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Einstein-Podolsky-Rosen (EPR) steering has potential applications in quantum information processing. Here
the genuine tripartite EPR steering is investigated in cascaded nonlinear process of spontaneous parametric
down-conversion cascaded with a sum-frequency generation in an optical cavity for a wide range of the nonlinear
parameters. The threshold properties of the cascaded nonlinear precess are also analyzed both below and without
threshold regime, respectively. The genuine tripartite EPR steering is demonstrated based on the criteria for
genuine multipartite EPR steering. Our scheme of the generation of genuine tripartite EPR steering can be used
as a suggestion for the potential experiments and the applications in quantum communication and computation.
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I. INTRODUCTION

Quantum nonlocality in quantum mechanics has received
widespread attention in recent years. It is a large range, in-
cluding quantum entanglement [1], quantum steering [2–4],
quantum discord [5–7], and Bell nonlocality [8]. Quantum
entanglement and Bell non-locality have been adequately in-
vestigated. In recent years, however, the issue of quantum
steering which can be dated back to the famous Einstein-
Podolsky-Rosen (EPR) paradox [9] has attracted a lot of
interest. The essence of quantum steering was advanced by
Schrödinger [2,3] in order to response the EPR paradox. Al-
though this concept was proposed decades ago, scientists did
not understand the true meaning of quantum steering. Until
2007, Wiseman et al. [10] gave the rigorous definition of
quantum steering in the form of a task. Quantum steering
(EPR steering) shows an unique asymmetry that is different
from quantum entanglement and Bell nonlocality. It is pre-
cisely because of this characteristic of asymmetry that EPR
steering has potential application prospects in many aspects
such as quantum key distribution [11,12], quantum secret
sharing [13–17], quantum networks [18], and so on.

A lot of studies have been done on the topic of EPR
steering. The earliest demonstration of EPR steering was done
in a nondegenerate optical parametric oscillator [19]. In a
seminal work, an overview of achievements on EPR steering
was shown by Reid et al. [20]. Continuous variable (CV)
EPR steering was also investigated both in theory and in
experiment [21–29] because CV can be unconditionally im-
plemented. CV EPR steering can be detected by the criterion
which proposed by Reid [30]. He and Reid [25] developed
the concept of genuine N-partite EPR steering and put for-
ward the criteria for multipartite EPR steering. Rosales-Zárate
et al. [31] investigated the asymmetry of the decoherence
effects on the EPR steering and they found that the direction
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of EPR steering is of great significance for understanding the
decoherence of EPR steering. In 2017, Olsen [32] showed that
one can control the asymmetry of EPR steering in the system
by adjusting the amplitude of an injected signal. Bipartite
asymmetry EPR steering was also investigated in the cascaded
fourth-harmonic generation process [33] and the cascaded
third-harmonic generation process [34], respectively. Tischler
et al. [35] gave an experimental demonstration of one-way
steering by using a sufficient condition for nonsteerability.
Huang et al. [36] demonstrated that one can generate and
control the asymmetry of steady-state EPR steering by en-
gineering asymmetric couplings to the optical field in 2019.
EPR steering was also investigated based on the cascaded
four-wave mixing processes [37,38] and cascaded nonlin-
ear processes in optical superlattice [39,40]. In addition, a
necessary and sufficient characterization of steering was pro-
posed based on a quantum information processing task [41].
Recently, Fadel et al. [42] presented criteria to detect entangle-
ment and EPR steering between two bosonic modes through
the measurements of number and phase. Xiang et al. [43]
proposed symmetric and asymmetric structures of cascaded
four-wave mixing to produce quadripartite EPR steering and
investigated four distinct types of monogamy relations of
Gaussian steering. In a word, EPR steering has received much
attention, which made it become a useful quantum resource
for quantum information.

