characterization of
the deterministic transformations. If T ∈ Transf(A→B) is a
deterministic transformation, T � IE clearly maps St1(AE)
to St1(BE) for all E. Conversely, let T ∈ Transf(A→B)
be such that T � IE maps St1(AE) to St1(BE) for all
E. Suppose now that there exists an instrument TA→B

K∪�
of

the form TA→B
K∪�

= {Tk}k∈K ∪ {T } with Tk ∈ Transf(A→B)
for every k ∈ K. Let {|ρ j )AE} j∈J and {(al |BE}l∈L be, respec-
tively, a preparation instrument of AE and an observation
instrument of BE. By coarse graining, |ρ)A := ∑

j∈J |ρ j )AE

and (ẽ|B := ∑
l∈L(al |BE are deterministic. Then, by hypoth-

esis, (T � IE)|ρ)AE ∈ St1(BE) also holds. Accordingly,
Transf1(I→ I) � (ẽ|BE(T � IE)|ρ)AE = 1. On the other
hand, it must also be

(ẽ|BE(T � IE)|ρ)AE +
∑
k∈K

(ẽ|BE(Tk � IE)|ρ)AE = 1,

which in turn implies∑
l∈L,k∈K, j∈J

(al |BE(Tk � IE)|ρ j )AE = 0,

with (al |BE(Tk � IE)|ρ j )AE � 0 for every l ∈ L, k ∈ K, j ∈
J by definition. Accordingly, since the previous argument
does not depend on the choice of instruments {|ρ j )AE} j∈J
and {(al |BE}l∈L, we conclude that it must be Tk = εA→B for
all k ∈ K, namely, T ∈ Transf1(A→B). Thus, a transfor-
mation T ∈ Transf(A→B) is deterministic if and only if
T � IE maps St1(AE) to St1(BE) for all systems E. By the
same argument as above, one can show that, equivalently, a
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transformation T ∈ Transf(A→B) is deterministic if and
only if T � IE maps Eff1(AE) to Eff1(BE) for all systems E.
The property of being deterministic is clearly preserved under
both sequential and parallel composition.

As a first consequence, it is clear why in Sec. III A the
identity process I has been, by definition, associated with
a family of singleton tests. In the remainder of this work, we
will make extensive use of the above characterization, which
we now use in order to prove the following useful result.

Proposition 1. Let � be an OPT, and R ∈
RevTransf(A→A′) be a reversible transformation from
a system A ∈ Sys(�) to a system A′ ∈ Sys(�). Then,
R ∈ Transf1(A→A′), and preserves both atomicity and
extremality via sequential composition. In particular,
RevTransf(A→A) is a group of permutations on PurSt(A).

Proof. By hypothesis, there exists R−1 ∈
RevTransf(A′ →A) such that R−1 ◦ R = IA holds.
By definition, there also exist D ∈ Transf1(A→A′)
and D ′ ∈ Transf1(A′ →A) such that T := {R,D − R}
and T′ := {R−1,D ′ − R−1} are instruments of �. Their
sequential composition T′ ◦ T = {IA,R−1D − IA,D ′R −
IA,D ′D − D ′R − R−1D + IA} is also an instrument.
Since IA is associated with a singleton instrument by
definition (see Sec. III A), IA ∈ Transf1(A→A) holds.
Accordingly, by direct inspection of T′ ◦ T and using the
characterization of the deterministic transformations, one
must have D = R, namely, R ∈ Transf1(A→A′). We
now just prove that if A ∈ Transf(C→A) is atomic, then
RA is also atomic. The case of B ∈ Transf(A′ →C)
atomic implies BR atomic will be then a straightforward
adaptation of the former case; on the other hand, preservation
of extremality via sequential composition can be proven
in an analogous manner, just by using the definition of
extremal transformation instead of that of atomic one. Let
then A ∈ Transf(C→A) be an atomic transformation.
By contradiction, suppose that RA is not atomic. Then,
by definition, there exist A1,A2 ∈ Transf(C→A) with
A1 ∝ A2 such that

RA = A1 + A2 �⇒ A = R−1A1 + R−1A2.

However, by atomicity of A , the above equation implies
R−1A1 ∝ R−1A2, i.e., A1 ∝ A2, that is absurd. �

By Proposition 1, it is clear why in Sec. III A also the
braiding S has been, by definition, associated with a family
of singleton tests.

When St(A) coincides with its convex hull for every
A ∈ Sys(�), the theory � is called convex. We will denote
by ExtSt0(A) the set of extremal points of the convex hull
of St(A). Since |ε)A ∈ ExtSt0(A) for every system A, we
also define the set of non-null extremal points ExtSt(A) :=
ExtSt0(A) \ {|ε)A}. The deterministic extremal states are
those historically called the pure states. Deterministic states
which are not extremal are those historically called mixed
states. More generally, we will call mixed those states which
are neither extremal nor atomic. This nomenclature is ex-
tended to arbitrary transformations: accordingly, extremal
channels will be called pure (transformations). We will denote
by PurSt(A) ⊆ ExtSt(A) the set of pure states of a system
A. In a convex theory, every mixture of pure states can be

FIG. 1. Example of a set of states for a system A of size 3. St(A)
is convex and contained in the complete state space of a classical
trit, namely, a tetrahedron. The elements depicted in orange are
the atomic ones, while those in dark green (the null state |ε)A and
|αi )A for i ∈ {0, 1, 2}) are both atomic and extremal. The elements
in blue (|ωi )A for i ∈ {0, 1, 2}) are the pure states of St(A), which
are extremal but not atomic. The elements in light green, i.e., those
contained in the upper face, are the deterministic mixed states of A.
Finally, all the remaining states (in gray) are mixed.

deterministically prepared. CT and QT are examples of con-
vex theories.

Remark 3. One may argue that atomic should be used as a
synonym of pure (see, e.g., Ref. [23]). However, in general we
keep the two notions of atomicity and purity distinct. The only
case where there is no need for a distinction between atomicity
and purity, at least for states, is that of theories where every
state is proportional to a deterministic one. Moreover, the
theory presented in this work provides an explicit motivation
to take the two notions distinct. Indeed, as it will be discussed
in Sec. VII, in the case of transformations of the theory which
are not states or effects, the property of purity is preserved by
parallel composition, while the one of atomicity is not.

Figures 1 and 2 illustrate the main notions related to atom-
icity and convexity introduced in this section.

IV. OPERATIONAL PROBABILISTIC STRUCTURE:
PRELIMINARY DEFINITIONS AND RESULTS

In this section, we will review some important proper-
ties in the scope of operational probabilistic theories, also
proving a first relevant result related to the so-called bilocal-
tomographic theories. Then, we will set and discuss the
notions of no-restriction hypothesis and causality in the OPT
framework. Finally, we will focus on the family of simplicial
theories, which comprises the probabilistic theory introduced
in this work.
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FIG. 2. Example of sets of states and effects of a system B of
size 2. St(B) is contained in the complete state space of a classical
bit, namely, a triangle, and is not convex. The colors are associated to
the same properties as in Fig. 1. The atomic rays of St(B) provide the
example of atomic elements which are not proportional to extremal
ones. One has (ei|ω j )B = δi j for every i, j ∈ {0, 1}. Eff(B) contains
a unique deterministic effect, namely, (e|B = (e0|B + (e1|B, which is
pure and has a trivial convex refinement set. The refinement and
convex refinement sets of a mixed (internal) point x ∈ Eff(B) are
depicted.

A. Parallel composition and properties
of n-local-tomographic theories

We first recall some definitions and properties which are
relevant to this work. Let us start by defining the following
map:

f : (A, B) �→ DAB := f (A, B).

The above map f defines a rule for the size of composite
systems. The following must always hold for all A, B, C ∈
Sys(�):

f (I, A) = DIA = DA = DAI = f (A, I), (14)

f (AB, C) = f (A, BC). (15)

Furthermore, since a theory is endowed with a braiding, one
has the additional constraint

f (A, B) = f (B, A). (16)

We stress that when f (A, B) = g(DA, DB), i.e., the dimension
of the composite system depends only on the dimensions of
the components, the map f boils down to an operation g on
the dimensions of systems. In this case, the above conditions
(14)–(16) take the form

g(DA, 1) = g(1, DA) = DA,

g(g(DA, DB), DC) = g(DA, g(DB, DC)),

g(DA, DB) = g(DB, DA).

In general, one has the following inequality [8]:

DAB � DADB, ∀ A, B ∈ Sys(�). (17)

Property 1 (n-local discriminability [8]). Let n � m. The
effects obtained as a conical combination of the parallel com-
positions of effects a1, a2, . . . , al , where a j is k j partite with
k j � n for all values of j, are separating for the m-partite
states.

The above property was introduced in Ref. [21], where it
was named n-local tomography. The case of n-local discrim-
inability for n = 1 is called local discriminability. A theory �

satisfies local discriminability if and only if

DAB = DADB, ∀ A, B ∈ Sys(�) (18)

(see Ref. [22] for a proof). In this case, for every composite
system AB, the vector space StR(AB) is spanned by the
local (or product) states, given by the parallel composition of
single-system states. This is the case, e.g., of QT. Given two
systems A and B, the separable states of the bipartite system
AB are those of the form

|σ )AB =
∑
i∈I

|αi )A|βi )B, (19)

where St(A) � |αi )A = |ε)A, St(B) � |βi )B = |ε)B for every
i ∈ I . By negation, the entangled states are those that are
not separable. Notice that the above definition is straightfor-
wardly generalized to arbitrary transformations. If a theory
does not satisfy local discriminability, then it necessarily has
entangled states [8]. The converse is not true: QT is the ex-
ample of a theory having entangled states and satisfying local
discriminability.

Let now � be an OPT. In the light of Eq. (17), we can
define the non-negative integer quantity

�
(2)
AB := DAB − DADB, ∀ A, B ∈ Sys(�).

The “excess” �
(2)
AB is the dimension of any subspace BAB of

StR(AB) which is linearly independent of the span of the
separable states, denoted by SAB, and such that every element
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of StR(AB) can be uniquely decomposed as the sum of an
element of SAB and one of BAB. In formula

StR(AB) = SAB ⊕ BAB.

From now on, we will choose one space BAB, where �
(2)
AB =

dim BAB. For the sake of clarity, we will adopt the following
convenient diagrammatic notation:

For any tripartite system ABC, we can introduce the subspaces

(20)

Let us then define I := {1, 2, 3, 4}, and

S (I )
ABC := SpanR

⋃
i∈I

S (i)
ABC.

Then, StR(ABC) is completely spanned by S (I )
ABC along with

any subspace TABC of StR(ABC) which is linearly indepen-
dent of S (I )

ABC, and such that every element of StR(ABC) can
be uniquely decomposed as the sum of an element of S (I )

ABC
and one of TABC. In formula

StR(ABC) = S (I )
ABC ⊕ TABC.

We will arbitrarily choose TABC once for all, and shall denote
it diagrammatically as follows:

The dimension of TABC will be denoted by �
(3)
ABC :=

dim TABC. We are now in position to prove the following
general result.

Theorem 1 (Composition rules for system sizes in arbitrary
theories). Let � be an OPT, and ABC any tripartite system in
�. Then, the following identity holds:

DABC = DADBDC + �
(2)
ABDC + �

(2)
BCDA + �

(2)
ACDB + �

(3)
ABC.

(21)

Proof. From linear independence of SAB and BAB, com-
bined with the fact that effects separate states, we conclude
that for every |σ )AB ∈ SAB and for every |β )AB ∈ BAB there
exist generalized effects (b|AB, (b′|AB ∈ EffR(AB) such that
(b|σ )AB = 1 and (b|β ′)AB = 0 for all |β ′)AB ∈ BAB, and sim-
ilarly (b′|β )AB = 1 and (b′|σ ′)AB = 0 for all |σ ′)AB ∈ SAB.
Using the above property, combined with the facts that every
|σ )AB ∈ SAB is a linear combination of separable states, and
that states separate effects, one has also that (b′|AB|ρ)A =
(ε|B and (b′|AB|ρ ′)B = (ε|A for all |ρ)A ∈ StR(A), |ρ ′)B ∈
StR(B). Moreover, by construction, (b′|AB cannot be a

combination of separable effects. Diagrammatically,

(22)

The four subspaces S (i)
ABC for i ∈ I = {1, 2, 3, 4} are spanned

by the (tripartite) product states, and their dimensions are
given by

dim S (1)
ABC = DADBDC, dim S (2)

ABC = �
(2)
ABDC,

dim S (3)
ABC = �

(2)
BCDA, dim S (4)

ABC = �
(2)
ACDB.

Now, it is easy to show that the five subspaces S (i)
ABC for

i ∈ I and TABC are separated by effects, and then in fact they
are linearly independent. This can be done using the follow-
ing argument. Let us pick a complete linearly independent
set {|α(5)

j )ABC} j∈J5 in TABC, where J5 := {1, 2, . . . , �
(3)
ABC}.

