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Probabilistic hysteresis from a quantum-phase-space perspective

Ralf Bürkle * and James R. Anglin
State Research Center OPTIMAS and Fachbereich Physik, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany

(Received 31 May 2020; accepted 21 October 2020; published 9 November 2020)

Probabilistic hysteresis is a manifestation of irreversibility in a small dissipationless classical system
[R. Bürkle et al., Sci. Rep. 9, 14169 (2019)]: After a slow cyclic sweep of a control parameter, the probability that
an initial microcanonical ensemble returns to the neighborhood of its initial energy is significantly below one. A
similar phenomenon has recently been confirmed in a corresponding quantum system, when the particle number
N is not too small. Quantum-classical correspondence has been found to be nontrivial in this case however; the
rate at which the control parameter changes must not be extremely slow and the initial distribution of energies
must not be too narrow. In this paper we directly compare the quantum and classical forms of probabilistic
hysteresis by making use of the Husimi quantum-phase-space formalism. In particular, we demonstrate that the
classical ergodization mechanism, which is a key ingredient in classical probabilistic hysteresis, can lead to a
breakdown of quantum-classical correspondence rather than to quantum ergodization. Such quantum failure of
ergodization leads to strong quantum effects on the long-term evolution even when the quantum corrections in
the equations of motion, which are proportional to 1/N , would naively seem to be small. We also show, however,
that quantum ergodization can be restored by averaging over energies, so that for not-too-narrow initial energy
width and not-too-slow parameter change the classical results are recovered after all at large N . Finally, we
show that the formal incommutability of the classical and adiabatic limits in our system, which is responsible
for the breakdown of quantum-classical correspondence in the quasistatic limit, is due to macroscopic quantum
tunneling through a large energetic barrier. This explains the extremely slow sweep rates needed to reach the
quantum adiabatic limit that were reported in our previous work. The formal incommutability therefore has no
consequences for any realistically slow sweeps unless N is quite small (N � 20).

DOI: 10.1103/PhysRevA.102.052212

I. INTRODUCTION

A. Microscopic onset of irreversibility

Recently, the phenomenon of probabilistic hysteresis was
introduced [1–3]: A slow cyclic sweep of an external parame-
ter can lead to a state that is very different from the initial state,
even though the external parameter is tuned back to its initial
value. This phenomenon can be interpreted as the microscopic
analog of macroscopic irreversible processes, e.g., cooking an
egg and then cooling it down again to the initial temperature.
As everyday experience tells us, the initial raw egg will not be
recovered. From the adiabatic theorem, however, one would
rather expect the system to follow a stationary state as long
as the parameter sweep is sufficiently slow so that it would
return to its initial state again when the cycle of the sweep is
complete. While one might not expect the adiabatic theorem
to apply to macroscopic systems, which typically have many
low-frequency degrees of freedom, it should be possible to
attain the adiabatic limit in sufficiently small systems. The
possibility of this egg-cooking kind of irreversibility even in a
dissipationless microscopic system is therefore surprising.

In [1,2] we have shown how this irreversibility can occur
due to the crossing of a separatrix in phase space, where
adiabaticity breaks down even for arbitrarily slow change of
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the control parameter. This is the case because the orbital
period diverges at the separatrix and so the criterion for the
validity of the adiabatic theorem can never be met, no matter
how slow the variation of the external parameter might be. In
the integrable system of [1] this results in a finite probability
to return either to the initial state or to a state with much higher
energy (thus probabilistic hysteresis); in the chaotic system of
[2] the return probability is typically very close to zero.

B. Quantum-classical correspondence

In our previous work this phenomenon was identified
in two specific models for trapped ultracold-atom systems,
namely, the Bose-Hubbard dimer [1] and trimer [2], in a
semiclassical mean-field approximation. Although in classi-
cal Hamiltonian evolution adiabaticity can fail even in the
quasistatic limit of infinitely slow sweep rate, this quasistatic
limit must be adiabatic under fully quantum-mechanical evo-
lution, because quantum energy-level splittings always remain
nonzero in this system (i.e., there can never be any exact de-
generacies). This means that the classical and adiabatic limits
do not commute, as has been noted in the literature [4,5]. In
the true quantum adiabatic limit, therefore, the sweep process
is necessarily fully reversible and hysteresis is absent.

How slow does the sweep have to be, though, to actually
reach this true quantum adiabatic limit? It turns out that even
for quite small total particle numbers N = O(10) and for any
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remotely realistic values of the other system parameters, the
sweep time has to be quite unrealistically slow: anywhere
from several years up to many times the age of the universe
[3]. In [3] we used Landau-Zener theory to describe the cyclic
sweep process in the quantum version of the Bose-Hubbard
dimer system that we had previously studied in [1] and com-
pared a wide range of different sweep rates. We found that
for not too small total particle numbers and a broad range of
sweep rates the basic classical picture of two qualitatively dif-
ferent final states being reached probabilistically is recovered
quantum mechanically. The quantum probability to recover
the initial state (the return probability), however, was found to
depend sensitively on the sweep rate; it oscillates around the
constant classical quasistatic value, with finite frequency and
significant amplitude, even for very large particle numbers.
We confirmed numerically that this nonclassical oscillation of
the return probability with sweep rate disappears only if, in
addition to having large N , the initial quantum state is not a
single energy eigenstate but a mixed state with a sufficient
energy width.

C. Quantum-phase-space picture

These results may have shed some light on the role of
quantum mechanics in the microscopic onset of irreversibility,
but they have not clarified that role as well as one might
wish, because quantum and classical probabilistic hysteresis
have been described in such different terms. In the classi-
cal system the process is quite clear in phase space [1];
it combines incompressible phase-space flow under Liou-
ville’s theorem, topological change of energy surfaces as
they merge and separate, and effective ergodization through
very fine swirling of initially coarse distributions. The return
probability in the slow sweep limit could even be com-
puted analytically by applying Kruskal’s theorem [1]. The
quantum phenomenon was in contrast described in terms of
a sequence of Landau-Zener transitions between adiabatic
quantum many-body eigenstates. The clear classical expla-
nation for probabilistic hysteresis was hard to discern in this
sequence, and the recovery of the classical return probabil-
ity through a combination of many Landau-Zener transitions
seemed to be a sheer numerical conspiracy.

To gain more insight into quantum irreversibility we there-
fore turn in this paper to a phase-space representation of
quantum dynamics, since the classical phase-space picture is
clear and quantum-phase-space methods have often proven
to be very useful in understanding quantum-classical cor-
respondence [6–11]. In particular, we will use the Husimi
quasiprobability function as a representation for the quantum
states in phase space and compare its full quantum evo-
lution to the semiclassical truncated Husimi approximation
[7,12,13]. While this quantum-phase-space description brings
us closer to an analytical understanding of the purely numer-
ical results of [3] for the return probability, it also shows
why quantum-classical correspondence can still break down
for large total particle numbers, resulting in strong quantum
effects. This is especially surprising because a naive argument
suggests that the quantum correction term scales like 1/N (see
Sec. III A). Furthermore, the Husimi description allows us to
distinguish the two qualitatively different effects of quantum

noise and quantum interference. Finally, the Husimi phase-
space description will provide an intuitive understanding of
why the true quantum adiabatic limit is so extremely hard
to reach.