The generation of tripartite entanglement was investi-
gated through a spontaneous parametric down-conversion
cascaded with a sum-frequency process both in an optical
cavity [44–46] and without optical cavity [47] and the fea-
sibility of the schemes were also theoretically demonstrated.
However, up to now, the genuine multipartite EPR quan-
tum steering correlations in this cascaded nonlinear process
have not been studied. In this paper, we present the genuine
tripartite EPR steering in the cascaded nonlinear processes
of spontaneous parametric down-conversion cascaded with a
sum-frequency generation in an optical cavity based on the
criterion for multipartite EPR steering [25]. The quantum
steering properties are discussed for a wide range of nonlinear
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FIG. 1. (a) Sketch of the one-sided optical cavity in which an op-
tical superlattice (OS) is placed as a nonlinear gain medium. (b) The
quasi-phase-matching sketch for the cascaded nonlinear process as
k0 = k1 + k3 + G1 and k2 = k0 + k3 + G2, where reciprocal vec-
tors G1 and G2 are provided by OS.

parameters related to the cascaded nonlinear processes. The
threshold properties of the system are also analyzed both
below and without threshold, respectively. And we finally
demonstrate the success of tripartite EPR steering in the
cascaded nonlinear processes and discuss the experimental
feasibility. The remaining part of this paper is organized as
following. In Sec. II, we describe the Hamiltonian and the
equations of motion obtained in the positive-P representa-
tion [48,49]. And we also performed fluctuation analysis and
obtained stationary solutions. Detection of the genuine tripar-
tite EPR steering is discussed in Sec. III. Through calculation
and graph analysis, we show the effects of Fourier analysis
frequency ω, nonlinear coupling parameter κ , pump value
ε, and damping rates of γ on the tripartite EPR steering,
respectively. Finally, a brief summary about this work is given
in Sec. IV.

II. EQUATIONS OF MOTION AND THE STATIONARY
SOLUTIONS

A. Equations of motion for the optical modes

We consider a pump with frequency of ω0 incident into a
one-sided optical cavity in which an optical superlattice (OS)
is placed as a nonlinear gain medium, which can be seen
in Fig. 1(a). Mirror M2 reflects all beams completely, while
mirror M1 reflects all beams partially. First, two beams with
the frequencies of ω1 and ω3 are generated by the first non-
linear process of spontaneous parametric down-conversion.
Then, the third beam with frequency of ω2 is generated
by a cascaded sum-frequency generation process between
pump and the beam with frequency of ω3 in the same op-
tical superlattice. The energy conservations in the cascaded
nonlinear process are ω0 = ω1 + ω3 and ω2 = ω0 + ω3. This
cascaded nonlinear process can be achieved by the technique

of quasi-phase-matching [50], which can be seen in the similar
experiment work [51,52]. The phase mismatch in the cascaded
nonlinear process can be compensated by two reciprocal vec-
tors G1 and G2 which provided by optical superlattice for
k0 = k1 + k3 + G1 and k2 = k0 + k3 + G2, which can be
seen in Fig. 1(b).

In order to derive the equations of motion and the station-
ary solutions, we start from the interaction Hamiltonian of this
cascaded nonlinear process as

HI = ih̄κ1b̂â†
1â†

3 + ih̄κ2b̂â3â†
2 + H.c., (1)

where κ1 and κ2 represent the dimensionless effective nonlin-
earity that are related to pump power, nonlinear polarizability,
and the structure parameters of the optical superlattice. They
are taken to be real for the purpose of simplicity [53]. b̂ and
âi (i = 1, 2, 3) are the bosonic annihilation operator of the
cavity modes with frequency of ωi (i=0,1,2,3), respectively.
The Hamiltonian of the coherent input cavity pumping can be
written as [49]

Hpump = ih̄(εb̂† − ε∗b̂), (2)

where ε represents the coherent optical field with the fre-
quency of ω0 incident on the optical cavity. Following the
description of Lindblad superoperator [49], the damping of the
four optical fields into a zero temperature Markovian reservoir
can be described by the Lindblad superoperator