By linear independence of TABC and S (I )
ABC, combined with

the fact that effects separate states, one can construct
a set of generalized effects {(a(5)

j |ABC} j∈J5 ⊆ EffR(ABC)

such that (a(5)
j |α(5)

k )ABC = δ jk while (a(5)
j |σ )ABC = 0 for all

|σ )ABC ∈ S (I )
ABC. Let us now pick a complete linearly inde-

pendent set {|α(i)
j )ABC} j∈Ji in every subspace S (i)

ABC, where

Ji := {1, 2, . . . , dim S (i)
ABC}. By construction, every |ρ)ABC ∈

StR(ABC) can be written as

|ρ)ABC =
5∑

i=1

∑
j∈Ji

r (i)
j

∣∣α(i)
j

)
ABC.

Let us now suppose that |ρ)ABC = |ε)ABC. Then, we have

0 = (
a(5)

j

∣∣ρ)
ABC = r (5)

j , ∀ j ∈ J5,

namely,

|ρ)ABC =
4∑

i=1

∑
j∈Ji

r (i)
j

∣∣α(i)
j

)
ABC.

Now, using formulas (20) and (22), for all i ∈ I one can con-
struct a set of generalized effects (a(i)

j |ABC ∈ EffR(ABC) such

that (a(i)
j |α(i)

k )ABC = δ jk and (a(i)
j |α(l )

k′ )ABC = 0 for all i, l ∈ I
with l = i, all j, k ∈ Ji, and all k′ ∈ Jl . Thus, we have

0 = (
a(i)

j

∣∣ρ)
ABC = r (i)

j , ∀ i ∈ I, ∀ j ∈ Ji.

Accordingly, |ρ)ABC = |ε)ABC if and only if r (i)
j = 0 for all

1 � i � 5 and all j ∈ Ji. This shows that the five subspaces
S (i)

ABC for i ∈ I and TABC are not only complete, but also
linearly independent. Then, in general Eq. (21) holds. �

Notice that, for every positive integer n, n-local discrim-
inability implies (n + 1)-local discriminability (see Prop-
erty 1). For this reason, we will call the property of n-local
discriminability, in the case where (n − 1)-local discrim-
inability does not hold, strict n-local discriminability. The
case of n-local discriminability for n = 2 is called bilocal
discriminability. Relevantly, strict bilocal discriminability is
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a property satisfied by real quantum theory and fermionic
quantum theory [21,24]. The next result provides the general
form of the composition rules for the system dimensions in a
theory satisfying bilocal discriminability.

Theorem 2 (Composition rules for system sizes in bilocal
-tomographic theories). An OPT � satisfies bilocal
discriminability if and only if the following equality holds for
any tripartite system ABC ∈ Sys(�):

DABC = DADBDC + �
(2)
ABDC + �

(2)
BCDA + �

(2)
ACDB (23)

or, equivalently, �
(3)
ABC = 0.

Proof. We recall Property 1. On the one hand, if Eq. (23)
holds, for all A, B, C ∈ Sys(�) the space StR(ABC) has the
same dimension as S (I )

ABC. On the other hand, since S (I )
ABC

is a subspace of StR(ABC), being all its elements allowed
by the composition rules of OPTs, it must be StR(ABC) ≡
S (I )

ABC. This implies that the collection of effects
⋃4

i=1{(ai
j |} j∈Ji

introduced in the proof of Theorem 1 separates states in
StR(ABC), namely, � satisfies Property 1 with n = 1 or 2,
depending on whether �

(2)
XY = 0 or �

(2)
XY = 0, respectively.

On the other hand, if � satisfies Property 1 with n = 1 or
2, then, by definition, the effects generated by the collection⋃4

i=1{(ai
j |} j∈Ji separate states. By direct inspection of the col-

lection
⋃4

i=1{(ai
j |} j∈Ji , and recalling that for all systems A one

has DA = dim EffR(A), then Eq. (23) holds. We conclude that
� satisfies bilocal discriminability if and only if Eq. (23) holds
or, equivalently [see Eq. (21)], if and only if �

(3)
ABC = 0. �

Equation (23) generalizes Eq. (18), holding for theories
satisfying local discriminability. Indeed, when local discrim-
inability holds in Eq. (23) one has �

(2)
XY = 0 for all X, Y ∈

Sys(�). Then, in the latter case, Eq. (23) represents just a
restatement of Eq. (18) for the tripartite scenario. More im-
portantly, when strict bilocal discriminability holds, implying
�

(2)
XY = 0 for some X, Y ∈ Sys(�), the statement of Theorem

2 is nontrivial. Interestingly, Theorem 2 implies that the upper
bound given in Refs. [21,24], holding for the dimension of
tripartite systems in an OPT with bilocal discriminability, is
in fact always saturated. In Ref. [24], a theory was defined to
be maximally bilocal tomographic if it satisfies strict bilocal
discriminability and Eq. (23). However, Theorem 2 states
that if a theory satisfies strict bilocal discriminabilty, then
it necessarily satisfies also Eq. (23), namely, every theory
satisfying strict bilocal discriminability is in fact maximally
bilocal tomographic.

B. On the notions of no-restriction hypothesis and causality

The following two important properties, called the no-
restriction hypothesis and causality [22], are extensively
assumed throughout the literature on probabilistic theories.

Property 2 (No-restriction hypothesis). Let � be an OPT,
A, B ∈ Sys(�), and TX ⊂ TransfR(A→B) be a collection
of generalized transformations. If, for all E ∈ Sys(�), TX �
IE→E
� maps preparation instruments of AE to preparation

instruments of BE, then TX ∈ Instr(�), namely, TX is an
instrument of the theory �.

For any given theory �, one is always able to check
whether � satisfies Property 2, by definition. If a theory satis-
fies the no-restriction hypothesis, this means that it cannot be

extended, in a consistent way, by adding further transforma-
tions or effects.

A brief comment on the formulation of Property 2 is in
order. The no-restriction hypothesis is usually formulated stat-
ing that “all the positive functionals on states are physical,”
or something along these lines. First, we explicitly included
also general transformations. Second, to make a sensible
statement, in general one has to be sure that a collection of
generalized transformations not only maps states to states, but
also that this is the case when the collection is extended to a
composite system. The previous observation is relevant in the
absence of local discriminability (see Remark 1).

Remark 4. From a constructive perspective, namely, when
a theory � is constructed out of a number of postulates, one
can use Property 2 as a postulate, and this is indeed very
common in the literature on probabilistic theories. However,
despite being a viable constructive postulate, in general the
no-restriction hypothesis is not selective, in the sense that,
by assigning the preparation instruments and imposing Prop-
erty 2, one does not generally end up with a single theory,
but with a family of different theories.2 The only case where
the no-restriction hypothesis can be safely taken as a selective
postulate is when the choice of the preparation instruments
satisfies local discriminability (which is in fact the case in vast
majority of the literature on probabilistic theories). Indeed,
in the latter case, the local states of every composite system
AB generate the whole space StR(AB), parallel composition
being given by the standard tensor product, i.e., � ≡ ⊗. As
a consequence, every transformation T ∈ Transf(A→C) is
solely defined by its action on St(A) (see Remark 1) and
the braiding S is uniquely determined by the mere geometry
of states, so that T ∈ Transf(A→C) maps St(A) to St(C)
if and only if T � IB maps St(AB) to St(CB) for all B ∈
Sys(�).

Property 3 (Causality). The probability distributions of
preparation instruments do not depend on the choice of ob-
servation instrument at their output.

We remind that the above statement of causality is equiv-
alent to the uniqueness of the deterministic effect for every
system [22], namely, an OPT is causal if and only if every
system has a unique deterministic effect. The unique deter-
ministic effect is often called the unit effect (or measure)
[25]. The causality condition in Property 3 is known as no
signaling from the future. The consequences of this require-
ment have been extensively studied in Ref. [26]. Incidentally,
it also implies another kind of no-signaling, namely, the no
signaling at a distance (without interaction) [22], which is the
standard assumption of spatial no signaling made in the spirit
of nonlocal boxes [4]. Indeed, in a bipartite scenario for, say,
system AB, the uniqueness of the deterministic effect always
allows one to define a unique marginal state for both A and B.

2This is due to the fact that a class of generalized instruments may
fail to be uniquely determined by the mere geometry of states. A
significant example is given by the theory of superselected qubits and
fermionic quantum theory [24], sharing the same class of preparation
instruments and both satisfying the no-restriction hypothesis, despite
being different theories.
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Property 4 (Conditional instruments). For all systems
A, B, C ∈ Sys(�), all instruments AX ∈ Instr(A→B), and
all choices of maps

X −→ Instr(B→C),

x �−→ B(x)
Y(x) ,

the following holds:⋃
x∈X

{
B(x)

y ◦ Ax
}

y∈Y(x) ∈ Instr(�).

In other words, the generalized conditional instrument associ-
ated to every AX ∈ Instr(A→B) and every choice of labeled
collection {B(x)

Y(x)}x∈X ⊂ Instr(B→C) is an instrument of the
theory.

Property 4 affects the geometry of instruments of a the-
ory as follows. Suppose that an arbitrary instrument AX ∈
Instr(A→B) is performed. Property 4 guarantees that it is
always possible to use any outcome x ∈ X of AX in order to
freely choose a second instrument B(x)

Y(x) ∈ Instr(B→C) to be
performed at the output of the transformation Ax ∈ AX. This
has two major consequences [22,27]. In any theory satisfying
Property 4, the existence of a probability which is not 0 or 1
implies that every convex combination of instruments is itself
an instrument. As a consequence, the theory is convex. More-
over, Property 4 selects theories where signals can propagate
solely in the input-output direction (see Property 3), namely,
causality is implied. By the above reasons, in Ref. [27] it
is argued that Property 4 should be considered as a (strong)
notion of causality.

The no-restriction hypothesis and causality are often simul-
taneously assumed throughout the literature on probabilistic
theories, being a defining part of the framework itself. How-
ever, we observe that these properties might be incompatible,
even in the presence of local discriminability. Indeed, assum-
ing the no-restriction hypothesis for a class of states may
give rise, depending on their geometry, to a class of effects
containing more than one deterministic effect, namely, to a
theory which is not causal. The possibility of formulating
probabilistic theories without the no-restriction hypothesis
has been explored in the literature [25], whereas causality is
therein implicitly assumed.

C. Simplicial and classical theories

We conclude this section introducing some final definitions
and results which are particularly relevant to the scope of this
work.

Definition 1 (Simplicial theories). A simplicial theory �

is a finite-dimensional OPT where the extremal states of every
system A ∈ Sys(�) are the vertices of a DA simplex.

Notice that a DA simplex is the convex hull of DA + 1
affinely independent vertices, being in the present context the
elements of ExtSt0(A), which includes the null state |ε)A.

Property 5 (Joint perfect discriminability). Let � be an
OPT and A ∈ Sys(�). A set of states {|ρi )A}n

i=1 is jointly per-
fectly discriminable if there exists an observation instrument
{(ai|A}n

i=1 such that

(ai|ρi′ )A = δii′ , ∀ i, i′ ∈ {1, 2, . . . , n}.

Notice that a necessary condition for a set of states
{|ρi )A}n

i=1 to satisfy Property 5 is that {|ρi )A}n
i=1 ⊆ St1(A).

Definition 2 (Classical theories). A classical theory is a
simplicial theory where the pure states of every system are
jointly perfectly discriminable.

Simplicial theories are not necessarily convex. However,
the set of states of a simplicial theory is relatively simple to
treat since every state admits of a unique decomposition into
non-null extremal states. Moreover, simplicial theories are in-
herently causal, and for such theories ExtSt(A) ≡ PurSt(A)
for every system A (see Theorem 1 and its proof in Ref. [8]).

Definition 3 (Classical theory). Classical theory (CT) is
the OPT � satisfying the following properties: (i) � is sim-
plicial and convex, (ii) local discriminability holds, (iii) the
preparation instruments of every system A ∈ Sys(�) are all
the collections of states of A that add up to a point in the con-
vex hull of PurSt(A), and (iv) the no-restriction hypothesis
holds.

Notice that, by Remark 4, in the above case the no-
restriction hypothesis singles out a unique theory. CT and QT,
despite being very different theories, feature some relevant
common properties, most notably causality and local discrim-
inability. They also share convexity and the no-restriction
hypothesis. Indeed, both CT and QT also satisfy a stronger
property, known as (strong) self-duality [28]. This means that,
for every system A, one has the equality Eff+(A) = St+(A)∨

(using Riesz’s representation).
We finally discuss another property which also holds in

both CT and QT.
Property 6 (Atomicity of parallel composition). The paral-

lel composition of two atomic transformations is atomic.
Analogously to the case of local discriminability, if a the-

ory does not satisfy atomicity of state composition, then it
necessarily has entangled states [8]. In the simplicial case,
local discriminability and atomicity of state composition (pro-
vided that n-local discriminability is satisfied for some n) are
in fact equivalent [8]. Indeed, the simplicial theory presented
in this paper satisfies strict bilocal discriminability, and not
atomicity of parallel composition. In Appendix D we prove a
structure theorem for the parallel composition rule of strictly
bilocal simplicial theories satisfying a certain property on the
reversible transformations (see Property 8 in Sec. VII B).