D. Quantum Bose-Hubbard dimer

The two-site Bose-Hubbard dimer system has been real-
ized experimentally in ultracold-atom systems [14,15]; well
before this achievement its theoretical study had already been
extensive. Several previous works [16–21] have even specif-
ically addressed slow parameter sweeps in this model. As
discussed in more detail in [3], however, these earlier papers
used some typically quantum terminology (such as “tunneling
probability”) but have actually been restricted to the classical
mean-field version of the problem, and so do not really bear
on our current topic.

In contrast to the two-state nonlinear Schrödinger evo-
lution of mean-field theory, the full N-particle quantum
many-body system of the Bose-Hubbard dimer concerns an
(N + 1)-component wave function evolving under a linear
Schrödinger equation. This problem has been studied for
a single noncyclic sweep in [4,22–24]; it has been shown
that the many-body Landau-Zener probability for a diabatic
transition between the quantum levels goes to zero in the
adiabatic limit of infinitely slow sweep rate, in accordance
with the quantum adiabatic theorem. While this means that the
mean-field and adiabatic limits do not commute, as mentioned
above, it has also been demonstrated [4,22,23] that for a fixed
slow but finite sweep rate the Landau-Zener probability (i.e.,
the ratio of 〈n2〉 to 〈n1〉) approaches the mean-field value
quite rapidly with increasing N , with good quantum-classical
correspondence already for N = O(10).

As we have numerically demonstrated in [3], however,
quantum-classical correspondence is more subtle than this
for the phenomenon of probabilistic hysteresis, for two main
reasons. First, probabilistic hysteresis can occur for a finite
range of initial states, not only the initial ground state, and the
simple correspondence of the ground state turns out to be a
special case. Second, the scenario of probabilistic hysteresis
includes a second, backward sweep, which begins from the
excited state that was created by the forward sweep even when
the initial state was the ground state. All cases of probabilistic
hysteresis therefore turn out to involve significant quantum
interference effects which are not captured by the semiclassi-
cal approximation and which persist even in the limit of very
large N .

E. Structure of the paper

The rest of the paper is organized as follows. In Sec. II we
present the Hamiltonian and the sweep protocol that we will
study and we also briefly review the semiclassical description
of the sweep process. We will show how hysteresis and the
finite return probability in the classical adiabatic limit can
be understood by considerations in phase space. In Sec. III
we first introduce appropriate coherent states and the Husimi
function. We then show how the semiclassical evolution in
phase space and the evolution of the quantum Husimi function
are related. We demonstrate that the classical ergodization
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mechanism fails to produce quantum ergodization, but instead
induces the breakdown of quantum-classical correspondence,
and is thus responsible for the strong quantum effects that
occur, for single initial energy eigenstates, even at large total
particle numbers. We also show how ergodization in the quan-
tum system can be restored by a different mechanism so that
for a finite initial energy width the semiclassical results are
recovered after all. After a brief discussion of the entropy gen-
erated in the classical and quantum sweep process, we show
in Sec. IV that the quantum adiabatic limit, in which the return
probability is always one, can be understood as macroscopic
quantum tunneling of a large number of atoms through the
separatrix energy barrier and is therefore exponentially slow.
We then proceed to Sec. V, where we summarize our main
results.

II. SETUP AND SEMICLASSICAL DESCRIPTION

A. Setup

Our system is the two-mode Bose-Hubbard system with
attractive interaction U < 0 and tunneling rate �. The two
modes have a time-dependent energy detuning �(t ), which
will be our control parameter. The system Hamiltonian there-
fore reads

Ĥ = −�

2
(â†

1â2 + â†
2â1) + U

2

(
n̂2

1 + n̂2
2

) + �(t )

2
(n̂1 − n̂2),

(1)

where the bosonic operators â†
1,2 (â1,2) create (destroy) a bo-

son in the respective mode 1 or 2 and the number operators
n̂1,2 = â†

1,2â1,2 are defined as usual. In this paper we choose
units such that h̄ = 1 and measure �, U , energy, and time
in units defined by �. The total particle number operator
N̂ = n̂1 + n̂2 commutes with the Hamiltonian, so the total
particle number given by its eigenvalue N is conserved.

Our protocol consists of slowly (T � �−1) sweeping the
energy detuning �(t ) from a negative value �I at the initial
time t = −T to the larger value �0 at t = 0 (forward sweep)
and then back again to �I at the final time t = +T (backward
sweep):

�(t ) = �I
|t |
T

+ �0

(
1 − |t |

T

)
, �0 > �I . (2)

We will study the evolution of a quantum state during this
cyclic sweep; as initial states we will choose either a low-lying
instantaneous energy eigenstate of the Hamiltonian with fixed
� = �I or else a narrow microcanonical ensemble of such
eigenstates. We then ask the following question: With what
probability is the initial state recovered at the final time, after
the slow forward-and-back cycle of �?

B. Semiclassical picture

The semiclassical description [1] of the quantum sweep
process is obtained by evolving an ensemble of initial phase-
space points that represent the initial quantum state under the
mean-field equations of motion (truncated Wigner or trun-
cated Husimi approximation). These equations of motion can

be derived from the mean-field Hamiltonian

H = −�

√
p2

0 − p2 cos(q) + U
(
p2

0 + p2) + �(t )p, (3)

where (q, p) are canonical coordinates representing the rela-
tive phase and particle imbalance, respectively [1]. As always
in these types of mean-field systems, the system behavior can
be characterized by the single parameter u = UN/� since
Hamiltonians for different total particle numbers but the same
u can be mapped onto each other by trivial rescaling.

For the following discussion let us assume as our initial
state a microcanonical ensemble (i.e., a complete thin shell of
fixed energy) at the initial detuning �I . Our reasoning may
then be applied to arbitrary phase-space distributions where
the probability depends only on energy, by viewing them as
consisting of a large number of narrow microcanonical ensem-
bles. We sample this initial phase-space density with a finite
number of points and evolve each point under the mean-field
equations of motion derived from Eq. (3). Since our sweep
is slow compared to �−1, the classical adiabatic theorem
can be applied unless the orbital period deviates significantly
from �−1. This is not the case in the subcritical case |u| < 1
(which means u > −1 for our attractive negative U ) and so
the action of each trajectory is an adiabatic invariant [25].
This means that the orbits deform and their energies change
during the forward sweep, but in a way that keeps their en-
closed phase-space area constant. During the backward sweep
the same deformation happens in reverse and the initial and
final ensembles coincide; consequently, the return probability
is one.