Lρ̂ = γ0(2b̂ρ̂b̂† − b̂†b̂ρ̂ − ρ̂b̂†b̂)

+ γi(2âiρ̂â†
i − â†

i âiρ̂ − ρ̂â†
i âi ), (3)

where ρ̂ is the system density matrix and γi(i = 0, 1, 2, 3)
represents the cavity loss at ωi, respectively. The damping
rates γi is related to the reflection transmission coefficient
of the optical cavity for ri = 1 − γi and ti = √

2γi [44]. The
master equation of this system can be expressed as

d ρ̂

dt
= − i

h̄
[HI + Hpump, ρ̂] +

∑
Lρ̂. (4)

One can map the master equation onto Fokker-Planck
equation (FPE) in pseudoprobability distribution [49]. How-
ever, one cannot obtain stochastic differential equations from
FPE because the FPE for the Glauber-Sudarshan P func-
tion [54,55] has a negative diffusion matrix. Positive-P
representation [48,49] is exact for this cascaded system and
can be used in our discussion. The FPE can be found from the
equation of the Glauber-Sudarshan P distribution by taking
variables and their complex conjugates as independent [56].
Therefore, αi and α+

i are independent variables in the fol-
lowing, which correspond to αi and α

†
i when the averages of

products converge to normally ordered operator expectation
values [56] and similarly for β. In addition, in positive-P
representation, P(αi, β ) function always exists for a physical
density operator and has all the properties of a genuine prob-
ability [49]. Then, we obtained the FPE of the system, which
has a positive-definite diffusion matrix as

dP(αi, β )

dt
=

{
−

[
(−γ1α1 + κ1α

+
3 β )

∂

∂α1
+ (−γ1α

+
1 + κ1α3β

+)
∂

∂α+
1

+ (−γ2α2 + κ2α3β )
∂

∂α2

+ (−γ2α
+
2 + κ2α

+
3 β+)

∂

∂α+
2

+ (−γ3α3 + κ1α
+
1 β − κ2α2β

+)
∂

∂α3
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+ (−γ3α
+
3 + κ1α1β

+ − κ2α
+
2 β )

∂

∂α+
3

+ ∂

∂β
(−γ0β + ε − κ1α1α3 − κ2α2α

+
3 )

+ ∂

∂β∗ (−γ0β
+ + ε∗ − κ1α

+
1 α+

3 − κ2α
+
2 α3)

]

+ 1

2

(
∂2

∂α1∂α3
2κ1β

)
+ 1

2

(
∂2

∂α+
1 ∂α+

3

2κ1β
+
)

− 1

2

(
∂2

∂α3∂β
2κ2α

+
2

)
− 1

2

(
∂2

∂α+
3 ∂β+ 2κ2α2

)}
P(αi, β ). (5)

Following the normal processing [49], the equations of motion of the system can be derived in the positive-P representa-
tion [48,49],

dα1

dt
= −γ1α1 + κ1α

+
3 β +

√
κ1β/2(η1 + iη2),

dα+
1

dt
= −γ1α1 + κ1α3β

+ +
√

κ1β+/2(η3 + iη4),

dα2

dt
= −γ2α2 + κ2α3β,

dα+
2

dt
= −γ2α

+
2 + κ2α

+
3 β+,

dα3

dt
= −γ3α3 + κ1α

+
1 β − κ2α2β

+ +
√

κ1β/2(η1 − iη2) +
√

−κ2α
+
2 /2(η5 + iη6),

dα+
3

dt
= −γ3α

+
3 + κ1α1β

+ − κ2α
+
2 β +

√
κ1β+/2(η3 − iη4) +

√
−κ2α2/2(η7 + iη8),

dβ

dt
= ε − γ0β − κ1α1α3 − κ2α2α

+
3 +

√
−κ2α

+
2 /2(η5 − iη6),

dβ+

dt
= ε∗ − γ0β

+ − κ1α
+
1 α+

3 − κ2α
+
2 α3 +

√
−κ2α2/2(η7 − iη8), (6)

where ηi(t ) are the Gaussian noise terms with the properties
〈ηi(t )〉 = 0 and 〈ηi(t )η j (t ′)〉 = δi jδ(t − t ′).

