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Sufficient conditions for adiabaticity in open quantum systems
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The adiabatic approximation exhibits wide applicability in quantum mechanics, providing a simple approach
for nontransitional dynamics in quantum systems governed by slowly varying time-dependent Hamiltonians.
However, the standard adiabatic theorem is specifically derived for closed quantum systems. In a realistic
open system scenario, the inevitable system-reservoir interaction must be taken into account, which strongly
impacts the generalization of the adiabatic behavior. In this paper, we introduce sufficient conditions for the
adiabatic approximation in open quantum systems. These conditions are simple yet general, providing a suitable
instrument to investigate adiabaticity for arbitrary initial mixed states evolving under time local master equations.
We first illustrate our results by showing that the adiabatic approximation for open systems is compatible with
the description of quantum thermodynamics at thermal equilibrium, where irreversible entropy production is
vanishing. We also apply our sufficient conditions as a tool in quantum control, evaluating the adiabatic behavior
for the Hamiltonians of both the Deutsch algorithm and the Landau-Zener model under decoherence.
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I. INTRODUCTION

Inverse quantum engineering is a useful approach to drive
quantum systems through some desired path in parameter
space and hence to achieve a target state [1–6]. Within a num-
ber of different approaches for inverse engineering, one can
highlight the adiabatic dynamics [7,8] as an important strat-
egy, with successful applications in quantum thermodynamics
[9–12], quantum control [13,14], and quantum computation
[15,16]. However, the standard adiabatic theorem is specifi-
cally derived for closed quantum systems. In a real physical
scenario, where the quantum system is coupled with a sur-
rounding environment, the concept of adiabaticity requires
a reformulation so that it may be applicable to a nonuni-
tary evolution. In this direction, Ref. [17] has introduced the
adiabatic behavior of an open system by replacing the closed-
system picture of a decoupled evolution of the Hamiltonian
eigenspaces with distinct energy eigenvalues for a decou-
pled evolution of Lindblad-Jordan eigenspaces with distinct
eigenvalues of the Lindbladian superoperator. This notion of
adiabaticity has been consistently applied in different sce-
narios, such as quantum computation [18], geometric phases
[19], eigenstate tracking of open quantum systems [20], and
quantum thermodynamics [11].

The adiabatic approximation for an open system has un-
raveled a competition between the timescale for adiabaticity,
which typically requires long times, and the timescale for
the decoherence rates, which typically require short times,
yielding a finite-time adiabatic regime. This has been ex-
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perimentally observed in Ref. [21]. From the theoretical
side, finite-time adiabaticity emerges from a general adiabatic
condition involving a set of integral expressions containing
exponentials with real and imaginary contributions [17,18].
This holds for general initial mixed quantum states evolving
under time-local master equations.

Alternatively, the adiabatic approximation in open quan-
tum systems may also be introduced by different physically
motivated approaches, such as state purification embed-
ded into non-Hermitian dynamics [22], noiseless subsystem
decomposition [23], the weak-coupling limit [24], and in-
stantaneous steady-state evolution of the Liouvillian [25].
Adiabatic theorems for generators of contracting evolutions
have also been proposed based on the notion of parallel trans-
port in the manifold of instantaneous stationary states for both
gapped and gapless cases of the spectrum of the generator
[26]. Notice, then, that adiabaticity in open systems has been
established as a multifaceted concept, which leads to distinct
and potentially complementary simplifying strategies to solve
the open quantum dynamics. Here, we will keep the original
multidimensional Jordan block approach of Ref. [17]. This
allows for the representation of arbitrary initial mixed states,
distributed in general superpositions of Jordan subspaces,
evolving under arbitrary time-local evolution. Even though
single Jordan blocks usually do not have individual physical
interpretation, there are plenty of physical states that require
superpositions of basis vectors belonging to different Jordan
blocks to be represented. Indeed, we will provide examples
of mixed states evolving under decoherence that require, from
the beginning of the evolution, superpositions of distinct Jor-
dan subspaces. Our examples will be based on the Lindblad
superoperators for the Deutsch algorithm and for the Landau-
Zener model.
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In a general setting, we will be interested in obtaining oper-
ational sufficient conditions for the adiabatic behavior. More
specifically, we aim at simplifying the original conditions in
Ref. [17] but keeping them applicable in a general convo-
lutionless dynamics. These conditions are achieved through
a derivation that can be interpreted as a generalization for
open systems of the results obtained by Tong et al. [27] for
closed systems. We will analytically obtain two simultane-
ously required conditions, one of them yielding a standard gap
condition, with the other simplifying the integral term usually
dealt with by the Riemann-Lebesgue lemma in the closed
case (see, e.g., Ref. [28]). Both conditions can be compactly
written in terms of the gaps in the Liouvillian spectrum.

This paper is organized as follows. In Sec. II we derive
the main result, with our conditions presented in Sec. II A.
In Sec. II B, we introduce the adiabatic open-system evo-
lution operator, which turns out to be a useful tool in the
applications. In Sec. III, we then illustrate our results, first
by discussing the relationship between the open-system adia-
batic approximation and quantum thermodynamics at thermal
equilibrium and then by evaluating the adiabatic decoherence
dynamics for the Hamiltonians of both the Deutsch algorithm
and the Landau-Zener model. In Sec. IV, we present our
conclusions.

II. ADIABATIC DYNAMICS IN OPEN QUANTUM SYSTEMS

In this section, we will derive sufficient conditions for the
adiabatic approximation in open systems. As an initial step,
we will revisit the adiabatic approximation in open quantum
systems. This will be performed from the point of view of an
open-system evolution operator, which will be introduced as
an intermediate by-product of this work. However, let us first
discuss the mathematical framework of open systems in the
superoperator formalism. We consider a quantum system de-
scribed by a density operator ρ(t ) acting on a DS-dimensional
Hilbert space, whose evolution is governed by a time-local
master equation

ρ̇(t ) = Lt [ρ(t )], (1)

where Lt [·] is a time-dependent dynamical generator and the
overdot denotes the time derivative. Here, we do not need to
assume a particular Lt [·], but later on we will consider it in
the Lindblad form

Lt [·] = 1

ih̄
[H (t ), ·]

+ 1

2

∑
n

(
2�n(t ) · �†

n (t ) − {
�†

n (t )�n(t ), ·}), (2)

where �n(t ) are the time-dependent Lindblad operators that
describe the coupling between our system and the environ-
ment. Different from the closed-system case, we need now to
take into account the reservoir influence. In this scenario, a
convenient approach is the superoperator formalism [17,29].
To this end, we define a matrix basis composed of DS × DS

matrices σn in which Tr{σnσm} = DSδnm. In this formalism,
Eq. (1) is rewritten as (see Appendix A)

|ρ̇(t )〉〉 = L(t )|ρ(t )〉〉, (3)

where |ρ(t )〉〉 is a D2
S-dimensional “coherence” vector in

Hilbert-Schmidt space [30], whose components are �n(t ) =
Tr{ρ(t )σ †

n }. We define the (D2
S × D2

S)-dimensional superop-
erator L(t ) through its matrix representation, with matrix
elements provided by Lki(t ) = (1/DS )Tr{σ †

kL[σi]}. The inner
product between two coherence vectors associated with den-
sity operators ξ1 and ξ2 is given by 〈〈ξ1|ξ2〉〉 = (1/DS )Tr{ξ †

1 ξ2},
where the conjugate coherence vector 〈〈ξ1| has components
given by Tr{ξ †

1 σn}. In particular, for a two-level system, the
Pauli basis Otls = {1, σx, σy, σz} is a convenient choice, but
we can adopt more sophisticated bases depending on the ap-
plication [31].