In the supercritical case |u| > 1 (u < −1), on the other
hand, there is an unstable fixed point in a certain � range.
The energy contour running through this unstable fixed point,
the separatrix, divides the phase space into three mutually
exclusive regions that we label Au, Al , and Ao (see Fig. 1).
Here and in the rest of the paper we consider u = −3, but
other supercritical values give similar results.

When the separatrix first forms the entire ensemble resides
within the upper lobe of the separatrix Au [see Fig. 1(a)]. How-
ever, this separatrix lobe shrinks during the forward sweep so
that at some point it meets the ensemble. As the separatrix
approaches the ensemble, the orbital period of the ensemble
members grows and finally diverges, since the orbital period
associated with the separatrix itself is infinite. This means
that the adiabatic theorem no longer holds at the separatrix,
no matter how slow the parameter sweep may be. As a re-
sult the trajectories change their enclosed actions by leaving
the upper separatrix lobe and moving into the only growing
phase-space region, namely, the lower separatrix lobe. The
continued growth of this lower lobe then means that the sep-
aratrix expands away from the ensemble, and so adiabaticity
is restored to the ensemble again for the rest of the forward
sweep [Fig. 1(b)].

During the backward sweep, then, adiabaticity continues
to hold until the now-shrinking lower lobe of the separatrix
Al hits the ensemble, at the same value of the detuning at
which the separatrix crossing occurred in the forward sweep.
Adiabaticity breaks down again, just as during the forward
sweep, but now the upper lobe Au and the outside region Ao

are both growing, so the members of the ensemble can go into
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FIG. 1. Evolution of a classical ensemble consisting of 2000 points (black dots) in phase space: (a) initial state, (b) end of forward sweep,
and (c) final state. The gray lines show adiabatic energy contours; the dashed black line is the separatrix that divides phase space into the
regions Au, Al , and Ao. Because adiabaticity breaks down when the separatrix is crossed between (a) and (b) and between (b) and (c), only a
finite fraction of the ensemble returns to the initial energy shell, so probabilistic hysteresis occurs. For a clearer graphical presentation we have
chosen the canonical coordinates q′ = arctan(p/

√
p2

0 − p2 cos q) and p′ = −√
p2

0 − p2 sin q here. (Figure has been reproduced from Fig. 1 of
Ref. [3].)

either of these phase-space regions. Kruskal’s theorem (see
[26] and references therein), which is derived from Liouville’s
theorem, gives the proportion of the parts of the ensemble
going to the upper lobe Au and the outside region Ao. Since
adiabaticity holds once again after the separatrix has been
crossed for the second time, the part of the ensemble that went
to the upper separatrix lobe ends up in the same energy shell
in which it started initially. The rest of the ensemble, however,
ends up with a much higher energy than it had initially, so
the final state consists of two well-separated subensembles
[Fig. 1(c)]. We then define the return probability Pret as the
fraction of ensemble members that returned to the initial en-
ergy shell.

It is important to note that in the semiclassical system a
well-defined quasistatic limit exists, even though adiabaticity
is necessarily broken at some point, in the sense that the
return probability settles quickly to the value predicted by
Kruskal’s theorem once the sweep rate falls below a certain
finite range. Further reducing the sweep rate does not alter the
return probability further.

Depending on the system parameters and on the energy of
the initial ensemble, the return probability of a finite-width
ensemble can range between almost zero and almost one.
The essentially zero return probability that is familiar from
macroscopic systems for all initial conditions is not present
in our simple integrable system; it can however be realized
in a similar trimer system that allows chaotic dynamics [2].
The general relationships between quantum chaos, quantum
ergodicity, and irreversibility [27,28] clearly require much
further study; as a first step toward understanding probabilistic
hysteresis as a particularly simple form of microscopic irre-
versibility, here we will consider only the quantum version of
the integrable dimer system and leave the quantum version of
the nonintegrable trimer for future work.

III. QUANTUM-PHASE-SPACE PICTURE

A. Husimi function

The classical phenomenon of probabilistic hysteresis con-
cerns ensemble evolution in phase space, rather than the

motion of individual phase-space points. The classical evo-
lution of the phase-space density ρ(q, p) is given by the
Liouville equation, which for the Hamiltonian (3) reads

ρ̇ = ∂ρ

∂ p

∂H

∂q
− ∂ρ

∂q

∂H

∂ p

= �

√
p2

0 − p2 sin(q)
∂ρ

∂ p

−
⎛
⎝2U p + � + �p√

p2
0 − p2

cos q

⎞
⎠∂ρ

∂q
. (4)

In order to compare directly with this classical evolution,
therefore, we must also formulate the quantum evolution
in phase space, using a quantum quasiprobability function.
In particular, we use the Husimi function Q [29], which is
defined as the probability to find the quantum system in a
coherent state |�〉,

Q(�, t ) = |〈�|ψ (t )〉|2 = 〈�|ρ̂(t )|�〉 . (5)

The definition of the Husimi function is motivated by the fact
that coherent states are the most localized quantum states in
phase space, in the sense that they minimize the uncertainty
product of the phase-space variables, so they are the closest
quantum analogs of classical phase-space points. Despite this
intuitive meaning of the Husimi function, one cannot sim-
ply interpret Q as a probability distribution in phase space,
because it does not necessarily give the correct marginal dis-
tributions if one of the phase-space variables is integrated out.
The Husimi function does provide a complete description of
the quantum state, however, in the sense that all information
about the quantum state can in principle be extracted from Q.

Using the von Neumann equation for the evolution of the
density operator ρ̂, the time evolution of the Husimi function
is given by

Q̇ = 〈�| ˙̂ρ|�〉 = tr( ˙̂ρ |�〉 〈�|)
= tr(iρ̂Ĥ |�〉 〈�| − i |�〉 〈�| Ĥ ρ̂ ). (6)
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Because the symmetry group of the Bose-Hubbard dimer is
SU(2) and it is therefore equivalent to a spin system with s =
p0 = N/2 [30,31], the appropriate generalized coherent states
are the so-called SU(2) coherent states [7,13,32–35]

|�〉 = |θ, φ〉

=
N∑

n=0

√(
N

n

)(
cos

θ

2

)n(
sin

θ

2
eiφ

)N−n

|n, N − n〉 , (7)

where (θ, φ) are the angles in a spherical coordinate system,
namely, the Bloch sphere. The classical canonical coordinates
(q, p), which have already been used in Sec. II, are given by
q = φ and p = N/2 cos(θ ); they map the Bloch sphere onto a
flat phase space.