B. Steady-state solutions

Equation (6) cannot to be solved analytically. However,
we can decompose the positive-P variables [49] into their
steady-state expectation values and a small part of Gaussian
fluctuations as αi = Ai + δαi (i = 1, 2, 3) and similarly for
β, where Ai = 〈αi〉 is the steady-state solution for the optical
mode with the frequency of ωi. Based on above calculations,

by means of linear processing approach [49], Eq. (6) can be
rewritten for the fluctuation terms as

dδα̃ = −Aδα̃dt + BdW, (7)

with

δα̃ = [δα1, δα
†
1, δα2, δα

†
2, δα3, δα

†
3, δβ, δβ†]T, (8)

where A is the drift matrix, B contains the steady-state
solutions of noise terms and dW is a vector of Wiener incre-
ments [49]. The drift matrix A can be written as

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1 0 0 0 0 −κ1A0 κ1A∗
3 0

0 γ1 0 0 −κ1A∗
0 0 0 −κ1A3

0 0 γ2 0 −κ2A0 0 −κ2A3 0
0 0 0 γ2 0 −κ2A∗

0 0 −κ2A∗
3

0 −κ1A0 κ2A∗
0 0 γ3 0 −κ1A∗

1 κ2A2

−κ1A∗
0 0 0 κ2A0 0 γ3 κ2A∗

2 −κ1A1

κ1A3 0 κ2A∗
3 0 κ1A1 κ2A2 γ0 0

0 κ1A∗
3 0 κ2A3 κ2A∗

2 κ1A∗
1 0 γ0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

Through the above discussion, the drift matrix A should be
a positive-definite matrix which requires there are no negative
real part eigenvalues for A. In this case, the system can be
in a steady-state and above linearization process is effective.
Eq. (7) can be solved by Fourier transform [49]. Then, the
satisfaction of the condition of matrix A allows us to calculate

the intracavity spectra via the intracavity spectral matrix [49]

S(ω) = (A + iωI)−1D(AT − iωI)−1, (10)

where ω is the Fourier analysis frequency, I is the identity
matrix, and D = BBT. According to the standard input-output
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relationship [57], we can obtain the output spectrum of the
cavity.

From Eq. (6), throwing away the noise terms, one can
obtain the mean values for the equations of motion as

d〈α1〉
dt

= −γ1〈α1〉 + κ1〈α∗
3〉〈β〉,

d〈α2〉
dt

= −γ2〈α2〉 + κ2〈α3〉〈β〉,
d〈α3〉

dt
= −γ3〈α3〉 + κ1〈α∗

1〉〈β〉 − κ2〈α2〉〈β∗〉,
d〈β〉

dt
= ε − γ0〈β〉 − κ1〈α1〉〈α3〉 − κ2〈α2〉〈α∗

3〉. (11)

The steady-state solutions Ai can be obtained by setting
d〈αi〉

dt = 0 and d〈β〉
dt = 0 in Eq. (11). We find that the steady-

state solutions obtained from Eq. (11) are divided into three
different categories and it is determined by whether there
is a oscillation threshold. If κ2

1 γ2 > κ2
2 γ1, the system has a

threshold

εc = γ0
√

γ1γ2γ3√
κ2

1 γ2 − κ2
2 γ1

. (12)

1. Below the threshold

The cavity will not oscillate below this threshold and the
signal modes will not be macroscopically occupied when the
value of ε below the threshold εc. We obtain the steady-state
solutions in this case (ε < εc) as