In general, due to the non-Hermiticity of L[·], the su-
peroperator L(t ) is not diagonalizable. Then, the notion of
adiabaticity used in closed systems cannot be directly applied
here [17]. On the other hand, general operators can be rewrit-
ten in the Jordan canonical form, where L(t ) is given in a
block-diagonal structure LJ(t ) with Jordan blocks Jα (t ) asso-
ciated with different time-dependent noncrossing eigenvalues
λα (t ) of L(t ) [29]. The Jordan form of L(t ) is obtained by a
similarity transformation through a matrix S(t ), reading

LJ(t ) = S−1(t )L(t )S(t )

= diag[J0(t ) J2(t ) · · · JN−1(t )], (4)

where N is the sum of the geometric multiplicities of all the
eigenvalues λα and each block Jα (t ) is given by

Jα (t ) =

⎡
⎢⎢⎢⎢⎣

λα (t ) 1 0 · · · 0
0 λα (t ) 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 λα (t ) 1
0 · · · · · · 0 λα (t )

⎤
⎥⎥⎥⎥⎦. (5)

As an immediate consequence of the above LJ(t ) structure,
we can see that L(t ) does not necessarily admit the existence
of a basis of eigenvectors. Instead, we define right (|Dnα

α (t )〉〉)
and left (〈〈Enα

α (t )|) quasieigenvectors of L(t ) associated with
the Jordan block Jα (t ), which are defined by

L(t )|Dnα

α (t )〉〉 = |D(nα−1)
n (t )〉〉 + λα (t )|Dnα

α (t )〉〉, (6a)

〈〈Enα

α (t )|L(t ) = 〈〈E(nα+1)
n (t )| + 〈〈Enα

α (t )|λα (t ), (6b)

where nα = 1, . . . , Nα , with Nα denoting the dimension of Jα

and |D(0)
α (t )〉〉 and 〈〈E(Nα+1)

α (t )| denoting vanishing vectors. The
sets {|Dnα

α (t )〉〉} and {〈〈Enα
α (t )|} satisfy the biorthonormaliza-

tion condition 〈〈Eβ
m(t )|Dα

n (t )〉〉 = δmnδβα . Thus, we can write
the completeness relationship

N−1∑
α=0

Nα∑
nα=1

|Dnα

α (t )〉〉〈〈Enα

α (t )| = 1D2
S×D2

S
, (7)

which holds for all t ∈ [0,∞).

A. Conditions for adiabaticity in open systems

As discussed before, the fact that the superoperator L(t ) is
not necessarily diagonalizable needs to be taken into account
to define adiabaticity for a nonunitary evolution. In this work,
we will adopt the general definition of adiabaticity as estab-
lished in Ref. [17]. This is based on the Jordan decomposition
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of L(t ), which will be generically designed here as the Lind-
blad superoperator.

Definition 1. Adiabaticity in open systems. An open quan-
tum system is said to undergo an adiabatic dynamics if
the evolution of the density operator in its Hilbert-Schmidt
space can be decomposed into decoupled Lindblad-Jordan
eigenspaces associated with distinct, time-dependent, non-
crossing eigenvalues of L(t ).

Thus, let us now derive under what conditions we can
achieve the adiabatic behavior of an open quantum system.
To this aim, let us write the evolved state |ρ(t )〉〉 in the basis
{|Dnα

α (t )〉〉} as

|ρ(t )〉〉 =
N−1∑
α=0

Nα∑
nα=1

rnα

α (t )|Dnα

α (t )〉〉, (8)

where rnα
α (t ) are coefficients to be determined. By inserting

Eq. (8) in Eq. (3) and using Eq. (6), we obtain

ṙk
β (t ) = λβ (t )rk

β (t ) − rk
β (t )〈〈Ek

β (t )|Ḋk
β (t )〉〉 + rk+1

β (t )

−
∑
nβ �=k

rnβ

β (t )〈〈Ek
β (t )|Ḋnβ

β (t )〉〉

−
∑
α �=β

∑
nα

rnα

α (t )〈〈Ek
β (t )|Ḋnα

α (t )〉〉, (9)

with rNβ+1
β (t ) ≡ 0. The first two terms on the right-hand side

of the equation above are associated with perfect decoupled
evolution. The remaining terms tell us about the coupling be-
tween the kth vector in block β and all the other basis vectors
inside and outside β. Therefore, in agreement with Definition
1, adiabaticity in the context of open systems requires us
to eliminate the last sum term in Eq. (9), which promotes
transitions between Jordan blocks.

Before considering the most general case, let us first par-
ticularize our analysis to the case in which L(t ) admits a
Jordan decomposition into one-dimensional Jordan blocks in
Eq. (5). Under this assumption, the quasieigenstate relations
in Eqs. (6) become genuine eigenstate equations, which are
given by

L(t )|Dα (t )〉〉 = λα (t )|Dα (t )〉〉, (10a)

〈〈Eα (t )|L(t ) = 〈〈Eα (t )|λα (t ). (10b)

Hence, Eq. (9) can be reduced to

ṙβ (t ) = λβ (t )rβ (t ) − rβ (t )〈〈Eβ (t )|Ḋβ (t )〉〉
−

∑
α �=β

rα (t )〈〈Eβ (t )|Ḋα (t )〉〉. (11)

Now, we can define a new parameter pβ (t ) as

rβ (t ) = pβ (t )e
∫ t

t0
λβ (ξ )dξ , (12)

so that, from Eq. (11), it follows that pβ (t ) is governed by

ṗβ (t ) = −
∑
α �=β

pα (t )e
∫ t

t0
[λα (ξ )−λβ (ξ )]dξ 〈〈Eβ (t )|Ḋα (t )〉〉

− pβ (t )〈〈Eβ (t )|Ḋβ (t )〉〉. (13)

The first term on the right-hand side is responsible for the
coupling of distinct Lindblad-Jordan eigenspaces during the
evolution. If we are able to minimize its effects, we can
approximate the dynamics to

ṗβ (t ) ≈ −pβ (t )〈〈Eβ (t )|Ḋβ (t )〉〉. (14)

Then, the adiabatic solution rβ (t ) for the dynamics can be
immediately obtained from Eq. (12), reading

rβ (t ) = rβ (t0)e
∫ t

t0
λβ (ξ )dξ e− ∫ t

t0
〈〈Eβ (ξ )|Ḋβ (ξ )〉〉dξ , (15)

where we have used pβ (t0) = rβ (t0). In conclusion, if the
system undergoes the adiabatic dynamics along a nonunitary
process, the evolved state is

|ρ1D
ad (t )〉〉 =

N−1∑
α=0

rα (t0)e
∫ t

t0
�α (ξ )dξ |Dα (t )〉〉, (16)

with �α (t ) = λα (t ) − 〈〈Eα (t )|Ḋα (t )〉〉 being the generalized
adiabatic phase accompanying the dynamics of the nth eigen-
vector. Throughout this paper, the superscript 1D indicates
that the result is valid by assuming that the Lindblad superop-
erator admits one-dimensional Jordan block decomposition.

Conditions for the validity of the adiabatic dynamics can
be properly derived by defining the normalized time s = t/τ ,
with τ denoting the total evolution time and 0 � s � 1. For
a one-dimensional Jordan decomposition of L(t ), a sufficient
condition for the decoupled evolution of |DDA

β (t )〉〉 from the
remaining eigenvectors |DDA

α �=β (t )〉〉, with λα �= λβ , is provided
by (see Appendix B)

C1:

∣∣∣∣∣ F̃αβ (s)eτ
∫ s

s0
Gαβ (s′ )ds′

τGαβ (s)

∣∣∣∣∣ 
 1, (17a)

C2:

∣∣∣∣1

τ

∫ s

s0

d

ds′

[
F̃αβ (s′)
Gαβ (s′)

]
eτ

∫ s′
s0
Gαβ (s′′ )ds′′

ds′
∣∣∣∣ 
 1, (17b)

where we defined Gαβ (s) = λα (s) − λβ (s) and

F̃αβ (s) = e− ∫ s
s0

〈〈Eβ (s′ )|dsDβ (s′ )〉〉ds′ 〈〈Eβ (s)|dsDα (s)〉〉, (18)

with ds f (s) ≡ df (s)/ds. Conditions C1 and C2 are required to
hold for every s0 such that s0 � s � 1. If they are satisfied for
all α, the βth eigenvector evolves decoupled from the other
eigenvectors such that λα �= λβ . In the case where they are
satisfied for all α and β, all eigenvectors of the spectrum of
L(t ) evolve decoupled from each other. Moreover, it is worth
highlighting here that the above conditions are very similar to
the conditions proposed by Tong et al. [27] for closed systems.
In fact, the second condition can be easily rewritten as

C2′ :
∣∣∣∣1

τ

d

ds′

[
F̃αβ (s′)
Gαβ (s′)

]
eτ

∫ s′
s0
Gαβ (s′′ )ds′′

∣∣∣∣
M


 1, (19)

where we have used | ∫ x1

x0
f (x)dx| �∫ x1

x0
| f (x)|dx, with the

subscript M in Eq. (19) denoting the maximal absolute value
for x ∈ [x0, x1], so that the validity of the condition C2
implies the validity. Then, we set s0 =0 and define the adi-
abaticity coefficients