Defining the angular momentum operators

L̂x = 1

2
(â†

1â2 + â†
2â1),

L̂y = i

2
(â†

2â1 − â†
1â2),

L̂z = 1

2
(â†

1â1 − â†
2â2) (8)

and L̂± = L̂x ± iL̂y, it then follows that the action of the L̂α

operators on the coherent state projector |�〉 〈�| can be repre-
sented by differential operators D(L̂α ) such that [34–36]

L̂+ |�〉 〈�| = D(L̂+) |�〉 〈�|

= eiφ

(
N

2
sin θ+ i

2
tan

θ

2
∂φ− sin2 θ

2
∂θ

)
|�〉 〈�| ,

L̂− |�〉 〈�| = D(L̂−) |�〉 〈�|

= e−iφ

(
N

2
sin θ− i

2
cot

θ

2
∂φ+ cos2 θ

2
∂θ

)
|�〉 〈�| ,

L̂z |�〉 〈�| = D(L̂z ) |�〉 〈�|

=
(

N

2
cos θ + i

2
∂φ − 1

2
sin θ∂θ

)
|�〉 〈�| . (9)

In terms of these L̂α operators, the Hamiltonian (1) can now
be rewritten as

Ĥ = −�

2
(L̂+ + L̂−) + U

(
L̂2

z + N̂2

4

)
+ �L̂z. (10)

Using Eqs. (6), (9), and (10), we finally find

Q̇(θ, φ) = itr[D(Ĥ ) |�〉 〈�| ρ̂ − D(Ĥ )∗ |�〉 〈�| ρ̂]

= −2Im[D(Ĥ )]tr(|�〉 〈�| ρ̂ )

=
[
�

2
cos(φ)

(
tan

θ

2
− cot

θ

2

)
∂φ − � sin(φ)∂θ

− UN

(
cos θ − 1

N
sin θ∂θ

)
∂φ − �∂φ

]
Q(θ, φ),

(11)

where UN is of order one and the term containing second-
order derivatives is therefore suppressed by a factor of 1/N .

Using φ = q and θ = arccos(2p/N ), we can also express
Eq. (11) in (q, p) as

Q̇(q, p) = �

√
p2

0 − p2 sin(q)
∂Q(q, p)

∂ p

−
⎛
⎝2U p + � + �p√

p2
0 − p2

cos q

⎞
⎠∂Q(q, p)

∂q

− UN

(
p0

N
− p2

p0N

)
∂2Q(q, p)

∂q∂ p
. (12)

Comparing Eq. (12) to Eq. (4), we see that the evolution of the
Husimi function is given by the classical Liouville equation
plus a correction term containing second-order derivatives.
Neglecting this last term leads to a truncated Husimi approx-
imation [7,12,13], which, in analogy to the more familiar
truncated Wigner approximation [6,37,38], can be understood
as including quantum effects to first order. More specifically,
quantum noise is modeled by sampling the initial conditions
for the classical evolution from the quantum Husimi func-
tion, but quantum interference between different trajectories
is neglected. Since p and p0 are of order N and UN is of
order one, the quantum correction term seems to vanish in
the classical limit (N → ∞ with UN held fixed), since the
derivative with respect to p comes with an additional factor of
1/N . One might therefore naively expect to recover the clas-
sical phase-space evolution for large N . While this argument
is often invoked, we will show in the following that this is not
necessarily the case if a separatrix is involved in the classical
evolution.

B. Classical and quantum ergodization

In the (semi)classical description the finite return proba-
bility can be predicted accurately by Kruskal’s theorem, as
outlined in Sec. II B. Since Kruskal’s theorem makes state-
ments about a phase-space volume (more specifically, an
energy shell) and how it is split up among multiple growing
phase-space regions, it is a crucial assumption in this applica-
tion of Kruskal’s theorem that the actual phase-space density
of the ensemble is uniform in this phase-space volume, i.e.,
ρ(q, p) = ρ(E ) is an ergodic phase-space distribution. In our
case this means that one assumes that the energy shell in the
lower separatrix lobe is filled with a uniform reduced density
after the separatrix has been crossed. Of course this can only
be true in some kind of approximate sense, because the phase-
space volume occupied by the ensemble is required to stay
constant by Liouville’s theorem. What actually happens is that
as the initially uniform microcanonical ensemble crosses the
separatrix and spills into its lower lobe, the exact phase-space
density rapidly develops an extremely fine swirling structure,
in which the phase-space volume which is actually occupied
by the ensemble does indeed remain constant, but it is dis-
tributed within the larger phase-space volume in extremely
fine threads [1]. The coarse-grained phase-space density is
thus uniform but reduced. For slower sweep rates the swirling
becomes steadily finer, so this approximation becomes perfect
in the quasistatic limit.

It is not obvious how this ergodization mechanism could be
realized in the quantum evolution however. While the Husimi
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function does not have to obey Liouville’s theorem, so er-
godization might conceivably be even more effective quantum
mechanically than it is classically, it turns out that quantum-
classical correspondence breaks down precisely because of
the swirling discussed above.

1. Single initial quantum eigenstate

Figure 2 (right column) shows the evolution of the Husimi
function for N = 1000, �0/� = −�I/� = 2, T = 5000�−1,
and a single energy eigenstate as the initial state (we have
chosen the 37th eigenstate as in [3]), along with the classical
evolution of the same initial phase-space density under Eq. (4)
(left column). For the evolution of the Husimi function we
solve the Schrödinger equation with the Hamiltonian (1) nu-
merically and then calculate the Husimi function via Eq. (5).
For the classical evolution we use the method of characteris-
tics [39,40] to solve the Liouville equation, i.e., we evolve
individual phase-space patches (to which some probability
is assigned by the initial conditions) under the Hamiltonian
equations of motion. Note that every Husimi function is in
principle a valid classical phase-space density, since it is
non-negative and normalizable, so in particular the initial
Husimi function is also a valid initial condition for Eq. (4).
The corresponding classical evolution is then the truncated
Husimi approximation of the full quantum evolution. (An-
other reasonable choice for the classical initial phase-space
density would be a classical microcanonical distribution with
energy boundaries between the 36th and 37th and between the
37th and 38th quantum energy eigenvalues. Since the initial
Husimi function is already quite microcanonical, this choice
would lead to a very similar evolution.) For a better visual
presentation we have again used the canonical coordinates that
we used in Fig. 1,

q′ = arctan

⎛
⎝ p√

p2
0 − p2 cos q

⎞
⎠,

p′ = −
√

p2
0 − p2 sin q, (13)

which simply correspond to a rotation of the Bloch sphere
before the mapping from (θ, φ) to (q, p) is performed. Note
also that we have normalized the Husimi function according
to

∫
dq′d p′Q(q′, p′) = 1.

Before the separatrix is crossed around �t = −1500, the
two evolutions are very similar, as expected, because the quan-
tum correction term is suppressed by 1/N . After the separatrix
has been crossed the classical phase-space density spreads
almost uniformly into a larger phase-space volume along an
energy contour that is determined by the initial action [1]. The
classical phase-space density actually has the extremely fine
swirling structure mentioned above, but this structure is not
fully resolved in our simulation with a finite sampling of phase
space and therefore appears as seemingly random black dots
spread through the energy shell. The swirling is so fine that a
phase-space volume much smaller than the Heisenberg limit
h̄ (=1 in our units) has to be resolved to reveal it. Figure 3
shows a part of the panels with high resolution, at the end of
the forward sweep (t = 0).