V. CONSTRUCTING AN OPT

We begin the present section treating the consistency of an
OPT. We will provide an account of the general consistency
conditions which any OPT must comply with in order to be
coherent and well posed. In the light of Remark 1, the careful
assessment of coherence conditions, indeed, is particularly
relevant in the absence of local discriminability, as it will be
clear in the following. Then we shall present an exhaustive
procedure to construct an OPT and check its consistency.

A. Coherence and well posedness

When a mathematical structure is constructed, one needs
to make sure that it is consistent. Accordingly, this section
will be devoted to present the consistency conditions that must
be imposed on the construction of an OPT: as a category,
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the OPT must abide by coherence conditions [11], while the
further probabilistic structure must be well posed, and the two
structures must be compatible.

Both sequential and parallel composition of tests are re-
quired to be associative operations. The reason is that when
an experimenter considers composed physical tests, the choice
of a particular association is just a formal action, not corre-
sponding to a physical operation. In an OPT, transformations
are defined as maps between sets: two transformations are
the same if they are represented by the same function. Ac-
cordingly, sequential composition coincides with function
composition, which is always associative. Therefore, in the
construction of an OPT, as long as transformations are defined
as linear maps between vector spaces, the following always
holds:

The previous argument does not apply to parallel compo-
sition. Accordingly, in general, when one chooses a rule
for parallel composition, one has to assign an invertible
map α from (Sys(�) � Sys(�)) � Sys(�) to Sys(�) �
(Sys(�) � Sys(�)), called the associator, such that

(24)

This map allows one to switch between different associations
respecting the associativity condition. Namely, the associator
is given by the identity transformation itself:

(25)

Now, from a constructive perspective, when an associative
parallel composition rule is chosen, not only one has to assign
an associator, but also one needs to check whether it is coher-
ent, namely, self-consistent when extended to the composition
of more than three objects. In order to verify this important
requirement, it is sufficient to check the so-called pentagon

identity:3

(26)

for all A, B, C, D ∈ Sys(�), where one sequentially uses
the appropriate assigned association rule. Equations (24) and
(25), along with the pentagon identity (26), ensure that the
operation of parallel composition is associative in a coherent
way.

The second coherence requirement is related to the pos-
sibility of exchanging systems between agents. For instance,
one demands that the single exchange

A(BC) �→ (BC)A

is equivalent, for operational consistency, to the two sequential
exchanges

A(BC)≡ (AB)C �→ (BA)C≡B(AC) �→ B(CA)≡ (BC)A.

In other words, the braiding S is required to compose as in
the braid group. In order to verify this, it is sufficient to check
the two so-called hexagon identities:4

(27)

(28)

for all A, B, C ∈ Sys(�) (where we omitted an explicit
graphical representation of the associator). However, in the
case where the theory is symmetric, it is easy to verify that
the two hexagon identities (27) and (28) are in fact equivalent
[11].

3This nomenclature is due to the fact that the corresponding
commutative diagram, generally holding for a nonstrict monoidal
category, has five vertices (see, e.g., Ref. [11]).

4Analogously to the case of the pentagon identity, this terminology
is related to the fact that the corresponding commutative diagrams
have six vertices (see, e.g., Ref. [11]).
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In a general category, one also needs to assign two suitably
defined invertible maps λ : IA �→ A and ρ : AI �→ A, called,
respectively, the left and the right unitors (see, e.g., Ref. [11]).
Accordingly, λ and ρ must be not only well posed, but also
abide by some coherence conditions involving the associator
α and the braiding S . In fact, in the light of the linear struc-
ture derived in Sec. III B, in particular, by virtue of Eqs. (5),
(11) and what follows: well posedness and coherence for the
unitors are respected, and do not need to be checked.

We conclude with some final requirement of compatibility
with the probabilistic structure. First, states must be separat-
ing for effects and vice versa. Instruments PX ∈ Instr(I→ I)
must be probability distributions, and the null transformation
εA→B must be included in Transf(A→B) for every A, B.
The coarse-graining operation must be well posed for every
instrument. Finally, for compatibility with sequential compo-
sition, every instrument TA→B

X � IE→E
� must map preparation

instruments of AE to preparation instruments of BE for every
system A, B, E.

We are now in position to present a possible procedure for
the construction of an OPT �, and for the check of its well
posedness.

B. Setting the postulates

In this section, we elaborate the procedure sketched in
Remark 2. First, we can specify the class Sys(�), en-
dowed with the binary composition operation (A, B) �→
AB ∈ Sys(�) for each pair A, B ∈ Sys(�). A dimension DA

for the real vector space StR(A) and a class of states St(A) ⊂
StR(A) are associated with each system A ∈ Sys(�). Now,
we can assign a composition rule for systems, choosing a map
f : (A, B) �→ DAB for each pair A, B ∈ Sys(�).

We can then proceed by choosing, for all A, B, E ∈
Sys(�), the action on St(AE) of the local transformations
from A to B:

These span a real vector space of linear functions from
StR(AE) to StR(BE). On the one hand, one should always
include the identity family I . On the other hand, the two ele-
mentary cases E = I and A = B = I, corresponding to scalar
multiplication, have been already set in Sec. III B [see, in
particular, Eq. (11)]. Then, we can proceed with the cases
A = I and B = I, specifying the action of all the local trans-
formations of the form |σ )B � IE ∈ Transf(E→BE) on all
ρ ∈ St(E), namely, a rule for composing states in parallel:

This is done by choosing a decomposition of every prod-
uct state into linearly independent vectors of the composite
system. Since it must be St(((AB)C)) = St((A(BC))), we
need also to specify, by choosing an associator α as in
Eq. (25), the map identifying the linearly independent vec-
tors in StR(((AB)C)) with those in StR((A(BC))). Also, we
specify the action of all the local transformations of the form

(a|A � IE ∈ TransfR(AE→E) on all  ∈ St(AE), namely,
a rule allowing one to construct the conditioning of bipartite
states:

This defines how the local generalized effects of every AB
embed in EffR(AB), but not yet the class of effects, nor
that of the observation instruments, of �. A very common
choice throughout the literature is to assume the no-restriction
hypothesis in the form “all the positive functionals on states
are physical” (see Remark 4).

Then, we can define the action of arbitrary T � IE ∈
Transf(AE→BE) on St(AE) for all systems A, B, E = I,
and thus set a braiding S for the theory. Finally, we are left
with specifying the instruments of �. One possibility is to
choose the preparation instruments of the theory, and then
postulate that the class Instr(�) includes a collection TA→B

X
of transformations if and only if TA→B

X � IE→E
� maps prepara-

tion instruments of AE to preparation instruments BE for all
E ∈ Sys(�). Notice that such a requirement does not amount
to postulating the no-restriction hypothesis (see Property 2
and Remark 4).

We are now in position to show that the above construction
is sufficient to check whether � is in fact a consistent OPT.

C. Checking the consistency

By having set the postulates, we are now provided with the
action of the associator α and of all transformations, including
the braiding S . Accordingly, we can first derive some funda-
mental expressions which are needed to check whether � is
in fact a consistent OPT.

Sequential composition distributes over sums and is de-
fined in the following way:

(29)

for all systems A, B, C, E and all T1 ∈ Transf(A→B),T2 ∈
Transf(B→C). The rule for extending local transformations
can be derived by resorting to the action of the associator α,
namely, via the following identification:

(30)

Notice that the above expression is a particular instance of
Eq. (24). The action of the local transformations of the form
IE � T ∈ Transf(EA→EB) can be derived by posing the
following expression:

(31)
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We notice that the latter is a particular instance of Eq. (4).
Parallel composition of transformations can be derived by
exploiting Eqs. (29)–(31), and then posing the following ex-
pression:

(32)

We can now proceed by verifying whether a theory � is a
consistent OPT.

Identity process. As long as I ⊆ RevTransf(�), in the
light of Eqs. (31) and (32), also Eq. (2) is always satisfied.

Equations (3) and (4). Using Eq. (31), one can check
whether the following hold:

(33)

(34)

Thus, Eqs. (3) and (4) straightforwardly follow from Eqs. (33)
and (34), using Eqs. (2), (29), (30), (31), and (32), along with
the associativity of sequential composition. When the OPT
is symmetric, Eq. (34) does not need to be checked, being
equivalent to Eq. (31).

Associativity. After verifying whether the associator α is
invertible, we can check the pentagon identity (26). This is
done by using the associator α as the rule for identifying the
linearly independent vectors in StR(((AB)C)D) with those in
StR((A(BC))D). Since the OPT is required to be associative,
the following must hold [see Eq. (24)]:

(35)

for all A, B, C, D, E, F∈Sys(�) and all T1 ∈Transf(A→B),
T2 ∈ Transf(C→D), T3 ∈ Transf(E→F). In fact, using
Eqs. (2), (25) and (29)–(32), one verifies that Eq. (35) holds
by construction.

Braiding. One can verify whether the transformations as-
sociated with the braiding S are invertible and satisfy the two
hexagon identities (27) and (28). When the OPT is symmetric,
the two hexagon identities (27) and (28) are equivalent, and
then just one of them needs to be checked.

Compatibility with the probabilistic structure. Finally, one
can check whether (i) states separate effects and vice versa,
(ii) the instruments PX ∈ Instr(I→ I) are probability distri-
butions, (iii) the null transformation εA→B is included in

Transf(A→B) for every A, B, (iv) the coarse-graining op-
eration is well posed for every instrument, and (v) every
instrument TA→B

X � IE→E
� maps preparation instruments of AE

to preparation instruments of BE for every system A, B, E.
Once we have done the above checks, we are done. Indeed,

the above conditions are exhaustive, being compliant with the
definitions and the coherence results given in Secs. III and
V A. We remind at this point that all of the above consistency
checks need to be performed extending both sides of every
equation with the identity wire of an arbitrary system (see
Remark 1). In the next section, we shall first introduce a theory
� in the axiomatic way described in Sec. V B. Subsequently,
we show that � is indeed a consistent OPT by resorting to the
above-described consistency checks.

VI. BILOCAL CLASSICAL THEORY

We now present a classical theory �̃ with entanglement,
which we call bilocal classical theory (BCT).

A. Postulates

Postulate 1 (Classicality, convexity, and types of systems).
The theory �̃ is classical and convex. For every integer D > 1,
Sys(�̃) contains a type of system having dimension D.

Classical theories have been defined in Sec. IV C. For every
system A, the elements of ExtSt0(A) are DA + 1 vertices
of a simplex. Moreover, the set of the non-null extremal
states ExtSt(A) coincides with PurSt(A) = {|i)A}DA

i=1. The
pure states of every system are jointly perfectly discriminable
(see Property 5). In addition, by convexity, the set of deter-
ministic states St1(A) is the convex hull of the pure states.

Postulate 2 (Parallel composition of systems and states,
associator). For any two systems A, B ∈ Sys(�̃), the
dimension of the composite system AB is given by the
following rule:

DAB = DBA =
{

2DADB, if A = I = B

DA, if B = I.
(36)

Let I = A, B, C ∈ Sys(�̃). Denoting the pure states
of any composite system AB as PurSt(AB) =
{|(i j)−)AB, |(i j)+)AB|1 � i � DA, 1 � j � DB}, for all
states |i)A ∈ PurSt(A), | j)B ∈ PurSt(B) the following
parallel composition rule holds:

(37)

The associator map is given by the following identification:
(
(i j)s1 k

)
s2

= (
i( jk)s1s2

)
s1

(38)

for all local indices i, j, k and signs s1, s2.
Notice that Postulate 2 complies with the classification of

the sets of states in simplicial theories with n-local discrim-
inability provided in Ref. [8]. In the light of Postulate 2, one
sees that the information carriers of the theory, despite being
classical, compose differently from the ones of CT. In Sec. VII
we will discuss some consequences of this fact. Accordingly,
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we will call bibits the elementary information carriers of BCT,
as a shorthand for bilocal bits.

Postulate 3 (Reversible transformations). For all I =
A, A′ ∈ Sys(�̃) with DA = DA′ , let R ∈ TransfR(A→A′).
Then R ∈ RevTransf(A→A′) if and only if there exists
a permutation π of DA elements and a sign σi such
that the following holds for all I = E ∈ Sys(�̃) and
|(i j)s) ∈ PurSt(AB):

(39)

In accordance with Proposition 1, the class of reversible
transformations is well posed since every member, being a
permutation of pure states, has an inverse, as it should be by
definition. Moreover, as required, I ⊆ RevTransf(�̃).