(1)
αβ (s) ≡

∣∣∣∣ F̃αβ (s)eτ
∫ s

0 Gαβ (s′ )ds′

τGαβ (s)

∣∣∣∣, (20a)


(2)
αβ (s) ≡

∣∣∣∣1

τ

d

ds

[
F̃αβ (s)

Gαβ (s)

]
eτ

∫ s
0 Gαβ (s′ )ds′

∣∣∣∣, (20b)
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so that conditions C1 and C2 can be expressed as

αβ = max

{
max

s∈[0,1]


(1)
αβ (s), max

s∈[0,1]


(2)
αβ (s)

}

 1. (21)

Notice that Eq. (21) can be viewed as a generalization of the
condition established in Ref. [27] for open quantum systems.
The nature of the function Gαβ (t ) needs to be addressed in de-
tail. In fact, since Gαβ (t ) ∈ C, the argument in the exponential
of Eqs. (17) could admit both real and imaginary parts. On the
one hand, the imaginary part ofGαβ (t ) can be neglected due to
the absolute value in the adiabaticity coefficients. On the other
hand, the real part of Gαβ (t ) may lead to the divergence of the
exponential in Eq. (17) for long evolution times. Therefore,
adiabaticity is not generally achieved in the regime τ → ∞,
but it may be possible to find an evolution time range for
τ so that the adiabatic approximation can be successfully
implemented [17,18,28].

For the general case of multidimensional Jordan blocks in
Eq. (5), one needs to start from the coupled set of equations
given in Eq. (9). Without loss of generality, let us define the
most general parameter pk

β (t ) through

ṙk
β (t ) = pk

β (t )e
∫ t

t0
λβ (ξ )dξ , (22)

such that Eq. (9) becomes

ṗk
β (t ) = −pk

β (t )〈〈Ek
β (t )|Ḋk

β (t )〉〉
−

∑
nβ �=k

p
nβ

β (t )〈〈Ek
β (t )|Ḋk

β (t )〉〉 + pk+1
β (t )

−
∑
α �=β

∑
nα

pnα

α (t )e
∫ t

t0
[λα (ξ )−λβ (ξ )]dξ 〈〈Ek

β (t )|Ḋnα

α (t )〉〉.

(23)

Equation (23) describes the dynamics for the kth vector in the
βth Jordan block. As previously mentioned, the last sum term
on the right-hand side of Eq. (23) is the “diabatic” contribu-
tion to the dynamics, which couples distinct Jordan blocks.
Therefore, by imposing adiabaticity, Eq. (23) reduces to

ṗk
β (t ) = −pk

β (t )〈〈Ek
β (t )|Ḋk

β (t )〉〉 + pk+1
β (t )

−
∑
nβ �=k

pnβ

β (t )〈〈Ek
β (t )|Ḋnβ

β (t )〉〉. (24)

By following the same procedure as before, we can show that
a sufficient condition for the adiabatic approximation in the
case of multidimensional Jordan blocks is provided by (see
Appendix B)

C1:

∣∣∣∣∣ F̃ k
αβ (s)eτ

∫ s
s0
Gαβ (s′ )ds′

τGαβ (s)

∣∣∣∣∣ 
 1, (25a)

C2:

∣∣∣∣∣1

τ

∫ s

s0

d

ds′

[
F̃ k

αβ (s′)

Gαβ (s′)

]
eτ

∫ s′
s0
Gαβ (s′′ )ds′′

ds′
∣∣∣∣∣ 
 1, (25b)

where G(s) = λα (s) − λβ (s) �= 0 and the term F̃ k
αβ (s) gener-

alizes Eq. (18) as

F̃ k
αβ (s) =

Nα∑
nα=1

e− ∫ s
s0

〈〈Ek
β (s′ )|ds′Dk

β (s′ )〉〉ds′ 〈〈Ek
β (s)|dsDnα

α (s)〉〉. (26)

As in the case of one-dimensional blocks, the conditions
above are required to hold for every s0 such that s0 � s � 1.
Similarly as in Eq. (19), we can also rewrite condition C2 as

C2′ :

∣∣∣∣∣1

τ

d

ds′

[
F̃ k

αβ (s′)

Gαβ (s′)

]
eτ

∫ s′
s0
Gαβ (s′′ )ds′′

∣∣∣∣∣
M


 1. (27)

We emphasize that the conditions presented here are sufficient
for ensuring the adiabatic approximation in an open system,
but they are not necessary in general. In addition, we remark
that these conditions also predict a possible adiabaticity break-
ing at finite time, as first discussed in Refs. [17,18]. However,
as shown in Ref. [32], when additional conditions on the initial
state of the system are satisfied, such behavior is suppressed,
and the open-system adiabatic approximation can be achieved
for arbitrary slowly varying dynamics.

B. The adiabatic evolution superoperator in open systems

In this section, we derive a nonunitary evolution superop-
erator for the adiabatic open quantum dynamics driven by
invertible dynamical maps. To this end, let us start with the
case of Lindblad superoperators that admit one-dimensional
Jordan block decomposition. Then, we consider an initial state
|ρ(t0)〉〉 written in the basis {|Dα (t0)〉〉} as

|ρ(t0)〉〉 =
N−1∑
α=0

rα (t0)|Dα (t0)〉〉. (28)

If the system evolves through an adiabatic path in open sys-
tem, we can use Eq. (16) to write the nonunitary evolution
superoperator as

V1D
ad (t, t0) =

N−1∑
α=0

e
∫ t

t0
�α (ξ )dξ |Dα (t )〉〉〈〈Eα (t0)|. (29)

It is straightforward to show that Eq. (29) allows us to write
|ρ1D

ad (t )〉〉=V1D
ad (t, t0)|ρ(t0)〉〉. The nonunitarity of the evolu-

tion naturally leads to a nonunitary V1D
ad (t, t0). However, it is

possible to find an inverse superoperator [V1D
ad (t, t0)]−1 such

that[
V1D

ad (t, t0)
]−1V1D

ad (t, t0) = V1D
ad (t, t0)

[
V1D

ad (t, t0)
]−1 = 1.

(30)

The inverse superoperator can be explicitly built upon the
biorthonormalization condition obeyed by the basis vectors
{|Dα (t )〉〉} and {〈〈Eα (t )|}, reading

[
V1D

ad (t, t0)
]−1 =

N−1∑
α=0

e− ∫ t
t0

�α (ξ )dξ |Dα (t0)〉〉〈〈Eα (t )|. (31)

From Eqs. (29), (30), and (10a), it follows that

[
V1D

ad (t, t0)
]−1

L(t )V1D
ad (t, t0) =

N−1∑
α=0

λα (t )|Dα (t0)〉〉〈〈Eα (t0)|.
(32)

Then, the superoperator V1D
ad (t, t0) diagonalizes the Lindbla-

dian in the time-independent basis {|Dα (t0)〉〉, 〈〈Eα (t0)|}. In the
context of closed systems, this kind of result has shown useful
applications in shortcuts to adiabaticity, such as the definition
of multiple Schrödinger pictures [33] (or adiabatic iteration
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[34,35]). As we shall see, the result can be generalized to the
case of multidimensional Jordan blocks. To extend Eq. (32)
for multidimensional Jordan blocks, we proceed by rewriting
Eq. (24) as

�̇pβ (t ) = [1̃u-shift − Gβ (t )] �pβ (t ). (33)

Here, Gβ (t ) is an (Nβ × Nβ )-dimensional matrix whose ele-
ments are Gkn

β (t ) = 〈〈Ek
β (t )|Ḋn

β (t )〉〉, �pβ (t ) is a vector with Nβ

components pk
β (t ), and 1̃u-shift is an upper shift matrix,

1̃u-shift =

⎡
⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · · · · 0 1
0 · · · · · · 0 0

⎤
⎥⎥⎥⎥⎦. (34)

Thus, it follows that a decoupled evolution within a single Jor-
dan block is not necessarily obtained even if the off-diagonal
elements of Gβ (t ) can be neglected. A convenient way to
express the adiabatic evolution superoperator V(t, t0) is by
using the definition of evolution superoperators for individual
blocksVβ (t, t0), reading

Vβ (t, t0) = e
∫ t

t0
λβ (ξ )dξ

Nβ∑
nβ=1

Nβ∑
mβ=1

vnβ mβ
(t )|Dnβ

β (t )〉〉〈〈Emβ

β (t0)|,

(35)
where the elements vnβ mβ

(t ) account for inner transitions
within a single Jordan block. The functions vnβmβ