FIG. 2. Shown on the right is the evolution of the Husimi func-
tion corresponding to a single initial state (37th adiabatic energy
eigenstate) compared to the classical Liouville dynamics with the
same initial phase-space distribution on the left. After the separatrix
is crossed the two evolutions are quite different, despite the large total
particle number. While the classical phase-space density is grainy
due to swirling (see the text), the Husimi function is smooth, but
far from ergodic, in that it has bright and dark spots. The system
parameters are N = 1000, u = −3, �0/� = −�I/� = 2, and T =
5000�−1.
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FIG. 3. Higher-resolution image of Fig. 2 at t = 0 showing the
swirling of (a) the classical phase-space density and (b) the Husimi
function. The region shown here corresponds to approximately one
pixel in Fig. 2 and is much smaller than h̄.

Note that the phase-space area shown in this figure is
0.006h̄ and corresponds to approximately one pixel in Fig. 2.
For slower sweep rates the swirling becomes even finer,
approaching a uniform but reduced phase-space density, as
discussed above. Consequently the swirling mechanism is
responsible for (coarse-grained) ergodization. We empha-
size again that this ergodization mechanism is crucial for
the explanation of irreversibility in the classical limit, since
Kruskal’s theorem assumes an ergodic phase-space distribu-
tion. Details can be found in [1]. The fineness of the swirling
also demonstrates why, even though the classical evolution is
deterministic, we speak of probabilistic hysteresis: To guar-
antee a reversible evolution, the initial conditions would have
to be tuned to be within phase-space volumes of comparable
size to the very fine scale of the swirling. For the sweep rate
and particle number presented here this would mean control-
ling the initial phase-space location of the system on scales
much smaller than the Heisenberg limit. Since this is clearly
impossible, experiments would show effectively random run-
to-run alternations between the two final outcomes even if the
evolution were classical.

The Husimi function, on the other hand, while also being
localized on an energy contour, does not spread uniformly
along this contour. Instead it forms a rapidly changing, more
or less localized pattern (see also Fig. 7), so that there is
no ergodization. In the Landau-Zener picture [3] (where the
sweep is considered as a series of Landau-Zener crossings)
this is an interference effect of the many involved adiabatic
eigenstates. In the phase-space picture, however, the classical
ergodization mechanism via fine swirling breaks down despite
the large particle number. The reason for this is that as soon
as the classical swirling structure even begins to develop, the
second derivatives in the quantum correction term in Eq. (12)
become extremely large, because the swirling introduces steep
gradients in Q between the high- and low-probability stripes,
as shown in Fig. 3. Therefore, the same swirling mechanism
that leads to ergodization of the classical phase-space density
is also directly responsible for the breakdown of quantum-
classical correspondence. What turns out to happen quantum
mechanically is that the sub-h̄-sized swirling structure does
not develop in the Husimi function.

With the breakdown of the classical ergodization mecha-
nism, there is no reason to expect ergodization of the Husimi
function, and it is indeed absent as we have confirmed nu-
merically. The observed localization of the Husimi function

FIG. 4. Dependence of the return probability Pret on the total
sweep time 2T for N = 1000, u = −3, �0/� = −�I/� = 2, and a
single initial state. The red line shows the quantum return probability
if the initial state is the 37th eigenstate of the initial Hamiltonian. The
black line shows the corresponding classical return probability for an
initial phase-space density equal to the initial Husimi function. The
slight variation of the classical return probability is due to our finite
phase-space resolution (sampling error).

is a purely quantum phenomenon and has dramatic effects on
the evolution in phase space, despite the large particle number
N that would at first sight suggest good quantum-classical
correspondence.

During the backward sweep both the classical phase-space
density and the Husimi function split into two well-separated
parts, corresponding to the returning and nonreturning frac-
tions. However, due to the oscillatory behavior of the Husimi
function, the return probability Pret at the end of the sweep
depends sensitively on the sweep rate, in contrast to the clas-
sical return probability (see Fig. 4). The return probability in
the quantum case is defined in analogy to the classical return
probability as the phase-space integral of the Husimi function
over the inner ring in Fig. 2 at t = T . This integral defines the
return probability unambiguously, quantum mechanically as
well as classically, because in both cases the inner and outer
rings are well separated for large N .

In [3] it was shown that the forward sweep leads to a
superposition of adiabatic eigenstates. In the phase-space
picture this superposition is responsible for the rapid dy-
namics of the Husimi function. Since the return probability
depends on the shape and localization of the Husimi function
when it crosses the separatrix, the superposition of adia-
batic eigenstates generally leads to a nontrivial dependence
of the return probability on the total sweep time. The al-
most periodic dependence shown in Fig. 4 is due to the
fact that only a relatively small number of adiabatic eigen-
states, within a narrow range of adiabatic energies, have
an appreciable amplitude. With weak nonlinearity in our
system, the adiabatic eigenfrequencies of these superposed
states are nearly even spaced within their narrow energy
range, and thus nearly commensurate, so the periodic max-
ima and minima of the return probability as a function of
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sweep rate are in fact similar to simple two-state Ramsey
fringes.

2. Initial ensemble of quantum eigenstates

If we start with a microcanonical ensemble of quantum
states initially, instead of with a single energy eigenstate,
we obtain the evolution displayed in Fig. 5. Our ensemble
contains 20 consecutive initial adiabatic eigenstates, chosen in
such a way that the mean energy of the ensemble is essentially
the same as the energy of the single state in Fig. 2.

Because the energy width is still small due to the large
particle number, which makes the spacing between quantum
energy eigenstates small enough that 20 states is a narrow
range of eigenvalues, the classical evolution of this ensem-
ble is almost indistinguishable from the classical evolution
in Fig. 2. The evolution of the Husimi function before the
separatrix is crossed also remains very similar to the evolution
shown in Fig. 2.

For even this narrow 20-state microcanonical ensemble,
however, the oscillations of the Husimi function that were
found for a single initial state after the separatrix had been
crossed are now suppressed and ergodization is restored to a
good approximation. The classical swirling structure is also
present in the classical case with the larger initial energy
width and this still destroys naive quantum-classical corre-
spondence as explained above, by inducing a large quantum
correction term. In the 20-state quantum ensemble, however,
a new quantum ergodization mechanism has emerged. The
Husimi function of a mixed state is simply the weighted sum
of the Husimi functions of the pure states that have been
mixed [recall the definition of the Husimi function (5). For
our microcanonical ensemble the Husimi function is therefore
the average of many Husimi functions like the one shown in
Fig. 2. In each of these Husimi functions the localized dark
and bright patches at any given time appear at different loca-
tions that depend strongly on energy. Averaging over energy
therefore averages out the bright and dark patches, yielding an
evenly ergodic total Husimi function.