Postulate 4 (Reversible dilation for arbitrary transfor-
mations). For all A, B ∈ Sys(�̃), a map T ∈
TransfR(A→B) is contained in Transf(�̃) if and only
if T admits of a reversible dilation as follows:

(40)

for some R ∈ RevTransf(B′A→A′B) and some |)B′ ∈
St(B′), (H |A′ ∈ Eff(A′).

The effects of the theory will be defined in Postulate 6. In
Sec. VI B, we will verify that Postulate 4 is compatible with
Postulate 3. Notice that Postulate 4 is also satisfied by both
CT and QT.

Postulate 5 (Braiding). Let I = A, B, E ∈ Sys(�̃). The
braiding S of �̃ is given by the family of transformations
S ⊂ RevTransf(�̃) defined as follows:

(41)

It is clear that, for every pair A, B ∈ Sys(�̃), SB,A =
S −1

A,B holds, namely, the theory �̃ is symmetric.
Postulate 6 (Preparation and observation instruments).

The preparation instruments of every system A ∈ Sys(�̃)
are all the collections of states of A which add up to a point
in St1(A). The observation instruments of every system
A ∈ Sys(�̃) are all the collections {(ax|A}x∈X ⊂ EffR(A)
of generalized effects of A such that {(ax|A � IE}x∈X maps
preparation instruments of AE to preparation instruments of
E for all E ∈ Sys(�̃).

Notice that the first part of Postulate 6 is well posed
since, by Postulate 1, St1(A) is defined for every system
A ∈ Sys(�̃). As we will see in Sec. VI B, also the nature
of effects of a classical system is compatible with the second
part of Postulate 6. For every system A, EffR(A) is defined by
Postulate 1 (via Property 5).

B. Characterization

We will use some of the following characterisation results
to prove the coherence of the theory. Accordingly, in order to
prove them, we will solely make use of the postulates and of
the linear structure.

1. Bilocal tomography and entangled states

Proposition 2 (BCT is strictly bilocal tomographic). BCT
satisfies Property 1 if and only if n � 2.

Proof. We shall prove that BCT satisfies bilocal discrim-
inability but not local discriminability, namely, that BCT
satisfies strict bilocal discriminability, via Theorem 2. On the
one hand, the composition rule (36) on the dimensions clearly
violates Eq. (18). On the other hand, it is straightforward
to verify, by direct inspection, that the rule (36) satisfies
Eq. (23). �

As it has been already recalled, any OPT without local
discriminability necessarily has entangled states [8]. Indeed,
all the pure states of a composite system in our theory are
entangled.

2. Conditioning of entangled states and effects,
classification of the effects of the theory

For given systems A, B ∈ Sys(BCT), we did not postulate
the action of the local effects of A on the bipartite entangled
states of AB. The reason is that this action is not independent
from Postulates 1 and 2, and can be actually derived from
them. This is done by using two facts following from the def-
inition of a classical theory (see Definition 2): (i) uniqueness
of the decomposition of states into pure states in a simplicial
theory, and (ii) the joint perfect discriminability of the pure
states (see Property 5). Furthermore, using the fact that states
are separating for effects, we can also derive the action of the
local states of A on the bipartite entangled effects of AB.
Let (i′|A ∈ Eff(A), ((i′ j′)s′ |AB ∈ Eff(AB) denote the effects
such that, for any |i)A ∈ PurSt(A), |(i j)s)AB ∈ PurSt(AB),
one has

(i′|i)A = δi′i,

((i′ j′)s′ |(i j)s)AB = δi′iδ j′ jδs′s.

Their existence is guaranteed by Postulate 1 via Property 5.
Then, for all systems A, B ∈ Sys(BCT) and states |i)A ∈
PurSt(A), |(i j)s)AB ∈ PurSt(AB), the following holds for
every i′, j′, and s′:

(42)

(43)

A functional on the states of a classical system in CT is an
effect if and only if it is a conic combination of those func-
tionals, that perfectly discriminate pure states (see Property 5),
which maps states to (generally subnormalized) probability
distributions. As a consequence of Eq. (42), one can easily
verify that all the functionals that would correspond to effects
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of a classical system comply with the requirement of Postu-
late 6. It is also easy to verify that actually these are the only
effects of BCT. Thus, Postulates 1 and 6 are compatible.

3. Classification of transformations, operational realization
scheme for arbitrary instruments

We did not explicitly provide the class Instr(BCT). The
reason is that the class of BCT’s instruments can be actually
derived from the postulates of the theory. The following re-
sults, whose proof is given in Appendices A and B, classify
the transformations of the theory, and provide an operational
reversible dilation scheme for arbitrary instruments.

Proposition 3 (Transformations in BCT). Let I = A ∈
Sys(BCT) and B ∈ Sys(BCT). Then, the following holds.

(i) Atomic transformations. A ∈ TransfR(A→B) is an
atomic transformation if and only if A � IE is of the fol-
lowing form for every E ∈ Sys(BCT):

(44)

for some λ ∈ [0, 1], 1 � i0 � DA, 1 � l � DB, and τ = ±,
when B = I, and

(45)

for some λ ∈ [0, 1], 1 � i0 � DA when B = I.
(ii) Arbitrary transformations. Let T ∈ TransfR(A→B).

Then T ∈ Transf(A→B) if and only if, for every E ∈
Sys(BCT), T � IE is a conical combination of elements
A � IE of the form (44) when B = I, or of elements a � IE

of the form (45) when B = I, that maps St(AE) to St(BE).
(iii) Deterministic transformations. D ∈ Transf1(A→B)

if and only there exists a reversible dilation for D of the form
(40) with |)B′ ∈ St1(B′) and (H |A′ = (e|A′ .

First of all, by the classification given in Proposition 3, one
can now easily verify that Postulate 4 is compatible with Pos-
tulate 3. Indeed, if a transformation R is reversible (namely,
it is invertible and its inverse is itself a transformation), using
Eq. (A4) in Appendix A and remembering that a reversible
transformation is deterministic and preserves purity and atom-
icity (see Proposition 1), one can prove that R is of the
form (39). On the other hand, every reversible transformation
trivially admits a dilation of the form (40). Notice that, in the
light of Eqs. (44) and (45), the atomic transformations of BCT
retain atomicity under sequential composition, and that those
transformations which are not effects preserve entanglement
whenever their action is not vanishing. In a sense, they are
the bilocal-tomographic counterpart of those of CT, however,
they are not measure and prepare as in CT. We will see some
relevant consequences of this fact in Sec. VII.

The following result provides a classification of the instru-
ments of BCT.

Proposition 4 (Reversible dilation for the instruments in
BCT). For every A, B ∈ Sys(BCT) there exist some
systems A′, B′ ∈ Sys(BCT) and a reversible transformation
R̃A,B ∈ RevTransf(B′A→A′B) such that the following

holds. Let TA→B
X ⊂ TransfR(A→B). The following

conditions are equivalent:
(i) TA→B

X � IE→E
� maps preparation instruments of AE to

preparation instruments of BE for all E ∈ Sys(BCT).
(ii) TA→B

X ∈ Instr(A→B).
(iii) There exists a deterministic state |)B′ ∈ St1(B′) and

an observation instrument aA′→I
X , such that

(46)

Consider Eq. (46): |)B′ ∈ St1(B′) and R is deterministic
by Proposition 1. Accordingly, every instrument of BCT can
be realized by a channel followed by an observation instru-
ment. Notice that a reversible dilation scheme similar to (46)
holds in CT and QT as well. However, differently from the
case of CT and BCT, in QT the system sizes of the ancillae
B′ and A′ depend not only on the input and output systems A
and B, but also on the instrument TX itself.

As a first corollary of Proposition (4), BCT satisfies the
following general property for a probabilistic theory.

Property 7 (Unrestricted class of instruments). Let � be
an OPT. For all systems A, B ∈ Sys(�), the class Instr(�)
includes a collection TA→B

X ⊂ Transf(�) of transformations if
and only if TA→B

X � IE→E
� maps preparation instruments of AE

to preparation instruments of BE for all E ∈ Sys(�).

4. No-restriction hypothesis, causality,
and conditional instruments

Both Postulate 6 and Property 7 have a different content
from the (possible formulations of the) no-restriction hypothe-
sis (see Property 2 and what follows). However, an immediate
consequence of Proposition 4, in particular, by implication
(i) ⇒ (ii), is that BCT satisfies also the no-restriction hy-
pothesis (see Property 2). In fact, Property 7 follows from
Property 2.

Moreover, as we already mentioned (see Sec. IV C), in
Ref. [8] it is proven that every simplicial theory is causal
(see Property 3). It follows that BCT is also causal. From
now on, we will denote the unique deterministic effect of any
system A ∈ Sys(BCT) by (e|A ≡ ∑DA

i=1(i|A, where {(i|A}DA
i=1

is an observation instrument jointly perfectly discriminating
the pure states of A. Furthermore, BCT is a convex theory by
Postulate 1. Accordingly, St1(A) coincides with the convex
hull of PurSt(A) for every system A ∈ Sys(BCT), namely,
every mixture of pure states can be deterministically pre-
pared in the theory. More importantly, by Theorem 3 (see
Appendix C), every causal theory satisfying Postulate 6 and
Property 7 contains all conditional instruments (see Property
4). Thus, BCT also enjoys this important property.

C. Consistency check

In order to check the consistency of the theory, we
follow the procedure established in Sec. V A. We remind
that, by Remark 1, all the consistency equations must be
verified extending both sides of every equation with the
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identity transformation of an arbitrary system, namely, Eq. (9)
holds.

By Eq. (38), the associator of the theory is invertible. We
now verify the pentagon identity (26) for state composition
via consecutive applications of Eq. (38) on the pure states of
a pentapartite system. On the one hand, one has

(((
(i j)s1 k

)
s2

l
)

s3
m

)
s4

= ((
(i j)s1 (kl )s2s3

)
s2

m
)

s4

= ((
i
(

j(kl )s2s3

)
s1s2

)
s1

m
)

s4
.

On the other hand, one also has
(((

(i j)s1 k
)

s2
l
)

s3
m

)
s4

= (((
i( jk)s1s2

)
s1

l
)

s3
m

)
s4

= ((
i
(
( jk)s1s2 l

)
s1s3

)
s1

m
)

s4

= ((
i
(

j(kl )s2s3

)
s1s2

)
s1

m
)

s4
.

In the case of states and effects, Eq. (33) can be verified using
Eqs. (42) and (43). In the case of arbitrary transformations,
Eq. (33) can be easily verified just for the atomic transfor-
mations (44), and then extended by linearity in the light of
Proposition 3. The family of transformations S defined in
Eq. (41) is manifestly invertible. Moreover, since the theory is
symmetric, Eq. (34) is equivalent to Eq. (31), and then it does
not need to be checked. Finally, for the same reason, one can
verify just one of the hexagon identities, e.g., Eq. (27). This is
simply done by an iterative application of the associator (38)
and of the braiding (41) on the tetrapartite pure states of the
theory.

By Postulates 1 and 6, and by implications (ii) ⇔ (iii) and
(ii) ⇒ (i) in Proposition 4, the following final requirements
hold: (i) states separate effects and vice versa, (ii) the instru-
ments PX ∈ Instr(I→ I) are probability distributions, (iii) the
null transformation εA→B is included in Transf(A→B) for
every A, B, (iv) the coarse-graining operation is well posed,
and (v) every instrument TA→B

X � IE→E
� maps preparation in-

struments of AE to preparation instruments of BE for every
system A, B, E.

Accordingly, the postulates of the theory, along with the
classification of the atomic transformations, lead to a straight-
forward check of its consistency.

VII. FEATURES OF THE THEORY

A. Entanglement is independent of complementarity

As a consequence of Proposition 3 and Property 7, BCT
satisfies the full information without disturbance principle
(FIWD) [29], i.e., every test can be simulated via a nondisturb-
ing test. This happens in spite of the presence of entanglement.
In a theory with FIWD the identity transformation cannot be
atomic [29]. Moreover, a theory satisfies FIWD only if the
pure states of every system are jointly perfectly discriminable
(see Property 5) [29]. Accordingly, BCT does not admit the
existence of incompatible observables or, in other words,
the theory does not satisfy the principle of complementar-
ity. As a first consequence, in BCT it is clearly impossible
to violate Bell’s inequalities. However, the theory admits of
entangled states: every pure state of a composite system is
in fact entangled. The above two features allow one to show
that complementarity and entanglement are two independent

properties. On the one hand, BCT provides the explicit exam-
ple of a theory without complementarity, but endowed with
entangled states. Conversely, take a modified version of QT
whose parallel composition is given by the minimal tensor
product on both states and effects, i.e., the theory where every
system is quantum, except that the set of states for every
composite system is the convex hull of the product states
only. The latter is an example of a theory with complemen-
tarity but without entanglement (indeed, complementarity is a
single-system property). This shows that complementarity and
entanglement are in fact two independent properties in a prob-
abilistic theory. Furthermore, the existence of a unique joint
probability distribution for the outcomes of every possible set
of measurements implies that BCT is also noncontextual.5

It is indeed already known that noncontextuality, being a
single-system property, is decoupled from entanglement. On
the one hand, Spekkens toy model [31] is noncontextual, but
has entanglement. On the other hand, the above-mentioned
version of QT with minimal tensor product is contextual, but
has no entanglement. However, we remind that Spekkens toy
model is not a simplicial theory.