(t ) are deter-
mined by Eq. (33); therefore; they depend on the elements of
the matrix Gβ (t ). From this definition, the complete evolution
superoperatorV(t, t0) is given by

Vad(t, t0) =
N−1∑
α=0

Vα (t, t0). (36)

Notice that, as expected, Vad(t, t0) does not admit transitions
between two vectors from different blocks. It is impor-
tant to mention the existence of an inverse superoperator
V−1

ad (t, t0) such that Vad(t, t0)V−1
ad (t, t0)=1. The superoper-

atorV−1
ad (t, t0) can be explicitly provided by

V−1
ad (t, t0) =

N−1∑
α=0

V−1
α (t, t0), (37)

where

V−1
α (t, t0)

= e− ∫ t
t0

λα (ξ )dξ
Nα∑

nα=1

Nα∑
mα=1

ṽnαmα
(t )|Dnα

α (t0)〉〉〈〈Emα

α (t )|, (38)

with the coefficients ṽnαmα
(t ) and vnβ mβ

(t ) obeying

Nν∑
jν=1

v�ν jν (t )ṽ jνmν
(t ) = δ�νmν

, (39)

Nν∑
jν=1

ṽ�ν jν (t )v jνmν
(t ) = δ�νmν

. (40)

In addition, the operatorVad(t, t0) can be identified as the su-
peroperator that “block diagonalizes” L(t ), which is achieved
by using the additional constraint

Nν∑
nν=1

ṽgν (nν−1)vnν lν = δlν (gν+1), (41)

with ṽgν0 ≡ 0. By making use of the constraints over
Vα (t, t0), we can then show that

LJ(t ) = V−1
ad (t, t0)L(t )Vad(t, t0). (42)

A detailed proof of Eqs. (39), (40), and (41) is provided
in Appendix C, where we show that Eq. (38) implies that
LJ(t ) is block diagonal in the time-independent vector bases
{|Dnα

α (t0)〉〉} and {〈〈Enα
α (t0)|}.

III. APPLICATIONS

A. Adiabatic quantum thermodynamics

As a first application, let us now show that the sufficient
conditions for adiabaticity in open systems are compatible
with quantum thermodynamics at equilibrium. Notice that the
standard adiabatic theorem is not generally applicable to the
dynamics of a quantum system evolving at equilibrium in
contact with a thermal reservoir since the original adiabatic
theorem is derived for unitary evolution. This analysis can
be rigorously implemented here since we are dealing with an
adiabatic approximation derived for open quantum systems.

Consider a quantum system driven by a time-dependent
Hamiltonian H (t ) and in permanent contact with a ther-
mal bath at temperature T . The system is initially prepared
in an equilibrium state ρ(0) = exp[−βH (0)]/Z (0), where
Z (0) = Tr{exp[−βH (0)]} is the partition function and β =
1/(kT ), with k denoting the Boltzmann constant. Assuming
that the system slowly evolves through an equilibrium trajec-
tory, the system will continuously relax to the instantaneous
steady state ρss of the corresponding dynamical generatorL[·]
(L[ρss]=0). By assuming evolution at thermal equilibrium,
no entropy production is expected to occur, which means that
entropy variation dS is simply dS = βdQ, where dQ is the
heat exchanged in the thermal process. Let us now show that
this is, indeed, the case for a general adiabatic evolution of an
open system describing the dynamics at thermal equilibrium.
Let |ρ(0)〉〉=∑

i,ki
c(ki )

i |D(ki )
i (0)〉〉 be the initial state of the

system. By considering a general adiabatic evolution, which
is ensured by Eqs. (25a) and (25b), we have

|ρad(t )〉〉 =
∑
i,ki

c(ki )
i e

∫ t
0 λ̃i,ki (t ′ )dt ′ |D(ki )

i (t )〉〉, (43)

where λ̃i,ki (t
′)=λi(t ) − 〈〈Eki

i (t )|Ḋ(ki )
i (t )〉〉. From Ref. [11],

heat dQad and entropy variation dSad for open-system adia-
batic dynamics can be expressed as

dQad = 1

D

∑
i,ki

c(ki )
i e

∫ t
0 λ̃i,ki (t ′ )dt ′ 〈〈h(t )|L(t )|D(ki )

i (t )〉〉dt , (44)

dSad = − 1

D

∑
i,ki

c(ki )
i e

∫ t
0 λ̃i,ki (t ′ )dt ′ 〈〈ρad

log(t )|L(t )|D(ki )
i (t )〉〉dt .

(45)
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In Eqs. (44) and (45), the left vectors 〈〈h(t )| and 〈〈ρad
log(t )| have

components provided by Tr{H (t )σ j} and Tr{log[ρad(t )]σ j},
respectively, where log x ≡ ln x denotes the natural logarithm
and ρad(t ) is the density operator in the adiabatic regime.
The eigenvalue equation for H (t ) is written as H (t )|En(t )〉 =
En(t )|En(t )〉.

From Eqs. (44) and (45), the absence of irreversible en-
tropy production is then ensured by verifying the relation
〈〈ρad

log(t )|=−β〈〈h(t )|, where ρad(t ) is taken as the Gibbs
state ρeq(t )=exp[−βH (t )]/Z , with Z =Tr{exp[−βH (t )]}.
The equality trivially holds for the left-vector component
j =0. For 1 � j � D2 − 1, we have

Tr{log[ρad(t )]σ j} =
∑

n

〈En| log[ρeq(t )]σ j |En〉,

=
∑

n

log{exp[−βEn(t )]/Z}〈En|σ j |En〉,

= −βTr{H (t )σ j}, (46)

where we have used Tr{σ j} = 0 in the last equality. This result
shows that the jth component of the vector 〈〈ρad

log(t )| can be
written in terms of the corresponding component of 〈〈h(t )|
as 〈〈ρad

log(t )| j =−β〈〈h(t )| j . Hence, from Eqs. (44) and (45),
we have dSad =βdQad. In conclusion, our sufficient condi-
tions for adiabaticity allow for a simple verification that the
adiabatic approximation in open systems is compatible with
quantum thermodynamics at equilibrium.

B. Deutsch algorithm under dephasing

Let us consider now an application of the open-system
adiabatic dynamics in quantum computation. In this direc-
tion, let us analyze the adiabatic Deutsch algorithm under
dephasing. The problem addressed in Deutsch’s algorithm
[36] is how to determinate whether a dichotomic real function
f : x ∈ {0, 1} → f (x) ∈ {0, 1} is constant [the output result
f (x) is the same regardless input value x] or balanced [the
output result f (x) assumes different values according with
the input value x]. Thus, let us denote O f as the operator
associated with an oracle, which computes f , given by [18]

O f = (−1) f (0)|0〉〈0| + (−1) f (1)|1〉〈1|. (47)

Thus, one can write the adiabatic Hamiltonian that imple-
ments the algorithm as

HDA(t ) = Uf (t )H0U
†
f (t ), (48)

where H0 = −h̄ωσx/2 and Uf (t ) = exp(i π
2

t
τ
O f ). At t = 0

we have HDA(0) = H0, so that the initial input state is writ-
ten as |ψinp〉 = |+〉 = (1/

√
2)(|0〉 + |1〉). By considering a

closed-system dynamics and by assuming the evolution is
slow enough, the output state can be described with high
probability by the ground state of HDA(t ), reading

ρDA
cs (t ) = 1

2
[1 + gc(t )σx − gs(t )σy], (49)

where gc(t ) = cos (πFt/2τ ), gs(t ) = sin (πFt/2τ ), and F =
1 − (−1) f (0)+ f (1). We observe that the subscript cs denotes
that ρDA

cs (t ) is obtained from the adiabatic solution for closed
systems.