Once quantum ergodization is established, the quantum
evolution of the finite-width ensemble shows much better
agreement with the semiclassical phase-space evolution, be-
cause now the quantum correction term in Eq. (12) really does
remain small (of order 1/N). In particular, the return probabil-
ity loses its high sensitivity to the sweep rate and approaches
the classical value (see Fig. 6). With no fine swirling, the
quantum evolution of the Husimi function is approximately
Liouvillian for large N , and so Kruskal’s theorem then also
holds approximately for the Husimi function when the separa-
trix is encountered during the backward sweep and the return
probability is determined.

It is therefore clear that the classical limit is not obtained
simply by letting N → ∞ with a single quantum state, but
an ensemble with finite energy width is needed for good
quantum-classical correspondence of the return probability
in probabilistic hysteresis, as was also found in [3]. In the
quantum-phase-space formalism this can be explained by
the fact that an ensemble containing enough quantum states

FIG. 5. Shown on the right is the evolution of the Husimi func-
tion corresponding to a microcanonical ensemble of 20 initial states
compared to the classical Liouville dynamics with the same initial
phase-space distribution on the left. The oscillations of the Husimi
function seen in Fig. 2 are strongly suppressed, so we observe much
better quantum-classical correspondence in the return probability.
The parameters are the same as in Fig. 2. The 20 quantum states
are the initial 28th to 47th states, so the mean energy of the ensemble
is essentially the same as in Fig. 2.
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FIG. 6. Dependence of the return probability Pret on the total
sweep time 2T for N = 1000, u = −3, �0/� = −�I/� = 2, and
an ensemble of 20 initial states (28th to 47th energy eigenstates) with
mean energy similar to the 37th state (red line). The black line shows
the corresponding classical return probability for an initial phase-
space density equal to the initial Husimi function. The oscillations
of the return probability are much smaller than in Fig. 4 and are
expected to vanish completely for larger initial energy width.

effectively smears out the localized individual Husimi func-
tions so that the total Husimi function becomes effectively
ergodized like the classical phase-space density, albeit for
quite different reasons. For their different reasons, the finely
swirled exact classical phase-space density and the energy-
averaged Husimi function both behave very similarly to a
smooth ergodized phase-space density. The Husimi functions
for sufficient initial energy width and the classical phase-space
density thus effectively behave very similarly to each other, up
to the small quantum-classical discrepancies of order 1/N that
one naively expects from the Liouville and Husimi evolution
equations.

C. Entropy

In a macroscopic system, ergodization leading to irre-
versibility is associated with the growth of entropy. Micro-
scopically, however, the phase-space volume that is occupied
by a classical ensemble is invariant under Hamiltonian time
evolution, and so is the entropy. This is a direct consequence
of Liouville’s theorem, which is often expressed in the state-
ment that classical phase-space flow is like the flow of an
incompressible fluid. The entropy in which one is normally
interested, however, is some coarse-grained entropy, which
is usually defined in reference to a limited resolution in
phase space or to some implicit time averaging. We realize
this coarse graining at every instant by time averaging the
fine-grained phase-space density to obtain the coarse-grained
density ρc,

ρc(q′, p′) = lim
T̃ →∞

1

T̃

∫ T̃

0
dt ρ(q′, p′; t ), (14)

where the time dependence of the phase-space density on
the right-hand side is due to the evolution under the frozen

FIG. 7. Wehrl entropy SW corresponding to the quantum evo-
lutions shown in Fig. 2 (black line) and Fig. 5 (blue line). While
the oscillation of the Husimi function in the case of a single initial
state leads to a strong oscillation of the Wehrl entropy, the oscil-
lations of the Wehrl entropy in the case of an initial ensemble of
states are suppressed. The red line shows the coarse-grained entropy
of the classical simulation of Fig. 5 for comparison. For further
comparison, the magenta line shows the von Neumann entropy of
the time-averaged quantum density matrix (see the text). Since the
definitions of the Wehrl and classical entropies allow an arbitrary
constant shift from the phase-space measure, we have used this to set
all three entropies equal for the mixed initial state.

Hamiltonian with fixed �. Note that if the system is described
in action-angle coordinates, this provides coarse graining in
the angle coordinate only, but not in the action (or, equiv-
alently, energy). Coarse graining thus smears out the fine
swirling structure found in the classical evolution, so the
coarse-grained entropy should increase when the separatrix is
crossed and swirling occurs.

In the quantum system, on the other hand, the von Neu-
mann entropy remains constant, since we do not trace out any
degrees of freedom and the evolution is unitary. Therefore, the
following question arises: What quantum entropy corresponds
to the classical coarse-grained entropy? As we have already
seen, there is a close analogy between the classical coarse-
grained phase-space density and the Husimi function, so one
natural quantum analog of the coarse-grained entropy is the
Wehrl entropy [41,42]

SW = −kB

∫
dq′d p′Q(q′, p′) ln[Q(q′, p′)]. (15)

Because the flow of the Husimi density in phase space is not
incompressible, this entropy can increase during the evolu-
tion, even without coarse graining. Figure 7 shows the Wehrl
entropy for the two cases discussed above, of a single initial
eigenstate (black line) and a 20-state microcanonical ensem-
ble (blue line). Note that the Wehrl entropy for the ensemble of
states is always higher than the Wehrl entropy for the single
quantum state, simply because the initial Husimi function is
wider.

In the case of a single initial state (black line), where
there is no quantum ergodization, the Wehrl entropy can be
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used to quantify the localization of the Husimi function. The
strong and fast oscillations shown in Fig. 7 for t � −1500�−1

therefore confirm what we have already seen for a few discrete
values of t in Fig. 2: fast collapse and revival of the Husimi
function instead of smooth ergodization.

In the case of the ensemble of initial states (blue line)
these oscillations of the Wehrl entropy are much smaller,
reflecting the smoothness of the Husimi function observed
in Fig. 5. Does this Wehrl entropy then correspond to the
classical coarse-grained entropy? To answer this question we
also show the coarse-grained classical entropy, obtained from
the classical coarse-grained phase-space density (14) of Fig. 2,
as a red line in Fig. 7. The red and blue lines agree initially,
until the separatrix crossing, because as long as there is no
swirling, quantum and classical evolution correspond closely
at this N and because without swirling of the initially ergodic
classical ensemble, coarse graining has no effect on it.

The classical entropy (red line) increases in two steps and
stays essentially constant in between. The first step occurs
around �t = −1500 when the separatrix is crossed during
the forward sweep and the coarse-grained density fills the
larger phase-space volume in the growing lower separatrix
lobe. The second step around �t = 3500 is due to the same
mechanism: After �t = 2500, where � is negative again, the
phase-space region outside the separatrix is shrinking. This
means that the outer shell, representing the nonreturning frac-
tion, crosses the separatrix again when it makes the transition
from the figure-eight shape shown in the penultimate row of
Fig. 5 to the ellipsoidal shape shown in the bottom row. In
the same way as when the separatrix was crossed during the
forward sweep, the outer shell merges with another empty
energy shell (which is leaving the lower separatrix lobe), so
the phase-space density decreases and entropy increases. This
transition does not influence the return probability, because
which trajectories return to the initial state has already been
decided much earlier and this phase-space dilution process
involves only the part of the phase-space density that did not
return anyway.