A0 = ε

γ0
, Ai = 0 (i = 1, 2, 3). (13)

2. Above the threshold

In the second case of ε > εc, we obtain the steady-state
solutions from Eq. (11) as

A0 = εc

γ0
, A1 = κ1

γ1
A0A3, A2 = κ2

γ2
A0A3,

A3 =
√√√√ ε − εc

εc
γ0

( κ2
1

γ1
+ κ2

2
γ2

) . (14)

3. Without threshold

We find that there is no threshold if κ2
1 γ2 < κ2

2 γ1, which
means that for any value of the pumping field, the signal
modes will not be occupied macroscopically. In this case, the
steady-state solutions are obtained as

A0 = ε

γ0
, Ai (i = 1, 2, 3) = 0, (15)

which is the same as the case below the threshold. If there is
no sum-frequency process and only down-conversion process,
then κ2 = 0 and γ2 = 1, the threshold in Eq. (12) will become
the threshold of nondegenerate optical parametric oscillation
(NOPO) as ε0 = γ0

√
γ1γ3

κ1
. If it is a degenerate OPO, γ1 = γ3 =

γ , the threshold is the normal OPO threshold εth = γ0γ

κ1
[56].

In order to facilitate the discussion for without threshold, in
the later calculation, we will express the pump field ε in a
ratio of ε0 in the range of without threshold.

FIG. 2. The steady-state range with γ0 = 0.01, γ1 = γ2 = γ3 =
0.02, and κ1 = 0.02. The dashed line is the separated line with and
without threshold.

C. Steady-state analysis

We have already obtained the steady-state values in dif-
ferent situations. However, the drift matrix A should be a
positive-definite matrix which requires that the eigenvalue of
A must not have a negative real part. In the following, we will
proceed to the steady-state analysis starting from analyzing
the eigenvalues of the drift matrix A in Eq. (9) to verify the
effectiveness of the linearization process. The polynomial of
eigenvalues for matrix A can be obtained as

(γ0 − J )2
[
(γ1 − J )(γ2 − J )(γ3 − J ) + JA2

0

(
κ2

1 − κ2
2

)
+ A2

0

(
κ2

2 γ1 − κ2
1 γ2

)]2 = 0, (16)

where J is the required eigenvalue, which should have eight
values. In order to simplify the calculation, we set γ1 = γ2 =
γ3 = γ . The damping rates γi is related to the reflection trans-
mission coefficient of the optical cavity for ri = 1 − γi and
ti = √

2γi [44]. So experimentally, one can design the same
reflection and transmittance to get the same damping rate for
the three beams. In this case, the threshold of Eq. (12) can be
rewritten as εc = γ γ0√

κ2
1 −κ2

2

. Then, we obtain the expression of

the eigenvalues as

J1,2 = γ0, J3,4 = γ , J5,6 = γ + ε

γ0

√
κ2

1 − κ2
2 ,

J7,8 = γ − ε

γ0

√
κ2

1 − κ2
2 . (17)

We find that the last two eigenvalues J7,8 in Eq. (17) may
have a negative real part when ε >

γγ0√
κ2

1 −κ2
2

, which means

that linearization is invalid for the case above the threshold.
That is to say, the fluctuations above the threshold cannot
be linearized because the solution is unstable and there is no
steady-state solutions to linearize around. In the ranges below
the threshold and without threshold, one can find that none
of the eigenvalues in Eq. (17) have negative real part, which
indicates that the system is always stable in the ranges below
the threshold and without threshold.

In Fig. 2 we plot the steady-state range with γ0 = 0.01,
γ1 = γ2 = γ3 = 0.02, and κ1 = 0.02. The dashed line is the
separated line for with and without threshold. The system is
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FIG. 3. The values of Si and Stot below threshold versus the
Fourier analysis frequency ω with γ0 = 0.01, γ1 = γ2 = γ3 = 0.02,
κ1 = 0.02, κ2 = 0.5κ1, and ε = 0.3εc.

always unstable above the solid line. The system is stable in
the ranges of below the solid line (below the threshold range)
and the right of the dashed line (without threshold range).
Therefore, we can perform linearized fluctuation analysis and
discuss the EPR steering properties in above two stable ranges
in the following.