Now, let us consider that the system is interacting with
a surrounding environment. Let us assume that the system-
environment interaction can be modeled by a Markovian
phase damping channel, with rate γ (t ). The system evolution
can then be described by

ρ̇(t ) = − i

h̄
[HDA(t ), ρ(t )] + γ (t )[σzρ(t )σz − ρ(t )]. (50)

In order to study the adiabatic dynamics of the system, let us
rewrite it in the superoperator formalism as

|ρ̇(t )〉〉 = LDA(t )|ρ(t )〉〉, (51)

where

LDA(t ) =

⎡
⎢⎣

0 0 0 0
0 −2γ 0 ωgs(t )
0 0 −2γ ωgc(t )
0 −ωgs(t ) −ωgc(t ) 0

⎤
⎥⎦. (52)

The right eigenvectors of LDA(t ) are (the superscript t denotes
transpose)

|DDA
0 (t )〉〉 = [1000]t, (53a)

|DDA
1 (t )〉〉 = [0 − gc(t )gs(t )0]t, (53b)

|DDA
2 (t )〉〉 = [0�+(t )gs(t )�+(t )gc(t )1]t, (53c)

|DDA
3 (t )〉〉 = [0�−1

+ (t )gs(t )�−1
+ (t )gc(t )1]t, (53d)

while left eigenvectors are

〈〈EDA
0 (t )| = [1000 ], (54a)

〈〈EDA
1 (t )| = [0 − gc(t )gs(t )0 ], (54b)

〈〈EDA
2 (t )| = 1

2

[
0ωgs(t )ωgc(t ) − �−(t )√

γ 2(t ) − ω2

]
, (54c)

〈〈EDA
3 (t )| = 1

2

[
0 − ωgs(t ) − ωgc(t )

�+(t )√
γ 2(t ) − ω2

]
, (54d)

with eigenvalues λ0(t ) = 0, λ1(t ) = −2γ (t ), λ2(t ) =
−�+(t ), and λ3(t ) = −�−(t ), where �±(t ) = γ (t ) ±√

γ 2(t ) − 4ω2. The nondegenerate spectrum of LDA(t ) shows
that LDA(t ) exhibits one-dimensional Jordan blocks, so
that the adiabatic behavior of the system can be obtained
from the adiabatic solution given in Eq. (16). We write
the density matrix associated with the initial state as
ρDA(0) = |ψinp〉〈ψinp| = |+〉〈+| = (1/2)(1 + σx ). In the
superoperator formalism, we can then show that the initial
state can be written as a linear combination of the vectors
|DDA

0 (0)〉〉 and |DDA
1 (0)〉〉 as

|ρDA(0)〉〉 = [1100 ]t = |DDA
0 (0)〉〉 − |DDA

1 (0)〉〉. (55)

Notice that the initial state necessarily requires superposition
of two distinct Jordan blocks, with eigenvalues λ0(t ) and
λ1(t ). From Eq. (29), the open-system adiabatic evolution
operatorVDA(s) reads

VDA(t, 0) =
3∑

α=0

e
∫ t

0 �α (ξ )dξ |DDA
α (t )〉〉〈〈EDA

α (0)|. (56)
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From Eq. (56), we can write the evolved state |ρDA
ad (t )〉〉=

VDA(t, 0)|ρDA
ad (0)〉〉 as

|ρDA
ad (t )〉〉 = |DDA

0 (t )〉〉 − e−2
∫ t

t0
γ (ξ )dξ |DDA

1 (t )〉〉, (57)

where we used �1(t )=λ1(t )=−2γ (t ) since |DDA
1 (t )〉〉 is

a real vector and satisfies 〈〈E1(t )|Ḋ1(t )〉〉 = 0. By using
〈〈EDA

0 (t )| = |DDA
0 (t )〉〉t, we can write 0α (t ) = 0 ∀α �= β.

Therefore, 0 = 0, and |DDA
0 (t )〉〉 evolves independently of

the other eigenvectors. Now, by rewriting Eq. (57) in matrix
notation, we get

|ρDA
ad (t )〉〉 = [

1 e−2
∫ t

t0
γ (ξ )dξ gc(t ) −e−2

∫ t
t0

γ (ξ )dξ gs(t ) 0
]t
.

(58)

From Eq. (58), we can determine the components of the
coherence vector associated with the density matrix ρDA(t ),
yielding

ρDA
ad (t ) = 1

2

[
1 + e−2

∫ t
t0

γ (ξ )dξ gc(t )σx − e−2
∫ t

t0
γ (ξ )dξ gs(t )σy

]
.

(59)

Notice that, in the limit γ (t ) → 0, we recover the density
matrix for the unitary dynamics shown in Eq. (49), where the
output state reads (at t = τ ) [18]

lim
γ (t )→0

ρDA
ad (τ ) = ρDA

cs (τ ) = 1

2

[
1 + (−1) f (0)+ f (1)σx

]
, (60)

with cos(πF/2) = (−1) f (0)+ f (1) for f (x) ∈ {0, 1} since F =
1 − (−1) f (0)+ f (1). The above solution is the output for an
optimal (nondecohering) situation. The experimental imple-
mentation of the adiabatic Deutsch algorithm under phase
damping has been implemented via trapped ions [32], where
the adiabatic behavior is asymptotically observed for a long
evolution time.

In order to verify whether or not the sufficient conditions
introduced here indicate the adiabatic behavior for the open-
system adiabatic Deutsch algorithm, we compute the fidelity
[37]

F (ωτ ) = Tr

{√√
ρ(τ )ρ tar(γ0τ )

√
ρ(τ )

}
, (61)

where ρ(τ ) is the solution of the dynamics at t = τ and ρ tar

is the target state. In our case, the target state is the adiabatic
solution at t = τ , obtained from Eq. (59) as

ρDA(γ0τ )

= 1

2

[
1 + e−2γ0τ cos

(
πF

2

)
σx − e−2γ0τ sin

(
πF

2

)
σy

]
.

(62)

In Fig. 1 we present the infidelity, I(ωτ )=1 − F (ωτ ), as a
function of ωτ since we set γ0 as a multiple of ω. Notice that
the infidelity is asymptotically vanishing, decreasing faster for
smaller rates γ0(t ). However, it is important to highlight that
an open-system adiabatic high fidelity does not necessarily
represent the solution for the Deutsch problem because the
state in Eq. (62) is not the closed-system final density operator
[32]. Let us analyze now the behavior of the adiabaticity
coefficient. We observe that DA

0n (ωτ )=DA
n0 (ωτ )=0 for all

FIG. 1. Infidelity I(ωτ ) for achieving the open-system adiabatic
solution of the Deutsch algorithm for two different values of γ0.
Inset: The behavior of the adiabaticity coefficient DA

1 (ωτ ). Here,
we consider the case where the function is balanced, i.e., F =2.

n. Then, we focus on the nonvanishing coefficients for the
Jordan block associated with |DDA

1 (t )〉〉. In this direction, we
look at the quantities DA

1n (ωτ ) and DA
n1 (ωτ ). Because we

start the dynamics in a superposition of two different Jordan
blocks and λ1 � λn (n = 2, 3), the quantities DA

n1 (ωτ ) do not
affect the dynamics since, from Eq. (55), |ρDA(0)〉〉 does not
depend on |DDA

2 (0)〉〉 and |DDA
3 (0)〉〉 [32]. It is also possible

to show that, for a constant dephasing rate γ0, the contribu-
tion of the adiabatic condition C2 trivially vanishes for the
Deutsch algorithm. Indeed, we have 

(2)
1β (s)=0 since G1β (s)

is constant, F̃10(s)= F̃11(s)=0, and F̃1n(s)= (−1)nωπF/4�,
where �2 =|ω2

0 − γ 2
0 | (for n=2, 3). Hence, the derivative

in Eq. (20b) vanishes. Concerning DA
1n (ωτ ), Eq. (20a) then

yields

DA
12 (ωτ ) = DA

13 (ωτ ) = max
s∈[0,1]


(1)
1β (s) = Fπωe−τγ0

4τ�|(i� − γ0)| .

(63)

We then define DA
1 (ωτ )≡maxβ∈{0,2,3}[DA

1β (ωτ )]. The re-
sults for DA

1 (ωτ ) are shown in the inset of Fig. 1, allowing
us to see the independent evolution of |DDA

1 (t )〉〉 as τ →∞.