B. Violation of purity of state composition and of purification,
absence of superpositions

In Ref. [8] it is proven that, if a simplicial theory vio-
lates local discriminability but n-local discriminability holds
for some n, then the theory violates atomicity of parallel
composition of states, as well. In BCT, this fact is manifest
from the state-composition rule (37), where one sees that the
parallel composition of any pair of pure states is not pure,
namely, also the principle of purity of parallel composition
of states is violated. Notice that the principle called purity
preservation in Ref. [23] coincides in fact with atomicity
of both parallel and sequential composition (see Remark 3).
Moreover, state-composition rule (37) is clearly a particular
instance of the classification of composite states for simplicial
theories with n-local discriminability provided in Ref. [8]. The
atomic transformations of BCT (see Proposition 3) are the
bilocal-tomographic counterpart of the ones of CT. However,
resorting to Proposition 3, in particular using expression (44),
one can easily verify that atomicity of parallel composition
in BCT is not even satisfied for arbitrary transformations.
Interestingly, using again Proposition 3, it is also easy to
verify that, differently for the case of states, purity of parallel
composition of channels is satisfied. Finally, Proposition 3
guarantees that in BCT atomicity and purity are both pre-
served under sequential composition.

Moreover, in BCT no mixed state has a purification, and
superpositions of states (in an operational sense) are not

5For the definition of a generalized noncontextual ontological
model, see Ref. [9]. Therein, the existence of such a model, using
a frame representation which is not overcomplete [30], is proved,
under the hypotheses of convexity, causality, and local discriminabil-
ity, to be equivalent to a property called simplex-embeddability, and
to the existence of a non-negative quasiprobabilistic model. In fact,
the authors also exhibit a counterexample showing that in general (in
particular, without local discriminability) the result does not hold.
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admitted. The latter features are a consequence of the no-go
results proven in Ref. [8] for general simplicial theories.6

Interestingly, this means that entanglement implies neither
the purification nor the superposition principles (nor weaker
formulations of these, holding just for a finite number of
states). However, BCT satisfies the (essential) uniqueness of
purification principle [22].

Property 8 (Essential uniqueness of purification). Let � be
an OPT, and A, B ∈ Sys(�). If there exist |1)AB, |2)AB ∈
PurSt(AB) and (ẽ1|B, (ẽ2|B ∈ Eff1(B) such that

then there exists R ∈ RevTransf(B→B) such that

In other words, if there exists a purification |)AB of some
given deterministic state, then such |)AB is essentially unique
in AB, namely, unique up to reversible local transformations
of B. Notice that Property 8, choosing A = I, implies transi-
tivity of reversible channels on pure states. We observe that
Property 8 is independent of the purification principle since,
e.g., given any OPT, one can always restrict the class of trans-
formations to the identity I and the braiding S families in
a consistent way, ending up with a mere prepare-and-measure
scenario possibly satisfying purification, but not Property 8.

C. Dense coding and additivity of classical capacities

An important communication task that can be performed
in BCT is the dense coding [33,34]. In quantum dense coding,
Alice and Bob share a maximally entangled state. Bob detains
his qubit and Alice, after performing on her qubit some local
operations in order to encode a two-bit message, sends her
local qubit to Bob. The decoding part is then performed by
Bob performing a joint measurement in a suitable basis. Via
this protocol, Bob manages to decode the message and gains
two classical bits of information receiving just one qubit,
whose classical capacity, according to Holevo’s bound, is one
bit. The protocol in BCT retraces the quantum one in the
following way. Alice and Bob share a known entangled state,
say |(0b)−)AB, where DA = DB = 2 and b is an arbitrary local
state of the bibit detained by Bob. Now, Alice can encode
her two-bit message. She performs the following encoding
via entanglement-preserving local operations [recall the re-
versible transformations in Eq. (39)]:

00 �→ |(0b)−)AB, 01 �→ |(0b)+)AB,

10 �→ |(1b)−)AB, 11 �→ |(1b)+)AB.

6However, notice that, in principle, the existence of simplicial
theories where at least some mixed states can be purified [32], or
satisfying an operational formulation of the superposition principle
given in Ref. [8], cannot be excluded.

Then, Alice sends her local bibit to Bob, who can measure the
global state, and thus directly decode Alice’s message. Notice
that, as far as the success of the protocol is concerned, the
specific value b of Bob’s local state is not relevant. In our
BCT dense coding protocol, Alice and Bob share an entan-
gled state, but differently from the quantum case, their local
marginal states are always pure. Then, the two-bit message is
encoded by Alice into her local bit and into the global degree
of freedom (the sign). In this way, by sending one bibit, Alice
is able to communicate two bits of information to Bob. We
now have a look at the case when dense coding is realized
optimally, i.e., with minimal resources. In QT, when log2 M
qubits, with M = d , are sent from Alice to Bob, a bipartite
system with local dimensions DA = DB = d2 is optimal, and
the latter case is called tight [34].

In BCT, regardless of Bob’s local system’s size, the max-
imum attainable number of distinguished signals is always
given by M = 22n−1, where n is the number of bibits that
Alice sends to Bob. Accordingly, by receiving n elementary
information carriers, Bob is able to distinguish 2n bits, both
in the QT and in the BCT protocol. This means that BCT
achieves the same performances as QT in dense coding. We
remark that, apparently, BCT seems to exhibit superadditivity
of classical capacities since a bipartite system consisting of
two bibits, each of which, alone, carries at most one bit, is
able to carry three bits. However, if one sticks to the asymp-
totic definition of classical capacity, every bibit has classical
capacity of 2 bits. Indeed, the bits carried by a system of n
bibits are 2n − 1, and thus the asymptotic capacity is 2 bits
per bibit. Moreover, the same analysis reveals that classical
capacity of BCT systems is additive.

The above analysis shows that BCT does not exhibit hy-
perdense coding, i.e., a coding protocol able to overcome the
dense coding limit given by QT. Indeed, the possibility of
performing a hyperdense coding would imply superadditive
classical capacities [35].

D. Violation of entanglement monogamy and of the
no-hypersignaling principle

A quite peculiar feature is that entanglement, in BCT, is not
monogamous, namely, BCT violates monogamy of entangle-
ment. This means that there exist (maximally entangled) states
|)ABC such that the marginal states (e|B|)ABC, (e|C|)ABC

are both maximally entangled. Equivalently, a system can be
entangled with more than one other system at the same time.
On the contrary, in QT entanglement is monogamous. A vio-
lation of entanglement monogamy is known to hold in other
theories, such as real quantum theory and fermionic quantum
theory [36]. However, in the latter cases those states which
violate entanglement monogamy are mixed, while in BCT the
violation holds for every m-partite pure state with m � 3.

In Ref. [10], the no-hypersignaling principle in probabilis-
tic theories is introduced and analyzed. Roughly speaking, the
principle states that any input-output correlation which can be
obtained by transmitting a composite system should also be
obtainable by independently transmitting its constituents. For
instance, hypersignaling is exhibited if a probabilistic theory,
while not contradicting CT and QT at the level of spacelike
correlations, displays an anomalous behavior in its timelike
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correlations. Both CT and QT satisfy the no-hypersignaling
principle. In the case of simplicial theories, a theory � is
hypersignaling if and only if there exist A, B ∈ Sys(�) such
that DAB > DADB (the technical definition of hypersignaling
can be found in Ref. [10]). Namely, a simplicial theory is
hypersignaling if and only if it has entanglement. BCT, to
the best of our knowledge, is the first example of a complete
hypersignaling theory (Ref. [10] analyzes the correlations of a
model consisting of a two-system scenario). Differently from
the model presented in Ref. [10], in BCT the existence of
anomalous behaviors in timelike correlations requires the ac-
tion of bipartite effects on entangled states. We notice that the
no-hypersignaling principle is neither sufficient nor necessary
for local discriminability [10].

E. Entanglement swapping, cloning and teleportation,
and non-null discord states

In BCT it is possible to perform entanglement swap-
ping [37], namely, the task of transferring entanglement to
two remote systems, which are initially uncorrelated, without
interaction. It is easy to see how this can be done using
Eqs. (31), (37), and (42). Let us pick an arbitrary pure en-
tangled state |(i j)s)AB. We want to transfer the entanglement
from system B to a remote, uncorrelated system D. Now, fix a
chosen pure entangled state |(kl )t )CD shared by system D and
an ancillary system C, and perform the following instrument:

(47)

where the possible outcomes of the instrument are j, k with
probability 1, and r = +,−, each with probability 1

2 . As
a result, system A and system D become entangled. This
entanglement swapping protocol in BCT clearly retraces the
quantum one.

Despite the existence of an entanglement-swapping pro-
tocol, the analysis of the teleportation scenario arising from
it would make poor sense. Indeed, by the FIWD principle
and Property 4 it is possible to arbitrarily clone every un-
known state, namely, teleportation can be reduced to making
a copy of a state and sending it to the receiver (e.g., using
a measure-and-prepare channel). For an in-depth discussion
about the dependence of teleportation on other properties
(such as nonlocality) of a probabilistic theory, we refer the
reader to Refs. [38,39].

Finally, the mere existence of entangled states in BCT
implies that the theory contains states having non-null discord
[40] (in an operational sense). However, one may be wonder-
ing whether BCT has also some non-null discord separable
states. This is actually not the case, due to the FIWD principle
and to the absence of delocalized information in any separable
state.

F. Programming and information-theoretically
insecure cryptography

In CT it is possible to perform the task of programming
any desired channel from a system to any another, due to
the existence of a universal processor. More precisely, CT
satisfies the following property.

Property 9 (Programming). Let � be an OPT. For every
pair of systems A, B ∈ Sys(�), there exist a system P and
a channel PA,B ∈ Transf1(PA→PB) such that the following
holds. For every target channel C ∈ Transf1(A→B), there
exists a program state |σ )P ∈ St1(P) such that

(48)

As a straightforward corollary of Proposition 4, in par-
ticular, see the dilation scheme (46) in 4, in BCT the task
of programming is possible as well. In QT, despite the no-
programming theorem, the task of probabilistic programming
is possible, where the error probability can be made arbitrarily
small, provided that DP [see Eq. (48)] becomes arbitrarily
large [41–43].

Finally, one may be wondering whether entanglement
in BCT grants information-theoretical security, in a crypto-
graphic scenario, against the attacks of malicious adversaries.
For instance, one can think of the possibility to implement
protocols such as secure key generation or distribution. It is
easy to see why this is not the case. Despite the existence
of entangled states with global information, which remains
inaccessible unless all the parties collaborate, such protocols
in BCT are intrinsically not secure due to the FIWD principle.

VIII. DISCUSSION

Table I provides a survey of the operational features of
BCT, along with a list of tasks which can and cannot be
performed in the theory.

We adopted the notion of classicality defined from the
perspective of states: a theory is classical if and only if the
sets of states for every system are those of the systems of CT,
namely, simplicial sets with jointly perfectly discriminable
pure states. However, the theory presented also abides by
the notion of classicality proposed in Ref. [9], admitting of
a noncontextual ontological model. In a recent work [44], it
is proved the nontrivial result that, under the hypothesis of
local tomography, given two sets of states St(A) and St(B),
the composite space St(AB) can admit of entangled states if
and only if neither St(A) nor St(B) is a simplex. On the other
hand, a theory without local tomography necessarily features
entangled states [8]. BCT provides the concrete example that
indeed two classical systems can give rise to entangled states
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TABLE I. Survey of the operational properties of BCT.

BCT features
√

BCT does not feature ✗

Causality Local tomography
Atomicity and purity of sequential composition Atomicity of parallel composition
Purity of parallel composition for channels Purity of parallel composition for states
Essential uniqueness of purification Purification
Bilocal tomography Complementarity
Noncontextuality Monogamy of entanglement
Full information without disturbance No hypersignaling
Non-null discord states Secure key generation and distribution
Dense coding Hyperdense coding
Entanglement swapping and teleportation Superpositions
Universal programmability No cloning
Transitivity of local reversible channels Superadditive classical capacity
Joint perfect discriminability of pure states
No-restriction hypothesis
Strong self-duality
Pure conditionalization

(at the expense of local tomography). In principle, it is not
obvious that this could be done in a consistent way. Our
result shows that entanglement and incompatibility of mea-
surements (complementarity) are two independent properties
in a theory. Interestingly, BCT thus also shows that a violation
of local discriminability does not necessarily imply nonlo-
cality in a Bell-type scenario, namely, stronger-than-classical
spacelike correlations. As we will discuss in Sec. IX, however,
it is not clear at the moment whether BCT is local, i.e., admits
of a local ontological model.