III. GENUINE TRIPARTITE EPR STEERING

Bipartite asymmetric quantum steering was investigated in
NOPO with an injected signal [32], cascaded fourth-harmonic
generation [33], and third-harmonic generation [34], respec-
tively. Genuine tripartite quantum steering among pump,
second-harmonic, and third-harmonic was demonstrated theo-
retically in our previous work [39]. And the genuine tripartite
quantum steering in cascaded nonlinear process of quasi-
phase-matching fourth-harmonic generation in an optical
cavity was also confirmed [40]. In this paper, the genuine
tripartite EPR steering in nonlinear processes of spontaneous
parametric down-conversion cascaded a sum-frequency gen-
eration in an optical cavity is investigated according to the

FIG. 4. The values of Si and Stot below threshold versus the var-
ied pump value ε with γ0 = 0.01, γ1 = γ2 = γ3 = 0.02, κ1 = 0.02,
κ2 = 0.5κ1, and ω = 2γ0.

FIG. 5. The values of Si and Stot below threshold versus the
nonlinear coupling parameter κ2/κ1 with γ0 = 0.01, γ1 = γ2 = γ3 =
0.02, κ1 = 0.02, ε = 0.3εc, and ω = 2γ0.

criteria of multipartite EPR steering [25]. The orthogonal
quadrature is defined as αi = Xi + iYi, and α

†
i = Xi − iYi,

where Xi and Yi represents quadrature amplitude and phase
component, respectively. Based on the criteria of multipartite
EPR steering [25], one can use a set of conditions to investi-
gate whether does EPR steering exist in the system. And a set
of inequalities is given as

S1 = �(X1 − X2)�(Y1 + Y2 + Y3) < 1,

S2 = �(X2 − X3)�(Y1 + Y2 + Y3) < 1,

S3 = �(X3 − X1)�(Y1 + Y2 + Y3) < 1. (18)

When the values of Si < 1(i = 1, 2, 3), EPR steering of
system i will be confirmed [25]. That is the steering of 1
will be confirmed by the other optical fields {2, 3} if S1 < 1,
steering of 2 will be confirmed by the other optical fields {3, 1}
if S2 < 1, and steering of 3 will be confirmed by the other
optical fields {1, 2} if S3 < 1. And it also indicates that the
three fields are bipartite quantum steering with each other. The
most important condition for verifying tripartite EPR steering

FIG. 6. The values of Si and Stot below threshold versus the
damping rates of γ /γ0 with γ0 = 0.01, κ1 = 0.02, κ2 = 0.5κ1, ω =
2γ0, and ε = 0.3εc.
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FIG. 7. The values of Si and Stot without threshold versus the
Fourier analysis frequency ω with γ0 = 0.01, γ1 = γ2 = γ3 = 0.02,
κ1 = 0.02, κ2 = 2.5κ1, and ε = 1.1ε0.

is the measurement of

Stot = S1 + S2 + S3 < 1. (19)

Satisfying Eq. (19) will demonstrate that tripartite EPR
steering exists in the system [25]. The parameters will greatly
influence the calculation results. In the following, we will
investigate the EPR steering in the two ranges of below the
threshold and without threshold.