C. Landau-Zener under bit-phase flip

As another example of the application of our adiabatic
approach, let us consider the Landau-Zener Hamiltonian given
by HLZ(t ) = h̄ω0σz + h̄�(t )σx, where we consider a time-
independent detuning frequency ω0. Let us assume that the
system evolves under the bit-phase-flip decohering effect,
whose the Lindblad equation reads

ρ̇(t ) = − i

h̄
[HLZ(t ), ρ(t )] + γ (t )[σyρ(t )σy − ρ(t )], (64)

where γ (t ) is the time-dependent bit-phase-flip decoherence
rate. Now, by writing the above equation in its superoperator
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form, we get (in the Pauli basis σi = {1, σx, σy, σz})

LLZ(t ) =

⎡
⎢⎣

0 0 0 0
0 −2γ (t ) −ω0 0
0 ω0 0 −ω0 tan θ (t )
0 0 ω0 tan θ (t ) −2γ (t )

⎤
⎥⎦,

(65)

where θ (t ) = arctan [�(t )/ω0]. The right eigenvectors are
given by

|DLZ
0 (t )〉〉 = [1000]t, (66a)

|DLZ
1 (t )〉〉 = [0 sin θ (t )0 cos θ (t )]t, (66b)

|DLZ
2 (t )〉〉 =

[
0 − cos θ (t )

γ (t ) cos θ (t ) − κ (t )

ω0
sin θ (t )

]t

,

(66c)

|DLZ
3 (t )〉〉 =

[
0 − cos θ (t )

γ (t ) cos θ (t ) + κ (t )

ω0
sin θ (t )

]t

,

(66d)

while the left eigenvectors are

〈〈ELZ
0 (t )| = [1000], (67a)

〈〈ELZ
1 (t )| = [0 sin θ (t )0 cos θ (t )], (67b)

〈〈ELZ
2 (t )| = 1

2

[
0 − cos θ (t )κ̃+ − ω

κ (t )
sin θ (t )κ̃+

]
, (67c)

〈〈ELZ
3 (t )| = 1

2

[
0 − cos θ (t )κ̃−

ω

κ (t )
sin θ (t )κ̃−

]
, (67d)

where we defined κ̃± = 1 ± cos θ (t )γ (t )/κ (t ) and κ2(t ) =
γ 2(t ) cos2 θ (t ) − ω2(t ). The eigenvalues are λ0(t ) = 0,
λ1(t ) = −2γ (t ), and λn(t ) = −γ (t ) − (−1)nκ (t ), where n =
{2, 3}.

Now, by considering the case where �(0) = 0 and that the
system is prepared in the ground state of H (0), the initial state
is given by ρLZ(0) = |1〉〈1| = (1/2)(1 − σz ), so that, in the
superoperator formalism, we write

|ρLZ(0)〉〉 = [1 0 0 −1]t = |DLZ
0 (0)〉〉 − |DLZ

1 (0)〉〉,
(68)

where we already used that θ (0) = 0 [since �(0) = 0] to
write |ρ(0)〉〉 in terms of the eigenvectors of LLZ(0). Again,
notice that the initial state necessarily requires superposition
of two distinct Jordan blocks, with eigenvalues λ0(t ) and
λ1(t ). By assuming that the system undergoes adiabatic dy-
namics, the adiabatic evolution operator reads

VLZ(t, 0) =
3∑

α=0

e
∫ t

0 �α (ξ )dξ |DLZ
α (t )〉〉〈〈ELZ

α (0)|. (69)

The evolved state |ρLZ
ad (t, 0)〉〉=VLZ(t )|ρLZ(0)〉〉 is given by

|ρLZ
ad (t )〉〉 = |DLZ

0 (t )〉〉 − e
∫ t

t0
�1(ξ )dξ |DLZ

1 (0)〉〉, (70)

where we now use 〈〈E1(t )|Ḋ1(t )〉〉=0 to get �1(t )=−2γ (t ).
Thus, we write

|ρLZ
ad (t )〉〉 = |DLZ

0 (t )〉〉 − e− ∫ t
t0

2γ (ξ )dξ |DLZ
1 (t )〉〉. (71)

By rewriting Eq. (71) in the explicit vector notation, we obtain

|ρLZ
ad (t )〉〉 = [

1 −e− ∫ t
t0

2γ (ξ )dξ sin θ (t ) 0 −e− ∫ t
t0

2γ (ξ )dξ cos θ (t )
]t
. (72)

Therefore,

ρLZ
ad (t ) = 1

2

[
1 − e− ∫ t

t0
2γ (ξ )dξ sin θ (t )σx − e− ∫ t

t0
2γ (ξ )dξ cos θ (t )σz

]
. (73)

Like before, we show in Fig. 2 the infidelity I(ωτ ) for
the Landau-Zener model. In agreement with the expected
adiabatic behavior, the infidelity is asymptotically vanishing,
decreasing faster for smaller rates γ (t ). Looking at the adi-
abatic coefficients, as in the previous example, it follows
that the quantities LZ

n1 (ωτ ) do not affect the dynamics. In
addition, we define LZ

1 (ωτ ) ≡ maxn∈{0,2,3}[LZ
1n (ωτ )], where

LZ
1n (ωτ ) is given by Eq. (21) and takes into account the

maximization over 
(1)
1n (s) and 

(2)
1n (s), given by Eqs. (20a)

and (20b), respectively. We numerically compute each coef-
ficient LZ

1n (ωτ ), exhibiting LZ
1 (ωτ ) in the inset of Fig. 2.

To show the nontrivial role played by conditions C1 and
C2, we explicitly plot in Fig. 3 the maximization over the
individual adiabatic coefficients, which are denoted by 

(k)
1 =

maxs,β [(k)
1β (s)] and 1 =maxk[(k)

1 ], with k =1, 2. This plot
shows that both conditions C1 and C2 are nontrivial for
the Landau-Zener model and that the system approximately
evolves through the adiabatic trajectory when the dynamics
becomes sufficiently slow.

IV. CONCLUSIONS

We derived sufficient conditions for adiabaticity in open
quantum systems. These conditions are simple yet general,
allowing for the discussion of the adiabatic dynamics of
arbitrary initial mixed states evolving in superpositions of
Jordan eigenspaces driven by time-local master equations.
In addition, we introduced a nonunitary adiabatic evolution
superoperatorVad(t, t0), which has provided a convenient in-
strument to describe the open-system dynamics. These results
can be seen as an operational toolbox for investigating adia-
baticity when environment effects become non-negligible.

We illustrated the applications of our results in several
distinct scenarios. First, we have shown that quantum systems
evolving at thermal equilibrium can be consistently described
in terms of the adiabatic approximation for open systems.
Notice that the standard adiabatic theorem is derived explic-
itly for closed systems and cannot be applied in general to
describe the dynamics of quantum systems interacting with
an external environment. This problem is solved here by
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FIG. 2. Infidelity I(ωτ ) for achieving the open-system adiabatic
solution of the Landau-Zener dynamics under bit-phase flip for dif-
ferent values of γ0. Inset: Adiabaticity coefficient LZ

1 (ωτ ). We have
set θ =2π/5.

ensuring adiabaticity in open systems through the sufficient
conditions derived in our work. Moreover, we also provided
an illustration of our method in quantum control, evaluating
the adiabatic behavior for the Hamiltonians of the Deutsch
algorithm and the Landau-Zener model under decoherence.
In both cases, state preparation has led to superpositions of
basis vectors belonging to distinct Jordan subspaces, which
required an adiabatic approximation beyond the single Jordan
block picture. They have been analytically treated, with the
asymptotic adiabatic trend explicitly shown through the be-
havior of the infidelity for the adiabatic state and through the
vanishing of the adiabatic coefficients for long times.

As a future perspective, we intend to consider corrections
to the equilibrium state, which can be derived by considering
a perturbative approach. For closed systems, the adiabatic
approximation can be taken as the zeroth-order term in the
adiabatic series expansion. Further corrections can then be ob-
tained in terms of powers of the adiabatic parameter 1/T , with
T denoting the total time of evolution (see, e.g., Refs. [38,39]).
In the case of open systems under time-local evolution, we can
similarly pursue an adiabatic power expansion, whose starting
point can be the formal methods in Appendix B. Moreover,
we also aim to apply the methods developed in this work to
derive generalized shortcuts to adiabaticity in open quantum
systems. In particular, the adiabatic evolution superoperator

FIG. 3. Quantities 
(1)
1 , 

(2)
1 , and 1 as a function of ωτ for the

Landau-Zener example in log (left) and linear (right) scales. We have
set γ0 = 0.1ω and θ =2π/5.

can be applied as a potential tool to provide nontransitional
dynamics in terms of Jordan eigenspaces, similar to what was
considered by Vacanti et al. in Ref. [40]. This is expected
to yield families of nontransitional trajectories in Hilbert-
Schmidt space, allowing for the search of convenient setups
in a reservoir engineering approach.
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APPENDIX A: SUPEROPERATOR FORMALISM

Let us take a quantum system S described by a DS-
dimensional Hilbert space HS, which is coupled to a
surrounding environment. We consider that the evolution of
S is governed by a time-local master equation [41]

ρ̇(t ) = Lt [ρ(t )], (A1)

where Lt [·] is the generator of the dynamics and the subscript
t makes explicit the possibility of time dependence for Lt [·].
By adopting the superoperator formalism, the density operator
is taken as a D2