We have seen that in BCT entanglement is not monog-
amous. The same happens in other nonlocal-tomographic
theories, such as real quantum theory and fermionic quantum
theory [36,45]. One may conjecture this property to be a
consequence of the violation of local tomography. Another
common trait shared by BCT and fermionic quantum theory is
the possibility of activating local discrimination of states with
entangled ancillary systems [36,46], as can be easily derived
from Eq. (47).

From an axiomatic viewpoint, the existence of BCT al-
lows one to draw some interesting consequences. One can
verify that atomicity of parallel composition, being violated
by BCT, is independent from causality, ideal compression,
perfect discriminability, and bilocal discriminability [22]. The
same holds for purity of parallel composition of states since
its violation, in this case, is equivalent to the violation of
atomicity of state composition. Remarkably, purity of parallel
composition is satisfied for channels and effects (i.e., exclud-
ing states), while atomicity of parallel composition is violated
for any kind of transformation. This fact provides a concrete
example motivating the distinction between the two notions
of purity and atomicity (see Remark 3). In passing, we notice
that the principle of pure conditionalization [47] is satisfied
by BCT. As a consequence, pure conditionalization implies
neither atomicity nor purity of parallel state composition.
Moreover, atomicity (or purity) of parallel state composition
is neither necessary nor sufficient for the FIWD principle.
BCT also shows that the presence of entanglement is com-
patible with the absence of purification for any mixed state,
or of any kind of superposition [8]. Finally, BCT shows that

the presence of entanglement is compatible with the FIWD
principle, namely, entanglement does not imply information-
theoretically secure key generation or distribution.

Interestingly, looking at BCT as a process theory [17],
one realizes that the proposed process-theoretic definition of
purity [48,49] would imply that the theory has no pure state.
One may then argue that the above definition is not tenable as
a notion of purity in a probabilistic scope, at least when purity
of state composition is violated.

One may be wondering whether, in principle, BCT is the
only classical theory satisfying strict bilocal tomography. In
Appendix D (Theorem 4 and Corollary 3), we prove that, for
any simplicial theory, rules (36) and (37) come as a conse-
quence of the following assumptions: (a) homogeneous strict
bilocal tomography: the theory is strictly bilocal tomographic,
with no composite system being local tomographic; (b) es-
sential uniqueness of purification (Property 8). In particular,
assumption (a) alone is not sufficient to select rule (36) since,
as a counterexample, one can verify (using Theorem 2) that
also the rule

DAB = DADB + (DA − 1)(DB − 1)

satisfies (a), being also associative. How the reversible dynam-
ics [assumption (b), see Property 8] affects probabilities in
a theory has been recently explored in Ref. [50]. However,
there is strong evidence that assumptions (a) and (b) may
be not sufficient to single out BCT among classical theories.
Indeed, the reversible transformations admitted by the simpli-
cial structure are not in principle exhausted by those defined
in Postulate 3, and one can actually define disjoint families
of transformations which both are reversible and obey to
Eq. (33). On the other hand, coherence (see Sec. V A) is also
key to single out BCT. For instance, it is easy to verify that
some choices of the associator (see Postulate 2), despite being
invertible, lead to violations of the pentagon identity. As for
the choices of the associator α and the braiding S , modifying
Postulate 3 would lead in principle to conceivable choices
differing from (38) and (41). Nevertheless, Postulate 3, along
with assumptions (a) and (b), would single out precisely those
α and S postulated for BCT.
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Finally, as well as CT and QT, also BCT satisfies both
the no-restriction hypothesis (see Property 2) and strong
self-duality [28]. Notice that BCT also satisfies the usual
formulation of the no-restriction hypothesis, the one which
is valid in a context where local tomography holds (see
Sec. IV B), namely, “all the positive functionals on states are
effects.”

IX. CONCLUSIONS AND OUTLOOK

We conclude this work drawing some final remarks and
pointing out some open problems.

In Sec. III we provided a broad-scope presentation of the
operational probabilistic framework. In Sec. IV A we proved
Theorem 1, providing a characterization of the composition
rules for system sizes in arbitrary theories, and then we spe-
cialized it to strictly bilocal-tomographic theories, proving
Theorem 2. In Sec. V, we set the problem of the consistency of
an operational probabilistic theory, identifying a set of suffi-
cient conditions to construct a theory, and to verify its well
posedness and coherence. Finally, we have presented BCT,
a classical theory featuring entanglement and complete with
a nontrivial set of transformations, providing an extensive
characterization of it.

BCT violates the principle of local tomography. However,
the degree of holism required by the theory in the task of
state tomography is still limited, due to the property of (strict)
bilocal tomography. What is more, notice that in BCT, in order
to perform process tomography of any T ∈ Transf(A→B)
(Proposition 3), one just needs a limited set of bipartite
pure states, namely, a set {|ρi )AE}DA

i=1 ⊂ PurSt(AE) such that
the set of reduced states {(e|E|ρi )AE}DA

i=1 = PurSt(A), while
the ancilla E = I and all reduced states {(e|A|ρi )AE}DA

i=1 can
be arbitrarily chosen. One may still argue that the principle of
n-local discriminability (Property 1) does not sufficiently bind
the degree of holism of a physical theory. Nevertheless, there
are examples of theories which, while violating local discrim-
inability, have a strong physical motivation, such as fermionic
quantum theory. In addition, generic nonlocal-tomographic
theories provide a sandbox to investigate the logical interde-
pendence of physical properties, which is a key aspect in view
of formulating new physical theories.

Indeed, BCT provides two important proofs of concept.
First, entanglement and complementarity are decoupled, i.e.,
they are independent properties of a physical theory. Second,
the set of states, or of correlations, is not sufficient to deter-
mine the full theory. This is by the way close to the spirit
of the no-hypersignaling principle [10]. Interestingly, since
BCT enjoys the same sets of states of CT, it looks like it
cannot violate any device-independent principle [51,52]. This
leads to the following question: Is it even logically possible to
formulate device-independent principles ruling out BCT, but
not CT?

As the correlations attainable by a physical theory do not
determine the theory itself, and, in fact, may even give rise
to quite different theories, one may be questioning what does
it mean to be classical or, more specifically along the lines
of Ref. [9], what does it mean to be classically explainable.
As we extensively discussed in Sec. VIII, we left the prob-
lem of an information-theoretic axiomatization of BCT open.

Such an axiomatization may shed some light on a meaningful
notion of classicality even in a context allowing for nonlocal
tomography. For instance, both real and fermionic quantum
theory are superselected versions of QT: Might it be the case
that BCT arises as the superselection of CT? We conjecture
that this is not the case, as we argue in the following.

By direct inspection of the state-composition rule in BCT
[Postulate 2, Eq. (37)], one sees that every product of pure
states is the flat statistical mixture of two entangled states
carrying a “delocalized” variable, i.e., the sign s in Eq. (37).
One is tempted to assign an element of reality to the global
degree of freedom s. However, is this intuition correct? In fact,
there are two ontologically distinct, although operationally
equivalent, preparation procedures for the parallel composi-
tion of preparation tests in BCT: one is to generate the mixture
using classical randomness for the composite system; the
other one is to simply prepare two local pure states in parallel.
Therefore, is it meaningful to say that an entangled classical
measurement on a product state reveals a preexisting value
s in both cases? This would amount to say that the product
state was entangled in the first place. Surprisingly, such a
paradox is reminiscent of the question whether measurements
reveal a predefined value, albeit in a measurement context
which is, in all respects, classical. Being the value measurable
without disturbance, the issue seems to be irrelevant: there is
no contradiction in thinking of s as an “element of reality” in
the sense of EPR. However, this position opens a deeper ques-
tion: Can the global degree of freedom s be interpreted as a
function of suitably defined local (possibly hidden) variables?
We have evidence that the primary difficulty in devising such
a model is having hidden variables of finite sizes, i.e., hidden
variables which can be stored in a limited memory. This would
mean to require that each system cannot retain the values of
global data for all the possible choices of remote systems
and experiments considered. In Ref. [53], a similar situation
was investigated as far as QT is concerned. However, in that
case, the hidden register would store the values of the intrinsic
properties for all possible sequences of measurements that
the observer can perform. The motivation to demand such
a property is that abandoning it would allow for some form
of superdeterminism, where, e.g., all that (infinite amount of)
information, which is relevant to predict the outcomes of any
experiment, is possibly stored in each system. Nevertheless,
such a requirement seemingly clashes with the action of the
associator and braiding of the theory. Might it be that BCT
does not admit of a local-realistic hidden variable model, in
spite of having classical correlations?7

Finally, this study provides an adequate toolbox for
the comprehensive construction of complete and consistent
physical theories. In particular, Sec. V sets an exploitable
constructive procedure which can be used in a generic context,
while in Sec. VI we provided an explicit concrete application
of the latter. This paves the way for a direct employment of

7On top of this, at this stage it is not clear whether a (noncon-
textual) ontological model for BCT may possibly satisfy diagram
preservation, namely, the property of preserving the compositional
structure of the OPT, or whether it may preserve the linear (convex
and coarse-graining) relations of the OPT [9].
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the developed techniques in enhancing the investigations on
post-quantum theories.
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APPENDIX A: CLASSIFICATION OF BCT’S
TRANSFORMATIONS (PROOF OF PROPOSITION 3)

In this Appendix, in order to make sense of expressions of
the form |(l1l2)u)S1S2 with S1 = I or S2 = I, these can be safely
replaced by the expressions |(∗l2)+)S2 or |(l1∗)+)S1 , respec-
tively. Moreover, we will extensively exploit the classification
of BCT’s effects given in Sec. VI B.

Lemma 1. Let I = A ∈ Sys(BCT), B ∈ Sys(BCT), and
T ∈ Transf(A→B) be defined as

(A1)

with |k)B′ ∈ PurSt(B′), (k̃|A′ ∈ Eff(A′) such that
(k′|k̃)A′ = δk′ k̃ for any |k′)A′ ∈ PurSt(A′), and R ∈
RevTransf(B′A→A′B) such that for all E ∈ Sys(BCT):

(A2)

[In Eq. (A2), there is no dependence on k and s1 in the case
B′ = I, while in the case A′ = I or B = I we just set rki

s1
= +

for all k, i, s1]. Then, for all |(i j)s)AE ∈ St(AE), the following
holds:

(A3)

Proof. By direct computation, using Postulate 2 and for-
mula (42), one has

�
From Postulate 4 and Eqs. (A1), (A2), and (A3), posing

|)B′ := ∑DB′
k=1 αk|k)B′ , (H |A′ := ∑DA′

k̃=1
βk̃ (k̃|A′ , where for all

k, k̃ one has 0 � αk, βk̃ � 1 such that
∑DB′

k=1 αk ∈ [0, 1] and∑DA′
k̃=1

βk̃ ∈ [0, DA′ ], the action of an arbitrary transformation
T ∈ Transf(A→B) with A = I has the following form:

(A4)

Let I = A ∈ Sys(BCT), B ∈ Sys(BCT), and A be a map
defined by the following action:

(A5)

for some λ ∈ [0, 1], 1 � i0 � DA, 1 � l � DB, and τ = ±.
Notice that such functions A map states to states.

Lemma 2 (Characterization of transformations). Let I =
A ∈ Sys(BCT), B ∈ Sys(BCT), and A be a map defined
as in Eq. (A5). Then, every T ∈ Transf(A→B) is a conical
combination of elements of the form (A5).

Proof. Let I = A ∈ Sys(BCT) and B ∈ Sys(BCT). On
the one hand, we know that the action of an arbitrary
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transformation T ∈ Transf(A→B) has the form (A4). On
the other hand, the action on PurSt(AE) of an arbitrary con-
ical combination of generalized transformations of the form
(A5) is given by

(A6)

where the λ(i)
m,τ are non-negative real numbers such that∑

m,τ λ(i)
m,τ ∈ [0, 1]. Now, for every 1 � i � DA let us define

a set Im,τ (i) such that (k, s′) ∈ Im,τ (i) if and only if ιki
s′ = m

and rki
s′ t ki

s′ s′ = τ .
For all i, m, τ one can pose

λ(i)
m,τ := 1

2

∑
(k,s′ )∈Im,τ (i)

αkβκki
s′
.

Clearly, if Im,τ (i) = ∅ one has λ(i)
m,τ = 0. This proves that

Eq. (A4) can be rewritten in form (A6), namely, every T ∈
Transf(A→B) is a conical combination of elements of the
form (A5). �

Let I = A ∈ Sys(BCT) and B ∈ Sys(BCT), h be any
chosen function from DA elements to DB elements, and ξ

any chosen function from DA to {+,−} (ξ is set to be
identically + if B = I). Moreover, let B′′ ∈ Sys(BCT) such
that DB′′ = 2DDA

B and B′ := B′′B, A′ := B′′A. Define R̃A,B ∈
RevTransf(B′A→A′B) in the following way:

(A7)

where ⊕ denotes the sum modulo DB. The states σh,τ in
Eq. (A7) implement every possible pair of functions (h, ξ ).
It is easy to realize that the transformation R̃A,B complies
indeed with Postulate 3. In the remainder of this Appendix
and in Appendix B, we will use R̃A,B as a universal processor
for BCT’s transformations.