A. Tripartite EPR steering in the range of below the threshold

Figure 3 depicts that Si and Stot versus the Fourier analy-
sis frequency ω with γ0 = 0.01, γ1 = γ2 = γ3 = 0.02, κ1 =
0.02, and κ2 = 0.5κ1. One can see clearly that the value of Si

are all below 1, and more importantly, Stot is also below 1 in
the whole range of ω and Eq. (19) is satisfied. It shows that
tripartite EPR steering can be generated by the cascaded non-
linear process. In Fig. 4, we show that the EPR steering varies
with the pump value ε. Before the value of ε/εc reaches about
0.75, the value of Stot increases as the threshold approaches,
and is smaller than 1, which means that it is sufficient for

FIG. 8. The values of Si and Stot without threshold versus the var-
ied pump value ε with γ0 = 0.01, γ1 = γ2 = γ3 = 0.02, κ1 = 0.02,
κ2 = 2.5κ1, and ω = 2γ0.

FIG. 9. The values of Si and Stot without threshold versus the
nonlinear coupling parameter κ2/κ1 with γ0 = 0.01, γ1 = γ2 = γ3 =
0.02, κ1 = 0.02, ε = 1.1ε0, and ω = 2γ0.

the demonstration of tripartite EPR steering when ε < 0.75εc.
However, Stot violates the condition of tripartite EPR steering
in Eq. (19) when the value of ε/εc is more than 0.75, which
means that the tripartite EPR steering disappear in this case.
Figure 5 shows that Si and Stot versus the nonlinear coupling
parameter κ2/κ1 with γ1 = γ2 = γ3 = 0.02 and ω = 2γ0. It
can be seen clearly that Stot is below 1 with the increase
of κ2/κ1, which shows that tripartite EPR steering can be
produced in our scheme. Nevertheless, the values of Si and
Stot have mutated at about κ2/κ1 = 1, which because in the
specific expressions of Si and Stot, the denominator is very
small when the value of κ2/κ1 approaches 1 and the value
of Si and Stot suddenly increases sharply and the threshold
εc in Eq. (12) also becomes infinite. Actually, κ2/κ1 < 1
is the condition that the system has a threshold. We con-
sider the influences of the damping rates of γ /γ0 on the Si

and Stot , which are plotted as a function of γ /γ0 in Fig. 6.
Obviously, Stot satisfies the condition in Eq. (19). In other
words, the genuine tripartite EPR steering can be generated
by this cascaded nonlinear process in the range of below the
threshold.

B. Tripartite EPR steering in the range of without threshold

In the range of without an oscillation threshold, linearized
fluctuation analysis is also valid. We show that Si and Stot

versus the Fourier analysis frequency ω in Fig. 7 with κ2 =
2.5κ1, ε = 1.1ε0, and other parameters are consistent with
the case in Fig. 3. The curves of Si and Stot are very sym-
metrical and the value of Stot is below 1 in the whole range,
which indicates that the genuine tripartite EPR steering can
be produced in our scheme. In addition, there is a strong dip
for S3 at ω = 5. It is because the optical fields of â1 and
â3 are produced from the nonlinear process of spontaneous
parametric down-conversion and they have a strong quantum
correlation. Similar cases also can be seen in Figs. 8, 9, and 10.
Then, we also investigate the effects of the pumping parameter
ε and the effective nonlinear coupling parameter κ2/κ1 on the
values of Si and Stot in Figs. 8 and 9, respectively. None of
Stot violates the condition of the tripartite EPR steering in
Eq. (19) for the whole range of ε. Figure 9 shows that the
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FIG. 10. The values of Si and Stot without threshold versus
the damping rates of γ /γ0 with κ1 = 0.02, κ2 = 2.5κ1, ω = 2γ0,
and ε = 1.1ε0.

values of the Si and Stot are all below 1 and decrease with
the increase of the effective nonlinear parameter κ2/κ1. We
also show how the correlations of Si and Stot change as the
damping rates of γ /γ0 in Fig. 10. The value of Stot is below
1, which demonstrates the success of the present scheme of
the generation of genuine tripartite EPR steering again. In this
way, the genuine tripartite EPR steering is demonstrated when
the system has no threshold.