S-dimensional vector |ρ(t )〉〉 in Hilbert-Schmidt
space [30] (hence the double-ket notation), with the dynam-
ical generator being described by a (D2

S × D2
S )-dimensional

superoperator L(t ), which acts in Hilbert-Schmidt space. In
order to provide the components of |ρ(t )〉〉 and L(t ), we start
by designing a matrix basis composed of the identity 1 and a
set of (D2

S − 1) operators {σn} acting on HS, with Tr{σn} = 0
and Tr{σnσ

†
m} = DSδnm. In this basis, ρ(t ) can be written as

ρ(t ) = 1

DS

⎡
⎣1 +

D2
S−1∑

n=1

�n(t )σn

⎤
⎦, (A2)

with Tr{ρ(t )} = 1 and �n(t ) = Tr{ρ(t )σ †
n }. For a two-level

system, we can use {1, σn} = {1, σx, σy, σz}, with σn denoting
Pauli operators. Then, the density operator reads

ρ(t ) = 1

2
[1 + �x(t )σx + �y(t )σy + �z(t )σz], (A3)

with �n(t ) denoting the components of the three-dimensional
coherence vector ��(t ). Returning to the D2

S-dimensional case
and using Eq. (A2) in Eq. (A1), we obtain

�̇k (t ) = 1

DS

D2
S−1∑

i=0

Tr{σ †
kLt [σi]}�i(t ), (A4)

where L[·] is taken as a linear superoperator and we de-
note σ0 = 1. We now identify the coefficients Tr{σ †

kL[σi]} in
Eq. (A4) as matrix elements at the kth row and ith column
of the (D2

S × D2
S)-dimensional superoperator L(t ). Then, we

write

|ρ̇(t )〉〉 = L(t )|ρ(t )〉〉, (A5)
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where |ρ(t )〉〉 is the D2
S-dimensional coherence vector, with

components �n(t ) = Tr{ρ(t )σ †
n }, n = 0, 1, . . . , D2

S − 1. In ad-
dition, the inner product between two density operators ξ1 and
ξ2 can be provided in terms of their coherence vectors |ξ1〉〉 and
|ξ2〉〉 as 〈〈ξ1|ξ2〉〉 = (1/DS )Tr{ξ †

1 ξ2}, where the dual coherence
vector 〈〈ξ1| has components given by Tr{ξ †

1 σn}.
APPENDIX B: ADIABATIC CONDITIONS

ON THE TOTAL EVOLUTION TIME

Let us derive the conditions for adiabaticity shown in
Eqs. (17a) and (17b) and (25a) and (25b). First, let us start by
considering the one-dimensional case by rewriting Eq. (13) as

e
∫ t

t0
〈〈Eβ (ξ )|Ḋβ (ξ )〉〉dξ d

dt

[
pβ (t )e− ∫ t

t0
〈〈Eβ (ξ )|Ḋβ (ξ )〉〉dξ ]

= −
∑
α �=β

pα (t )e
∫ t

t0
[λα (ξ )−λβ (ξ )]dξ 〈〈Eβ (t )|Ḋα (t )〉〉, (B1)

so that we find

pβ (t )e− ∫ t
t0

〈〈Eβ (ξ )|Ḋβ (ξ )〉〉dξ − pβ (t0)

= −
∑
α �=β

∫ t

t0

Fαβ (ξ )e
∫ ξ

t0
[λα (ξ ′ )−λβ (ξ ′ )]dξ ′

dξ , (B2)

with

Fαβ (t ) = e− ∫ t
t0

〈〈Eβ (ξ )|Ḋβ (ξ )〉〉dξ pα (t )〈〈Eβ (t )|Ḋα (t )〉〉. (B3)

Therefore, the adiabatic approximation follows by requiring

Gαβ (t ) =
∣∣∣∣
∫ t

t0

Fαβ (ξ )e
∫ ξ

t0
[λα (ξ ′ )−λβ (ξ ′ )]dξ ′

dξ

∣∣∣∣ 
 1 (B4)

for all α, β such that α �= β. Now, by using the normalized
time s = t/τ in Eq. (B4), we get

Gαβ (s) =
∣∣∣∣
∫ s

s0

F̃αβ (s′)eτ
∫ s′

s0
[λα (s′′ )−λβ (s′′ )]ds′′

ds′
∣∣∣∣, (B5)

with

F̃αβ (s) = e− ∫ s
s0

〈〈Eβ (s′ )|dsDβ (s′ )〉〉ds′
pα (s)〈〈Eβ (s)|dsDα (s)〉〉,

(B6)
where we have adopted the notation ds f (s) ≡ df (s)/ds. By
defining Gαβ (s) = λα (s) − λβ (s) and assuming Gαβ (s) �= 0,
we can use

d

ds

[
F̃αβ (s)eτ

∫ s
s0
Gαβ (s′ )ds′

Gαβ (s)

]
= d

ds

[
F̃αβ (s)

Gαβ (s)

]
eτ

∫ s
s0
Gαβ (s′ )ds′

+ τ F̃αβ (s)eτ
∫ s

s0
Gαβ (s′ )ds′

, (B7)

so that Gαβ (s) can be rewritten as

Gαβ (s) =
∣∣∣∣1

τ

∫ s

s0

d

ds′

[
F̃αβ (s′)eτ

∫ s′
s0
Gαβ (s′′ )ds′′

Gαβ (s′)

]

− d

ds′

[
F̃αβ (s′)
Gαβ (s′)

]
eτ

∫ s′
s0
Gαβ (s′′ )ds′′

ds′
∣∣∣∣

=
∣∣∣∣ F̃αβ (s)eτ

∫ s
s0
Gαβ (s′ )ds′

τGαβ (s)
− F̃αβ (s0)

τGαβ (s0)

− 1

τ

∫ s

s0

d

ds′

[
F̃αβ (s′)
Gαβ (s′)

]
eτ

∫ s′
s0
Gαβ (s′′ )ds′′

ds′
∣∣∣∣. (B8)

We then observe that we can achieve Gαβ (s)
1 by imposing
the two conditions given by Eqs. (17a) and (17b). In a general
case, where we have multidimensional Jordan blocks, we need
to start from Eq. (23). Without loss of generality we write

rk
β (t ) = pk

β (t )e
∫ t

t0
λβ (ξ )dξ , (B9)

where the argument
∫ t

t0
λβ (ξ )dξ can be associated with a

dynamical phase (in analogy with closed systems) and Eq. (9)
becomes

ṗk
β (t ) = −pk

β (t )〈〈Ek
β (t )|Ḋk

α (t )〉〉 −
∑
nβ �=k

pnβ

β (t )〈〈Ek
β (t )|Ḋnβ

β (t )〉〉

+ pk+1
β (t ) −

∑
α �=β

∑
nα

pnα

α (t )e
∫ t

t0
[λα (ξ )−λβ (ξ )]dξ

× 〈〈Ek
β (t )|Ḋnα

α (t )〉〉. (B10)

Therefore, by following the same procedure as before, we can
show that the adiabatic dynamics is approximately achieved
for

C1:

∣∣∣∣∣ F̃ k
αβ (s)eτ

∫ s
s0
Gαβ (s′ )ds′

τGαβ (s)

∣∣∣∣∣ 
 1, (B11a)

C2:

∣∣∣∣∣1

τ

∫ s

s0

d

ds′

[
F̃ k

αβ (s′)

Gαβ (s′)

]
eτ

∫ s′
s0
Gαβ (s′′ )ds′′

ds′
∣∣∣∣∣ 
 1,

(B11b)

where Gαβ (s) �= 0 and F̃ k
αβ (s′) generalizes Eq. (B6) as

F̃ k
αβ (s) =

Nα∑
nα=1

pnα

α (s)e− ∫ s
s0

〈〈Ek
β (s′ )|ds′Dk

β (s′ )〉〉ds′ 〈〈Ek
β (s)|dsDnα

α (s)〉〉,

(B12)
so that F̃ k

αβ (s) reduces to F̃αβ (s) for one-dimensional Jordan
blocks.