Lemma 3 (Realization of deterministic transformations).
Let I = A ∈ Sys(BCT), B ∈ Sys(BCT), and D ∈
TransfR(A→B). Then, the following are equivalent:

(A) For every i ∈ {1, 2, . . . , DA} there exists a probability
distribution {λ(i)

m,τ }(m,τ )∈I , with I = {1, 2, . . . , DB} × {+,−},

such that the following holds for all |(i j)s)AE ∈ PurSt(AE):

(A8)

(B) D ∈ Transf1(A→B).
(C) There exists |)B′ ∈ St1(B′) such that the following

holds:

(A9)

Proof. (C) ⇒ (B) ⇒ (A). The chain of implications holds
by definition and by the characterization of deterministic
transformations given in Sec. III B.

(A) ⇒ (C). Suppose that Eq. (A8) holds. We provide be-
low an explicit construction of a family of states |)B′ ∈
St1(B′) such that Eq. (A9) holds. First, let |)B′ ∈ St1(B′) be
of the form

∑
(h,ξ )∈J μh,ξ |σh,ξ )B′′ |0)B. We provide a step-by-

step construction for suitable families of sets J, {μh,ξ }(h,ξ )∈J

such that Eq. (A9) reads as Eq. (A8). Start by taking the min-
imum nonvanishing value λ0 := λ(i0 )

m0,τ0
over all the probability

distributions {λ(i)
m,τ }(m,τ )∈I for i ∈ {1, 2, . . . , DA}. In the case

where the minimum is not unique, just arbitrarily pick one
of them. Define h0, ξ0 as those (families of) functions such
that h0(i0) = m0, ξ0(i0) = τ0 and h0(i) = m(i)

0 , ξ0(i) = τ
(i)
0 ,

where m(i)
0 , τ

(i)
0 are any chosen values such that λ

(i)
m(i)

0 ,τ
(i)
0

is

nonvanishing for every i. In the collections {λ(i)
m,τ }(m,τ )∈I for

i ∈ {1, 2, . . . , DA}, reset the values of those coefficients λ
(i)
m̃,τ̃ ,

where (m̃, τ̃ ) are in the image of (h0, ξ0), in the following way:
λ

(i)
m̃,τ̃ �→ λ

(i)
m̃,τ̃ − λ0. By construction, this operation does not

produce any negative value. Finally, set μh0,ξ0
:= λ0. Iterate

the previous zeroth step. One realizes that the iteration of the
above procedure has a finite number of steps, say N + 1, and
eventually produces some families of sets {(hn, ξn)}N

n=0 and
{μhn,ξn}N

n=0. Choose now one arbitrary set {(h∗
n, ξ

∗
n )}N

n=0 and
pose J = {(h∗

n, ξ
∗
n )}N

n=0. Using Eq. (A4) one verifies that, by
construction, Eq. (A9) reads as Eq. (A8), namely, (A) ⇒ (C)
holds. �

Corollary 1 (Deterministic transformations). Let D ∈
Transf(A→B). Then D ∈ Transf1(A→B) if and only if it
admits of a reversible dilation for D of the form (40) with
|)B′ ∈ St1(B′) and (H |A′ = (e|A′ .

Lemma 4 (Realization of arbitrary transformations).
Let I = A ∈ Sys(BCT), B ∈ Sys(BCT), and T ∈
TransfR(A→B) Then, the following are equivalent:

(a) For every i ∈ {1, 2, . . . , DA} there exists a set
{γ (i)

m,τ }(m,τ )∈I (i) , with I (i) ⊆ {1, 2, . . . , DB} × {+,−}, γ (i)
m,τ > 0

for all (m, τ ) ∈ I (i), and
∑

(m′,τ ′ )∈I (i) γ
(i)

m′,τ ′ � 1, such the fol-
lowing holds that for all |(i j)s)AE ∈ PurSt(AE):

(A10)

(b) T ∈ Transf(A→B).
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(c) There exists a deterministic state |)B′ ∈ St1(B′) such
that, for every |(i j)s)AE ∈ PurSt(AE), T � IE|(i j)s)AE is
in the refinement set of some D � IE|(i j)s)AE, for D ∈
Transf1(A→B) dilated as in Eq. (A9), and an effect (a|A′ ∈
Eff(A′), such that the following holds:

(A11)

Proof. (c) ⇒ (b) ⇒ (a). The chain of implications holds
by Postulate 4 and Lemma 2.

(a) ⇒ (c). For every map T ∈ TransfR(A→A) defined
as in Eq. (A10), by Lemma 3 there exists a deterministic
transformation D ∈ Transf1(A→B) and a deterministic state
|)B′ such that T � IE|(i j)s)AE is in the refinement set of
D � IE|(i j)s)AE for every |(i j)s)AE ∈ PurSt(AE). It can be
verified by direct computation that such a |)B′ is of the form∑

(h,ξ )∈J μh,ξ |σh,ξ )B′′ |0)B, and this has been indeed shown in
the proof of Lemma 3. Now consider

(A12)

By construction and by direct inspection of expression (A12)
via Eq. (A7), for all i there exists a suitably chosen set
of coefficients {β (i)

h,ξ
}(h,ξ )∈J (i) , with J (i) ⊆ J , β

(i)
h,ξ

> 0, and∑
(h′,ξ ′ )∈J (i) β

(i)
h′,ξ ′ � 1, such that one attains for every ĩ

Define now (a|A′ := ∑DA
i=1

∑
h,ξ∈J (i) β

(i)
h,ξ

(σh,ξ |B′′ (i|A ∈
EffR(A′). Then, one obtains, for all |(i j)s)AE ∈ PurSt(AE),

Finally, by construction one observes that (a|A′ ∈ Eff(A′) (see
classification of BCT’s effects in Sec. VI B), i.e., Eq. (A11)
holds, and this concludes the proof. �

We stress that the statement of condition (c) requires a
unique deterministic state |)B′ for every transformation T
such that T � IE|(i j)s)AE refine D � IE|(i j)s)AE for a fixed
deterministic D ∈ Transf1(A→B). This is true, in particular,
if T refines D . The latter property will be crucially exploited
in the proof of Proposition 4 (see Appendix B).

Corollary 2. Let I = A ∈ Sys(BCT) and B ∈ Sys(BCT).
Then, every conical combination of elements of the form (A5)
that maps states to states is a transformation of BCT.

Proof. This is a straightforward consequence of the fact that
every conical combination of generalized transformations of
the form (A5) can be expressed as in Eq. (A10), combined
with implication (a) ⇒ (b) in Lemma 4. �

Lemma 2 and Corollary 2 provide a classification of BCT’s
transformations.

Lemma 5 (Atomic transformations). Let I =A∈Sys(BCT)
and B ∈ Sys(BCT). A map A ∈ TransfR(A→B) is an
atomic transformation if and only if A � IE is of the form
(A5) for every E ∈ Sys(BCT).

Proof. By Lemma 4, every map of the form (A5) is an
admissible transformation of the theory. First, we show that
every transformation of A ∈ Transf(A→B) such that A �
IE, for every E ∈ Sys(BCT), is of the form (A5), satisfies
the definition of atomicity [see Eq. (13)]. Indeed, we have
already proven that the action of an arbitrary transformation
T ∈ Transf(A→B) is given by Eq. (A4). Let us then pose

Now, since all the coefficients λ, αn
k , β

n
κki

n,s′
are non-negative, it

must be for all |(i j)s)AE ∈ PurSt(AE):

(An � IE)|(i j)s)AE =
{

0, i = i0
λn|(l j)τ s)BE , i = i0

for n = 1, 2 and non-negative coefficients λn such that λ1 +
λ2 = λ. It follows that A1 ∝ A2, namely, those transfor-
mations A ∈ Transf(A→B), such that A � IE for every
E ∈ Sys(BCT) is of the form (A5), are atomic. Con-
versely, let A � IE be a transformation from AE to BE.
By Lemma 2, we can write, without loss of generality,
A = ∑

n∈N An, where An � IE is of the form (A5) for
all E ∈ Sys(BCT), n ∈ N and An1 ∝ An2 for all n1 = n2.
Accordingly, by Lemma 4, for any ñ ∈ N both Añ � IE and
(A − Añ) � IE are transformations of BCT. Now, suppose
that A is atomic, namely, Añ ∝ (A − Añ). This implies that
A ∝ Añ, i.e., A � IE is of the form (A5). �

Proposition 3 follows combining Lemmas 2 and 5, and
Corollaries 1 and 2.
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APPENDIX B: OPERATIONAL REALIZATION SCHEME
FOR ARBITRARY INSTRUMENTS IN BCT

(PROOF OF PROPOSITION 4)

In this Appendix, in order to make sense of expressions
of the form |(l1l2)u)S1S2 with S1 = I or S2 = I, these can be
safely replaced by the expressions |(∗l2)+)S2 or |(l1∗)+)S1 ,
respectively.

Lemma 6. LetA, B∈Sys(BCT) and T ∈TransfR(A→B)
such that T � IE maps St(AE) to St(BE) for all E ∈
Sys(BCT). Then, T ∈ Transf(A→B).

Proof. Let T ∈ TransfR(A→C) be a generalized trans-
formation such that T � IE maps St(AE) to St(BE) for all
E ∈ Sys(BCT). By simpliciality, T may take the following
general form:

T � IB|(i j)s)AB =
∑
m,l,τ

λ
i, j,s
m,l,τ |(ml )τ s)CB, (B1)

with λ
i, j,s
m,l,τ > 0 for all i, j, s, m, l, τ and

∑
m,l,τ λ

i, j,s
m,l,τ � 1. Let

now ( j′|B ∈ Eff(B) be such that ( j′| j)B = δ j′ j for all | j)B ∈
PurSt(B).

Imposing Eq. (33), namely,

[IC � ( j′|B](T � IB) = (T � IB)[IA � ( j′|B],

and using Eqs. (42), one has for all i, j, j′, s

[IC � ( j′|B](T � IB)|(i j)s)AB

= [IC � ( j′|B]
∑
m,l,τ

λ
i, j,s
m,l,τ |(ml )τ s)CB =

∑
m,τ

λ
i, j,s
m, j′,τ |m)C

= (T � IB)[IA � ( j′|B]|(i j)s)AB = δ j′ jT |i)A.

The above equation implies that Eq. (B1) takes the form

T � IB|(i j)s)AB =
∑
m,τ

λi, j,s
m,τ |(m j)τ s)CB. (B2)

Accordingly, imposing now

(IC � R ′)(T � IB) = (T � IB)(IA � R ′)

for all R ′ ∈ RevTransf(B→B) (see Postulate 3), one has for
all i, j, s, π ′, σ ′

m

(IC � R ′)(T � IB)|(i j)s)AB

= (IC � R ′)
∑
m,τ

λi, j,s
m,τ |(m j)τ s)CB

=
∑
m,τ

λi, j,s
m,τ |(mπ ′( j))σ ′

mτ s)CB

= (T � IB)(IC � R ′)|(i j)s)AB

=
∑
m,τ

λi,π ′( j),σ ′
ms

m,τ |(mπ ′( j))τσ ′
ms)CB.

The above equation implies that the coefficients λ
i, j,s
m,τ cannot

depend on j, s for all i, m, τ , namely, Eq. (B2) takes the

following form:

T � IB|(i j)s)AB =
∑
m,τ

λi
m,τ |(m j)τ s)CB. (B3)

Using Proposition 3, one realizes from Eq. (B3) that T ∈
Transf(BCT), and this concludes the proof. �

We now use Lemmas 3, 4, and 6 in order to prove Proposi-
tion 4.

(a) (iii) ⇒ (ii) ⇒ (i). Recalling Postulate 6, the chain of
implications is trivial.

(b) (i) ⇒ (iii). Let TA→B
X ⊂ TransfR(A→B) such that

TA→B
X � IE→E

� maps preparation instruments of AE to prepa-
ration instruments of BE for all E ∈ Sys(BCT).

Let us first prove the implication in the case where
A = I. Choosing E = I, by hypothesis we have that TA→B

X
maps the unity 1 ∈ PurSt(I) to a preparation instrument of
B. Namely, TA→B

X is a preparation instrument of BCT. Let
us denote ρI→B

X := TA→B
X and ρ = ∑

i∈I λi|i)B′ := ∑
x∈X ρx ∈

St1(B) with λi′ > 0 for all i′ ∈ I and
∑

i∈I λi = 1. Then, the
set {ρx}x∈X is a refinement of ρ. Take B′ = BB, A′ = B, R =
IBB ∈ RevTransf(B′A → A′B), and |)B′ = ∑

i∈I λi|i)B|i)B,
so that ρ = [(e|A′ � IB]R|)B′ . By simpliciality, every ρx

can be rewritten as
∑

i∈I γ
(x)

i |i)B, for suitably defined γ
(x)

i

such that 0 � γ
(x)

i � λi and
∑

x∈X γ
(x)

i = λi for every i ∈
I . Define now, for every x ∈ X and i ∈ I , β

(x)
i := γ

(x)
i /λi.