The Wehrl entropy for the ensemble of states does not fully
agree with the classical entropy, but shows additional features
that are due to its finite minimum width. When the separatrix
is crossed around �t = −1500 the Wehrl entropy increases
to a value above the classical entropy, simply because the
Husimi function for our large but finite N is a little wider
than the classical phase-space density (see Fig. 5). When the
separatrix is encountered again during the backward sweep
around �t = 1500, the classical phase-space density and the
Husimi function split into two parts, the outer figure-eight-
shaped shell and the inner ellipsoidal shell. While the classical
occupied phase-space volume stays constant during this tran-
sition, and thus the entropy also does not change, the outer
shell becomes much thinner than the Husimi function can
ever be. The greater width of the Husimi function compared
to the classical phase-space distribution then leads to a small
additional increase of the Wehrl entropy that has no classical
counterpart. In general, a finite-width Husimi function will
always have a larger (Wehrl) entropy than the corresponding
classical distribution because the Husimi function has blurred
edges in comparison to the classical phase-space density. This
also means that the Wehrl entropy can decrease if the shape of

the classical distribution is deformed in a such a way that the
length of the edges decreases. This is the case when the outer
shell crosses the separatrix around �t = 3500, and apparently
the decrease of the Wehrl entropy in this process is almost
compensated by the increase of the entropy that was expected
from the classical considerations.

While the Wehrl entropy for our large but still finite particle
number N therefore does not fully agree with the classical
entropy, somewhat better agreement can be found for the
alternative entropy

S = −kB

∑
n

pn ln(pn), (16)

with

pn = 〈n|ρ̂|n〉 , (17)

where |n〉 are the adiabatic eigenstates. This entropy, which
was introduced by von Neumann [43] for the case of a pure
quantum state, can be understood as the more widely known
mixed-state von Neumann entropy −kBTr(ρ̂ ln ρ̂ ) of the time-
averaged density matrix

ρ̂c = lim
T̃ →∞

1

T̃

∫ T̃

0
dt ρ̂(t ), (18)

where ρ̂(t ) on the right-hand side is again given by the evolu-
tion under the frozen Hamiltonian with fixed detuning �. The
off-diagonal terms in the density matrix oscillate because the
quantum phases of the adiabatic eigenstates evolve at different
speeds, and because the phase difference between different
adiabatic eigenstates |n〉 and |m〉 is thus effectively random,
the off-diagonal terms are averaged out. In fact, due to the
slowness of the sweep compared to the timescale on which
the adiabatic phases change, the averaging can also be done
for finite T̃ and ρ̂(t ) given by evolution under the actual
time-dependent Hamiltonian. The same reasoning was the
motivation for the incoherent Landau-Zener approximation
in [3].

The entropy (16) is thus conceptually similar to the clas-
sical coarse-grained entropy, where time averaging smeared
out the classical swirling structure. It and its generalizations
to other bases besides energy eigenstates have been shown
to satisfy analogs of the Boltzmann H theorem [44,45] and
have been proposed elsewhere as useful tools for analyz-
ing quantum-classical correspondence [46]. Since the entropy
(16) may therefore also be considered as an alternative quan-
tum entropy, we plot it in Fig. 7; it shows better agreement
with the classical coarse-grained entropy compared to the
Wehrl entropy. Note that the classical and Wehrl entropies
in Fig. 7 have both been shifted by a fixed amount, as one
is always free to do by changing the size of the elementary
phase-space cell, so the blue, red, and magenta curves start
out at the same value of S = kB ln(20), since we start with
a microcanonical ensemble of 20 quantum states. The von
Neumann entropy of the time-averaged density matrix then
increases whenever the evolution of one of the 20 initial
states leads to a superposition of multiple adiabatic eigen-
states, which can, for large N , only happen close to where
the separatrix is crossed classically, as has been discussed in
[3]. We may therefore say that the quantum analog of classical
swirling is the quantum superposition of adiabatic eigenstates.
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To summarize, in the case of sufficient initial energy width,
corresponding patterns of plateaus and jumps can be seen
in the quantum and classical entropies. Precise agreement
between quantum and classical entropies even in the large-
N limit is hard to confirm however. This is partly due to
the basic fact, ultimately due to the uncertainty principle,
that probability density in phase space is just not really well
defined in quantum mechanics. Whatever kind of quantum
quasiprobability function one may define in phase space, the
width of this cannot be guaranteed to coincide exactly with
the width of any classical phase-space density, which can
become arbitrarily thin. In particular, the Husimi function of
a given quantum state cannot be considered to represent the
probability distribution in phase for that quantum state, since
integrating the Husimi function over position or momentum
will in general not yield the correct probability distribution of
the remaining canonical observable in that state. It is still true
that every quantum Husimi function is valid as a classical en-
semble in phase space, but the Husimi function of a quantum
microcanonical ensemble is not a classical microcanonical
ensemble, and this makes the comparison between the Wehrl
entropy and the entropy of the time-averaged density matrix
difficult. Even though correspondence of the return proba-
bilities is restored, quantum-classical correspondence is thus
not perfect, even at large N and sufficient energy width for
quantum ergodization.

Besides the dramatic failure of quantum-classical corre-
spondence for large particle numbers and a single initial state,
there is also the more expected failure at low particle numbers.
In particular, the adiabatic limit in the quantum system is very
different from the classical adiabatic limit, in that the evolu-
tion is reversible in the former limit whereas irreversibility
persists in the latter limit. We will show in the next section
how the quantum adiabatic limit appears in the Husimi phase-
space formulation.

IV. REVERSIBILITY BY MACROSCOPIC
QUANTUM TUNNELING

After having demonstrated how the classical limit of the
return probability can emerge from the quantum-phase-space
description for large particle numbers, sufficient energy width,
and very but finitely slow sweep rate, we now consider the
case of ultimately slow sweep rates, in which the quantum
adiabatic limit of completely reversible evolution is always
different from the classical quasistatic limit of probabilistic
hysteresis. As has been shown in [3], even for quite small
N this quantum adiabatic limit requires quite unrealistically
slow sweep rates, because the energy gaps with respect to
which the sweep has to be adiabatic are exponentially small
in N . For N = 10, however, we can at least reach the quan-
tum adiabatic limit with a numerical simulation, in the sense
that the system remains in the same adiabatic eigenstate with
probability greater than 0.99. We can achieve this for the same
Hamiltonian parameters as in Fig. 2 with T = 108�−1. For
N = 20 and the same Hamiltonian parameters, on the other
hand, the total sweep time 2T already has to be on the order of
1015�−1 to obtain a fully reversible evolution, which would be
around 30 years if � were in the experimentally typical mega-
hertz regime or even 30 000 years for � in the experimentally

FIG. 8. Evolution of the Husimi function in the reversible quan-
tum adiabatic limit for N = 10, T = 108�−1, u = −3, and �0/� =
−�I/� = 2 during the forward sweep, where the initial state is the
ground state. The panels for the backward sweep are essentially
identical to the panels shown, but in reverse order. Reversibility in
this extreme case is restored by macroscopic quantum tunneling: All
atoms tunnel collectively through the separatrix, which is indicated
by the dashed white line, in the forward and backward sweep. Ac-
cordingly, the Husimi function also tunnels through the separatrix:
Instead of continuously flowing through the separatrix as in Fig. 2
and Fig. 5, the Husimi function simply fades away on one side of the
separatrix and grows on the other side, without ever having visible
support on the separatrix itself. Because the system always stays in
a single adiabatic eigenstate, interference effects like those in Fig. 2
are absent.

feasible kilohertz regime. The question of why the quantum
adiabatic limit is so insanely hard to reach for higher N can
actually be answered by the numerically achievable case of
N = 10.