APPENDIX C: THE INVERSE OF THE ADIABATIC
EVOLUTION SUPEROPERATOR

Let us derive the inverse of the evolution superoperator
Vad(t, t0). To this end, we are required to find a superoperator
V−1

ad (t, t0) such that Vad(t, t0)V−1
ad (t, t0) = 1. Then, let us

define

V−1
ad (t, t0) =

N−1∑
α=0

V−1
α (t, t0), (C1)

where each contributionV−1
α (t, t0) is taken as

V−1
α (t, t0)=e− ∫ t

t0
λα (ξ )dξ

Nα∑
nα=1

Nα∑
mα=1

ṽnαmα
(t )|Dmα

α (t0)〉〉〈〈Enα

α (t )|,

(C2)

with parameters ṽnαmα
(t ) to be determined. This definition is

convenient because we can write

Vβ (t, t0)V−1
α (t, t0) = δαβVβ (t, t0)V−1

α (t, t0), (C3)
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where we use the biorthonormality relationship between right- and left-hand-side quasieigenvectors. Now, we write

A1 = Vad(t, t0)V−1
ad (t, t0) =

N−1∑
α=0

N−1∑
β=0

Vα (t, t0)V−1
β (t, t0) =

N−1∑
α=0

Vα (t, t0)V−1
α (t, t0), (C4)

where we already used Eq. (C3). Thus,

A1 =
N−1∑
α=0

[(
Nα∑

nα=1

Nα∑
mα=1

vnαmα
(t )|Dnα

α (t )〉〉〈〈Emα

α (t0)|
)(

Nα∑
jα=1

Nα∑
kα=1

ṽ jαkα
(t )|D jα

α (t0)〉〉〈〈Ekα

α (t )|
)]

=
N−1∑
α=0

[
Nα∑

nα=1

Nα∑
mα=1

Nα∑
jα=1

Nα∑
kα=1

vnαmα
(t )ṽ jαkα

(t )|Dnα

α (t )〉〉(〈〈Emα

α (t0)|D jα
α (t0)〉〉)〈〈Ekα

α (t )|
]

=
N−1∑
α=0

[
Nα∑

nα=1

Nα∑
jα=1

Nα∑
kα=1

vnα jα (t )ṽ jαkα
(t )|Dnα

α (t )〉〉〈〈Ekα

α (t )|
]

. (C5)

Let us compute the matrix elements 〈〈E�η

η (t )|A1|Dmν
ν (t )〉〉. To simplify the notation, from now on, we will omit the time

dependence of the coefficients v and ṽ. Then

〈〈E�η

η (t )|A1|Dmν

ν (t )〉〉 =
N−1∑
α=0

[
Nα∑

nα=1

Nα∑
jα=1

Nα∑
kα=1

vnα jα ṽ jαkα
〈〈E�η

η (t )|Dnα

α (t )〉〉〈〈Ekα

α (t )|Dmν

ν (t )〉〉
]

=
N−1∑
α=0

[
Nα∑

nα=1

Nα∑
jα=1

Nα∑
kα=1

vnα jα ṽ jαkα
δ�ηnα

δkαmν
δηαδαν

]

=
N−1∑
α=0

[
Nα∑

jα=1

v�η jα ṽ jαmν
δηαδαν

]
= δην

Nν∑
jν=1

v�η jν ṽ jνmν
. (C6)

Therefore, to obtainA1 = Vad(t, t0)V−1
ad (t, t0) = 1, the coef-

ficients are required to satisfy

Nν∑
jν=1

v�ν jν ṽ jνmν
= δ�νmν

. (C7)

Analogously, by requiring V−1
ad (t, t0)Vad(t, t0) = 1, we ob-

tain

Nν∑
jν=1

ṽ�ν jν v jνmν
= δ�νmν

. (C8)

In addition, a further requirement for the operator Vad(t, t0)
is the block diagonalization of the Lindblad superopera-
tor. Indeed, let us consider an operator A2 given by A2 =
V−1

ad (t, t0)L(t )Vad(t, t0), so that we have

A2 = V−1
ad (t, t0)L(t )Vad(t, t0)

=
N−1∑
α=0

N−1∑
β=0

V−1
α (t, t0)L(t )Vβ (t, t0)︸ ︷︷ ︸

Aαβ

2

=
N−1∑
α=0

N−1∑
β=0

Aαβ

2 .

(C9)

Now observe we can writeAαβ

2 as

Aαβ

2 = V−1
α (t, t0)L(t )Vβ (t, t0)

= e
∫ t

t0
[λβ (ξ )−λα (ξ )]dξ

Nα∑
jα=1

Nα∑
kα=1

Nβ∑
nβ=1

Nβ∑
�β=1

ṽ jαkα
vnβ�β

〈〈Ekα

α (t )|L(t )|Dnβ

β (t )〉〉|D jα
α (t0)〉〉〈〈E�β

β (t0)|

= e
∫ t

t0
[λβ (ξ )−λα (ξ )]dξ

Nα∑
jα=1

Nα∑
kα=1

Nβ∑
nβ=1

Nβ∑
�β=1

ṽ jαkα
vnβ�β

λα (t )〈〈Ekα

α (t )|Dnβ

β (t )〉〉|D jα
α (t0)〉〉〈〈E�β

β (t0)|

+ e
∫ t

t0
[λβ (ξ )−λα (ξ )]dξ

Nα∑
jα=1

Nα∑
kα=1

Nβ∑
nβ=1

Nβ∑
�β=1

ṽ jαkα
vnβ�β

〈〈Ekα

α (t )|D(nβ−1)
β (t )〉〉|D jα

α (t0)〉〉〈〈E�β

β (t0)|,
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where we have used the quasieigenvalue relationship, provided by Eq. (6a). Thus, by applying the biorthonormality property of
the basis, we write

Aαβ

2 =e
∫ t

t0
[λβ (ξ )−λα (ξ )]dξ

Nα∑
jα=1

Nα∑
kα=1

Nβ∑
nβ=1

Nβ∑
�β=1

[
ṽ jαkα

vnβ�β
λα (t )δαβδkαnβ

|D jα
α (t0)〉〉〈〈E�β

β (t0)| + ṽ jαkα
vnβ�β

δαβδkα (nβ−1)|D jα
α (t0)〉〉〈〈E�β

β (t0)|].
(C10)

Due to the Kronecker delta δαβ , we then write

A2 =
N−1∑
α=0

Nα∑
jα=1

Nα∑
kα=1

Nα∑
nα=1

Nα∑
�α=1

ṽ jαkα
vnα�α

λα (t )δkαnα
|D jα

α (t0)〉〉〈〈E�α

α (t0)| +
N−1∑
α=0

Nα∑
jα=1

Nα∑
kα=1

Nα∑
nα=1

Nα∑
�α=1

ṽ jαkα
vnα�α

δkα (nα−1)|D jα
α (t0)〉〉〈〈E�α

α (t0)|

=
N−1∑
α=0

Nα∑
jα=1

Nα∑
nα=1

Nα∑
�α=1

(ṽ jαnα
vnα�α

λα (t ) + ṽ jα (nα−1)vnα�α
)|D jα

α (t0)〉〉〈〈E�α

α (t0)|. (C11)

By computing the matrix elements ofA2 in the right ({|D jα
α (t0)〉〉}) and left ({〈〈E�α

α (t0)|}) bases, we get

〈〈Egη

η (t0)|A2|Dlν
ν (t0)〉〉 =

N−1∑
α=0

Nα∑
jα=1

Nα∑
nα=1

Nα∑
�α=1

(ṽ jαnα
vnα�α

λα (t ) + ṽ jα (nα−1)vnα�α
)δηαδgη jα δανδ�α lν

=
Nη∑

nη=1

(
ṽgηnη

vnη lν λη(t ) + ṽgη (nη−1)vnη lν

)
δην. (C12)

As a first result, we can see that 〈〈Egη

η (t0)|A2|Dlν
ν (t0)〉〉 is nonvanishing only for basis vectors {〈〈E�α

α (t0)|} and {|D jα
α (t0)〉〉}

belonging to the same Jordan block, which means that A2 is block diagonal in this basis. Then, for matrix elements inside
a Jordan block, we write

〈〈Egν

ν (t0)|A2|Dlν
ν (t0)〉〉 = λν (t )

Nν∑
nν=1

ṽgνnν
vnν lν +

Nν∑
nν=1

ṽgν (nν−1)vnν lν . (C13)

The Jordan decomposition for L(t ) is then achieved both by imposing Eq. (C8) and by requiring

Nν∑
nν=1

ṽgν (nν−1)(t )vnν lν (t ) = δlν (gν+1), (C14)

with ṽgν0 ≡ 0. Equation (C14) ensures that the neighboring elements of the main diagonal are set to 1, as required by the Jordan
form. This equation is automatically satisfied for one-dimensional Jordan blocks, but it is nontrivial in the multidimensional
case.
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