It is clear that, by definition, it must be 0 � β
(x)
i � 1 and∑

x′∈X β
(x′ )
i = 1 for every x ∈ X and i ∈ I . Now, defining

(ax|A′ := ∑
i β

(x)
i (i|A′ ∈ EffR(A′) for every x ∈ X, one has

ρx = [(ax|A′ � IB]R|)B′ . Finally, since by the classification
of BCT’s effects (see Sec. VI B) one has (ax′ |A′ ∈ Eff(A′) for
all x′ ∈ X, and being

∑
x∈X(ax|A′ = (e|A′ , by Postulate 6 one

can conclude {(ax|A′ }x∈X ∈ Instr(BCT).
Let now be A = I and R̃A,B ∈ RevTransf(B′A→A′B) de-

fined as in Eq. (A7). By hypothesis, Tx � IE maps St(AE) to
St(BE) for every x ∈ X and E ∈ Sys(BCT). Accordingly, by
Lemma 6, Tx ∈ Transf(A→B) for every x ∈ X. On the one
hand, condition (A) of Lemma 3 holds for D = ∑

x∈X Tx. On
the other hand, condition (b) of Lemma 4 holds for T = Tx,
and for every x ∈ X. Thus, by construction, and invoking
implications (A) ⇒ (B) in Lemma 3 and (b) ⇒ (c) in Lemma
4, there exists a state |)B′ ∈ St1(B′) such that the following
holds:

We have thus shown that the collection TA→B
X ⊂

Transf(A→B) is a refinement for the deterministic transfor-
mation D := ∑

x∈X Tx. Considering Eq. (A12), we know that
|)B′ can be taken of the form

∑
(h,ξ )∈J μh,ξ |σh,ξ )B′′ |0)B with

positive coefficients μh,ξ . Moreover, D can be decomposed
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into conical combinations of atomic maps

(B4)

In other terms, the following decomposition holds:

D =
DA∑
ĩ=1

∑
(h,ξ )∈J

μh,ξA
(h,ξ )

ĩ
. (B5)

Now, in the light of Lemma 5, the decomposition of a trans-
formation into atomic transformations is unique up to trivial
refinements, namely, refinements where the elements are pro-
portional to each other. This implies that every refinement of
D must consist in a trivial refinement and subsequent coarse
graining of the decomposition in Eq. (B5). Consequently, for
all x′ ∈ X, (h′, ξ ′) ∈ J, ĩ′ ∈ {1, 2, . . . , DA}, it must be

Tx′ =
DA∑
ĩ=1

∑
(h,ξ )∈J

ν
(x′ )
(h,ξ ),ĩ

A (h,ξ )
ĩ

, ν
(x′ )
(h′,ξ ′ ),ĩ′ ∈ [0, 1],

∑
x∈X

ν
(x)
(h′,ξ ′ ),ĩ′ = μh′,ξ ′ ,

∑
(h,ξ )∈J

ν
(x′ )
(h,ξ ),ĩ′ � 1.

Now, let us define the following collection of coefficients:

ζ
(x)
(h,ξ ),ĩ

:=
ν

(x)
(h,ξ ),ĩ

μh,ξ

∈ [0, 1],

∀ x ∈ X, (h, ξ ) ∈ J, ĩ ∈ {1, 2, . . . , DA}.
Accordingly, each Tx can be achieved as follows:

(ax|A′ :=
DA∑
ĩ=1

∑
(h̃,ξ̃ )∈J

ζ
(x)
(h̃,ξ̃ ),ĩ

(σh̃,ξ̃ |B′′ (ĩ|A,

By construction, and by the classification of BCT’s
effects given in Sec. VI B, {(ax|A′ }x∈X ⊂ Eff(A′) and∑

x∈X(ax|A′ = ∑
(h̃,ξ̃ )∈J (σh̃,ξ̃ |B′′ (e|A hold. In the case where

∑
(h̃,ξ̃ )∈J (σh̃,ξ̃ |B′′ = (e|B′′ , one could complete the collection

{(ax|A′ }x∈X adding the effect
∑

(h̃,ξ̃ )∈J̃ (σh̃,ξ̃ |B′′ (e|A, where J̃
collects all the pairs (h, ξ ) ∈ J , to any of the effects in the
collection, say e.g., (ax0 |A′ . This simply amounts to adding the
associated null transformation to the corresponding transfor-
mation Tx0 since (σh̃,ξ̃ |σh′,ξ ′ )B′′ = 0 for every (h̃, ξ̃ ) ∈ J̃ and
(h′, ξ ′) ∈ J . Then, by the first part of Postulate 6, the collec-
tion of effects {(ax|A′ � IC}x∈X maps preparation instruments
of AC to preparation instruments of C for all C ∈ Sys(BCT).
Finally, by the second part of Postulate 6, one can conclude
that {(ax|A′ }x∈X ∈ Instr(BCT).

APPENDIX C: CONDITIONAL INSTRUMENTS IN
THEORIES WITH A UNIQUE DETERMINISTIC EFFECT

We characterize those causal theories (see Property 3)
which satisfy Postulate 6 and Property 7, proving that they
contain every possible conditional instrument, namely, they
satisfy Property 4.

Theorem 3. Let � be an OPT satisfying Property 3, Pos-
tulate 6, and Property 7. Then, the theory � also satisfies
Property 4.

Proof. We denote the unique deterministic effect of each
A ∈ Sys(�) by (e|A. Suppose that ρI→AE

X and AA→B
Y are in-

struments of �, and let {B(y)
Z(y)}y∈Y ⊂ Instr(B→C) a collection

of instruments labeled by y ∈ Y. Consider now the following
collection of transformations:

P :=
⋃
y∈Y

{(
B(y)

z Ay � IE
)
ρx

}
(x,z)∈X×Z(y) ∈ InstrR(I→C).

Now, (B(y)
z Ay � IE)ρx ∈ St(AE) for all x ∈ X, y ∈ Y, z ∈

Z(y) by hypothesis. In addition, by Property 3 and using
the characterization of deterministic transformations given in
Sec. III B, one has

(e|CE

∑
z∈Z(y)

B(y)
z � IE = (e|BE, ∀ y ∈ Y

(e|BE

∑
y∈Y

Ay � IE = (e|AE,

(e|AE

∑
x∈X

ρx � IE = 1.

Accordingly,

(e|CE

∑
x∈X

∑
y∈Y

∑
z∈Z(y)

(
B(y)

z Ay � IE
)
ρx = 1,

and then, by Postulate 6 and Property 7, and recalling
again the characterization of deterministic instruments, one
concludes that P ∈ Instr(I→C). Namely, the conditional
generalized instrument

⋃
y∈Y{B(y)

z Ay}z∈Z(y) is an instrument
of the theory �. �

APPENDIX D: HOMOGENEOUS STRICT BILOCAL
DISCRIMINABILITY AND ESSENTIAL UNIQUENESS

OF PURIFICATION IMPLY POSTULATES (36) AND (37)
IN A SIMPLICIAL THEORY

Let � be a simplicial theory, and define, for all pure states
|i)A ∈ PurSt(A), | j)B ∈ PurSt(B), the set PurRefi j (AB) ⊆
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PurSt(AB) collecting those pure states of AB which convexly
refine the product state |i)A| j)B. Moreover, define

ni j
AB := |PurRefi j (AB)|,

PurRef(AB) :=
⋃

1�i�DA

1� j�DB

PurRefi j (AB),

PurRef(AB) := PurSt(AB) \ PurRef(AB),

lAB := |PurRef(AB)|.
By direct inspection of the proof of Theorem 2 in Ref. [8], one
easily verifies that, for all (i, j) = (i′, j′), PurRefi j (AB) ∩
PurRefi′ j′ (AB) = ∅. Accordingly, in a simplicial theory �

each |ρ)AB ∈ PurRef(AB) can be unambiguously labeled as
follows:

|ρ)AB = |(i j)σ )AB, σ ∈ {
1, 2, . . . , ni j

AB

}
.

Then, for all systems A, B and i, j, σ , the following holds:

DAB =
∑

1�i�DA

1� j�DB

ni j
AB + lAB, (D1)

|i)A| j)B =
ni j

AB∑
σ ′=1

pi j
σ ′ |(i j)σ ′ )AB, pi j

σ > 0,

ni j
AB∑

σ ′=1

pi j
σ ′ = 1.

(D2)

Theorem 4. Let � be a simplicial theory satisfying Prop-
erty 8. Then, for all systems A, B ∈ Sys(�), there exists a
positive integer nAB such that the following holds. For all pure
states |i)A ∈ PurSt(A), | j)B ∈ PurSt(B), permutation π of
DA elements, there exists a reversible transformation R ∈
RevTransf(A→A) and a permutation κi j of nAB elements,
such that

ni j
AB = nAB, (D3)

(R � IB)|(i j)σ )AB = ∣∣(π (i) j)κi j (σ )

)
AB, (D4)

DAB = nABDADB + lAB, (D5)

|i)A| j)B = 1

nAB

nAB∑
σ=1

|(i j)σ )AB. (D6)

Proof. Property 8, choosing A = I, implies transitivity of
reversible channels on pure states. That is, for every system
A and every permutation π of DA elements, there exists a
reversible transformation R ∈ RevTransf(A→A) such that

R|i)A = |π (i))A for all |i)A ∈ PurSt(A). Let π and π ′ de-
note two permutations of, respectively, DA and DB elements,
and define ĩ := π (i), j̃ := π ′( j) for all i ∈ {1, . . . , DA}, j ∈
{1, . . . , DB}. Then, combining Property 8 with Proposition
1, for all π, π ′ there exist reversible transformations R ∈
RevTransf(A→A), R ′ ∈ RevTransf(B→B), such that the
following holds:

|ĩ)A := R|i)A ∈ PurSt(A),

| j̃)B := R ′| j)B ∈ PurSt(B).
(D7)

Still by Proposition 1, we can also denote

(R � R ′)|(i j)σ )AB = ∣∣(ιi j
σ υ i j

σ

)
κ

i j
σ

)
AB. (D8)

Recall now Eq. (D2), which holds by simpliciality. Equations
(D7) and (D8), combined with Eq. (D2), read as

|ĩ)A| j̃)B =
nĩ j̃

AB∑
σ̃=1

pĩ j̃
σ̃ |(ĩ j̃)σ̃ )AB = (R � R ′)|i)A| j)B

=
ni j

AB∑
σ=1

pi j
σ

∣∣(ιi j
σ υ i j

σ

)
κ

i j
σ

)
AB.

(D9)

First of all, by simpliciality, Eq. (D9) implies ι
i j
σ = ĩ, υ i j

σ = j̃
for all i ∈ {1, . . . , DA}, j ∈ {1, . . . , DB}, σ ∈ {1, . . . , ni j

AB}.
Moreover, by Proposition 1, for all i, j, ĩ, j̃, k it must be

ni j
AB = nĩ j̃

A′B′ , κ i j
σ = κi j (σ ), pĩ j̃

κi j (σ ) = pi j
σ , (D10)

where κi j is a permutation of ni j
AB elements. This proves

Eqs. (D3), (D4), and, recalling (D1), (D5). For all i, j, σ ,
by simpliciality, |(i j)σ )AB is a purification of |i)A and | j)B.
Thus, by Property 8, in Eq. (D10) the permutation κi j in
PurRefi j (AB) can be arbitrarily chosen when i = ĩ and j = j̃.
Since pi j

σ > 0 and
∑nAB

σ ′=1 pi j
σ ′ = 1 for all i, j, σ , then one has

pi j
σ = 1/nAB for all i, j, σ . This finally also proves Eq. (D6).�

Corollary 3. Let � be a simplicial theory satisfying
Property 8, I = A, B ∈ Sys(�), and i ∈ {1, 2, . . . , DA}, j ∈
{1, 2, . . . , DB}. Then, � also satisfies strict bilocal discrim-
inability, with DAB > DADB, if and only if lAB = 0 and
ni j

AB = 2.
Proof. By Theorem 4 of Ref. [8], which holds for simplicial

theories with n-local discriminability for some positive integer
n, one has that lAB = 0 for all A, B ∈ Sys(�). Now, it suffices
to plug Eq. (D5) into Eq. (23) of Theorem 2. Solving for nAB,
one finds the two solutions nAB = 1 or = 2, and then it must
be nAB = 2 for every I = A, B ∈ Sys(�). The converse has
been proven in Proposition 2. �
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