Figure 8 shows the evolution of the Husimi function for
N = 10 and T = 108�−1, where the initial state is the ground
state at �I/� = −2, meaning that initially almost all atoms
are in the first mode and the Husimi function is localized in
the upper half of the phase space q′ > 0.

We find that around � ∼ 0 (t ∼ −T/2), where the en-
ergy difference between the two lowest-energy eigenstates
becomes minimal, the Husimi function tunnels into the lower
half of the phase space. At this time most of the corresponding
classical orbits would still be far away from the separatrix
and would therefore stay in the upper separatrix lobe, until
a much larger detuning is reached and they are touched by
the shrinking separatrix lobe. This tunneling through an ener-
getic barrier (and through the separatrix in phase space) is an

052212-11



RALF BÜRKLE AND JAMES R. ANGLIN PHYSICAL REVIEW A 102, 052212 (2020)

example of macroscopic quantum tunneling [47–50]: In the
adiabatic limit all atoms tunnel from the first mode to the
second mode collectively during the forward sweep around
� ∼ 0. During the backward sweep the same tunneling occurs
again, so the evolution is reversible. Because the energetic
barrier is very high, this macroscopic tunneling is so ex-
tremely slow that it only plays a role for extremely slow sweep
rates. For the classical phase-space distribution, in contrast,
tunneling through an energetic barrier is not possible at all, no
matter how slow the sweep may be. This tunneling through
a separatrix, which is only possible quantum mechanically, is
the reason for the incommutability of the semiclassical and
adiabatic limits.

Because all particles have to tunnel through the barrier, it
is also clear that the sweep time needed to reach the adiabatic
limit quickly increases with N . For higher initial energy the
energetic barrier is lower and a smaller number of particles has
to tunnel [N − 2(i − 1) for the initially ith state]. As long as
the total particle number is not very small, however, the effect
of macroscopic tunneling can still be neglected for realistic
sweep rates until the Husimi function comes close to the
separatrix and the energetic barrier is very low. In this case
the only practical consequence of macroscopic tunneling is
that the crossing of the separatrix happens in a slightly larger
� range than would be expected classically.

V. CONCLUSION

We have provided a phase-space description of how irre-
versibility in the form of probabilistic hysteresis occurs in a
dissipationless quantum system. In particular, we have used
the Husimi function to show that the quantum evolution is
closely related to the classical evolution, with the usual 1/N
dependence of the quantum correction term, but in spite of
this scaling, which naively suggests good quantum-classical
correspondence for large N , we have found that the partic-
ular ergodization mechanism due to swirling in the classical
evolution leads to a breakdown of quantum-classical corre-
spondence. This inhibits quantum ergodization of the Husimi
function, precisely at the point where classically the separatrix
is crossed and irreversibility begins its onset. This quantum
lack of ergodization has the result that the quantum return
probability oscillates around the semiclassical value if the
sweep time is varied, even for very large N .

The classical limit for the return probability thus only
emerges in the full quantum evolution if there is a specifi-
cally quantum ergodization mechanism. Such an ergodization
mechanism appears naturally if an ensemble of initial quan-
tum states is considered instead of a single state, because
the Husimi function in this case is the superposition of the
Husimi functions of the individual pure states, each of which
is quite localized but rapidly oscillating. The classical return
probability in probabilistic hysteresis is determined under
Kruskal’s theorem by the combination of Liouvillian evolu-
tion and effective ergodization, and so the classical return
probability is only recovered from the quantum evolution if,
besides the usual mean-field limit N → ∞, a finite initial
energy width is also allowed, since in this case Kruskal’s

theorem can also be applied to the Husimi evolution to a good
approximation.

Even for large N and sufficient initial energy width for
quantum ergodization, quantum-classical correspondence is
not perfect though. While to the naked eye the Husimi
function and the classical phase-space density appear almost
indistinguishable in this case, the comparison of the Wehrl
entropy and the classical coarse-grained entropy reveals that
the Husimi function still has distinctive quantum features. In
particular, the Husimi function always has a finite width due
to the uncertainty principle, so even at large N it can be con-
siderably wider than the corresponding classical phase-space
density. Good correspondence between the quantum and clas-
sical return probabilities still appears for finite N , however,
because the classical return probability for thin energy shells
only depends weakly on energy itself, so the additional width
of the Husimi function does not change the return probability
significantly. It remains an open question whether the entropy
discrepancies due to thinness eventually vanish in the true
classical limit of N → ∞ or for larger initial energy width.
After all, the Husimi function cannot be interpreted as a true
probability distribution in phase space.

In the opposite limit of small particle numbers we have
shown that it is macroscopic quantum tunneling that is respon-
sible for the different behavior of the quantum and classical
systems in the quasistatic limit of infinitely slow sweep rate.
Unlike the classical system, the quantum system can tunnel
through the separatrix, and can thereby remain in the same
adiabatic energy eigenstate throughout the whole forward-
and-back sweep cycle, so reversibility is restored. Since the
energetic barrier is high, however, and the number of atoms
that have to tunnel is of order N for not too high initial energy,
this tunneling is so very slow that for realistic sweep rates
it plays no role unless the total particle number is very low
(N � 20).

In final summary, we have offered a complementary view-
point on quantum probabilistic hysteresis to the description in
terms of Landau-Zener crossings that was obtained in [3]. We
have identified why quantum-classical correspondence breaks
down in probabilistic hysteresis (fine classical swirling) and
why the classical and quantum adiabatic limits are different
(macroscopic quantum tunneling). Furthermore, the phase-
space picture that we have presented in this paper leads us
at least to the conjecture that the exact unitarity of quan-
tum evolution, which is a close analog to the Liouvillian
incompressibility of classical phase-space flow, must be a fun-
damentally robust point of correspondence between quantum
and classical dynamics such that given some form of ergodiza-
tion in either kind of dynamics, conclusions like those of the
classical Kruskal theorem must emerge in both cases. A fully
quantum analog of Kruskal’s theorem thus becomes a natural
goal for future study; it might be approached by returning to
the Landau-Zener picture of our previous paper [3].
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