C. Discussions and experimental feasibility analysis

Through the above calculation, we find that various pa-
rameters have great influence on the tripartite EPR steering.
The most crucial parameters are the damping rates γi and
the effective nonlinear parameter κi. The damping rates γi is
related to the reflection transmission coefficient of the opti-
cal cavity for ri = 1 − γi and ti = √

2γi [44]. For example,
in our calculation, we set γ1 = γ2 = γ3 = γ = 0.02, that is,
the transmittance of the coupling mirror M1 to the optical
fields â1, â2 and â3 is t2

i = 2γ = 4% and the reflectivity is
r2

i = (1 − γ )2 = 96%. This can be achieved experimentally
by coating the cavity mirror.

The nonlinear coupling parameter κi is related to pump
power, nonlinear polarizability, and the structure parameters
of optical superlattice. In our present scheme, we can change
the nonlinear coupling parameter κi by designing the pa-
rameters of optical superlattice [51], which is the advantage
of our scheme over the previous atomic system scheme in
Refs. [37,38,43]. Moreover, the larger κ2 can increase the con-
version efficiency of the second cascaded nonlinear process,
thus a better tripartite EPR steering can be obtained, which can
be seen from Fig. 9. In this way, we can get a better tripartite
EPR steering by designing optical superlattice and increasing
the nonlinear coefficient κ2. That is, it is more likely to get a
better tripartite EPR steering in the range of without threshold
than below the threshold.

In addition, the present scheme is more feasible in exper-
iment than our previous schemes in Refs. [39,40] because
both the single pass process [51] of this cascaded nonlinear
process and the OPO scheme [52] have been realized ex-
perimentally. In the single pass process [51], 666-nm signal

and 2644-nm idler were generated by the first parametric
down-conversion process. Then 443-nm sum-frequency beam
was generated by the sum-frequency process between 532-nm
pump and 2644-nm idler. The maximum conversion effi-
ciency of the 666 nm signal is up to 34.0% and the 443 nm
sum-frequency beam is about 3%. In the OPO scheme [52],
633-nm signal and 3342-nm idler were generated by the first
nonlinear process of parametric down-conversion. A 459-nm
sum-frequency beam was generated by the cascaded sum-
frequency process between 532-nm pump and 3342-nm idler.
However, in their OPO scheme, only 633-nm signal res-
onates, and other beams do not resonate in the cavity. It
is difficult to make all the beams resonate in the cavity at
the same time, which is also the biggest challenge of our
present scheme in this paper. Based on the experiment of
the generation of three-color entanglement [58], we think
that through careful design and control, it should be possible
to realize the simultaneous resonance of three beams in the
cavity.

IV. CONCLUSIONS

In this paper, we investigate the genuine tripartite EPR
steering in the cascaded nonlinear process of spontaneous
parametric down-conversion coupled with a sum-frequency
generation in an optical cavity for a wide range of the pa-
rameters. The threshold properties of the system are also
analyzed. We found that the genuine tripartite EPR steering
can be achieved in the ranges below the threshold and without
threshold based on the criteria for genuine multipartite EPR
steering which proposed by He and Reid [25]. The influences
of nonlinear coupling parameter κ and the damping rates
of γ /γ0 on the tripartite EPR steering are investigated. The
nonlinear coupling parameter κi is related to pump power,
nonlinear polarizability, and the structure parameters of op-
tical superlattice. The damping rates γi are related to the
reflection transmission coefficient of the optical cavity. There-
fore, one can obtain better tripartite EPR steering by designing
optical superlattice structure and choosing the appropriate re-
flection transmission coefficient. However, the demonstration
of genuine tripartite EPR steering above the threshold has not
been successful in the present study because the linearization
process is ineffective in the range of above the threshold.
Maybe one can employ other methods to prove the tripar-
tite even quadripartite (including pump) EPR steering above
the threshold by avoiding linearization of the fluctuation. We
think that our scheme can be used as a suggestion for potential
experiments and the potential applications in quantum infor-
mation processing.
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