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Quantum particles that behave as free classical particles
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The existence of nonvanishing Bohm potentials, in the Madelung-Bohm version of the Schrödinger equation,
allows for the construction of particular solutions for states of quantum particles interacting with nontrivial
external potentials that propagate as free classical particles. Such solutions are constructed with phases which
satisfy the classical Hamilton-Jacobi for free particles and whose probability densities propagate with constant
velocity, as free classical particles do.
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I. INTRODUCTION

In 1979, Berry and Balazs [1] showed that a quantum-free
wave packet can show unexpected accelerating characteris-
tics. In this article we address the opposite question, that is,
whether the wave function of the interacting particle, that
satisfies the Schrödinger equation for a potential V , may
propagate as free particles in the sense that their probability
densities propagate with constant velocity as if they were free
classical particles. Here, we establish the conditions which
make this behavior possible and present numerous examples.
The theoretical results presented in this article are in the same
spirit as several others that have had experimental confirma-
tion in optics and quantum mechanics [2–7].

We prove that such a possibility indeed exists in the frame-
work of nonrelativistic quantum mechanics and its relation
to the existence of the so-called Bohm potential. In other
words, there are quantum solutions, for families of external
potentials V , in which the wave function for the particle
propagates as a free classical particle. This is only possible
for a nonvanishing Bohm potential, which in turn implies
that the amplitude of the wave function is not constant. We
focus on one-dimensional systems, although our results can
be generalized to higher dimensions [8–10], or to relativistic
regimes [11] following the ideas presented here.

By a free classical particle, we understand it to be any
particle of mass m satisfying the free Hamilton-Jacobi (HJ)
equation

1

2m
(S′)2 + Ṡ = 0, (1)

for an action S = S(x, t ), where ′ ≡ ∂x, and ˙≡ ∂t . The prop-
agating solutions of this equation have a constant velocity.
Thus, this action may be considered as the phase of a solution
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to the Schrödinger equation. Therefore, we are looking for
wave functions with a phase satisfying Eq. (1), and with an
amplitude that allows us to solve the Schrödinger equation for
a given potential V .

Let us consider the wave function ψ = ψ (x, t ) of a
one-dimensional Schrödinger equation (and its complex con-
jugate) for a real potential V (x, t ),

− h̄2

2m
ψ ′′ + V ψ − ih̄ψ̇ = 0. (2)

The wave function may be written in terms of a polar decom-
position as ψ = A exp (iS/h̄), where the amplitude A(x, t ) and
the phase S(x, t ) are real functions. Thereby, the Schrödinger
equations become [12–17]

1

2m
(S′)2 + VB + V + Ṡ = 0, (3)

1

m
(A2 S′)′ + (A2)˙ = 0, (4)

where the Bohm potential is given by

VB ≡ − h̄2

2m

A′′

A
. (5)

Equation (3) is the quantum Hamilton-Jacobi (QHJ) equation
for the (external) potential V . The quantum modification con-
sists in the addition of the Bohm potential to the classical HJ
equation. Equation (4) is the continuity (probability conser-
vation) equation. To enforce that the probability density of
a quantum interacting particle propagates as a free classical
particle, we need to require that the Bohm potential cancels
out any contribution of the external potential,

VB + V = 0, (6)

allowing the phase, from Eq. (3), to fulfill the HJ equation (1).
The above condition implies that the external potential deter-
mines completely the dynamics of the amplitude A, through
the Bohm potential. This also must be consistent with the
continuity equation (4).
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The continuity equation (4) is identically solved by defin-
ing the arbitrary potential function f = f (x, t ), such that A2 =
f ′, and A2S′ = −m ḟ . For a one-dimensional system, once the
free-particle action S is found by solving HJ equation (1),
f = f (x, t ) can be determined by the relation

f ′S′ + m ḟ = 0. (7)

This equation states that f depends on x and t through one
variable only. On the other hand, the amplitude of the wave
function is found to be given by the relation (with f ′ > 0)

A2 = f ′. (8)

This allows, in principle, to have negative amplitudes. Ex-
amples of this are shown below, as well as others where the
amplitude is always positive (without nodes in x) and they are
also normalizable.

When the exact form of the amplitude A (or function f ) is
found by solving Eq. (6), a quantum particle in the presence
of a potential V propagates as a free particle, in the sense that
its phase is equal to the action for a free classical particle,
while its amplitudes have a x and t dependence completely
determined by the phase. Therefore, this solution is a quantum
state with a phase that coincides with the action for a free
classical particle, while its probability density propagates as a
free classical particle with constant velocity. These solutions
are nondiffracting wave packets and they do not correspond
to a solution in a classical limit [17], and neither can they be
found by a Galilean transformation [18].

II. SEPARABLE ACTION FOR FREE
CLASSICAL PARTICLE

Let us study the simplest case for a classical free particle,
in which the spatial and temporal dependence are separated.
The phase (action) is given by

S(x, t ) = k x − k2

2m
t . (9)

This action is a solution of (1) for any constant k. Equation
(7) allows us to find that f depends on x and t through one
variable z only. In this case, we obtain that it has the form
f (x, t ) = f (z) = f (x − kt/m), and thus, by Eq. (8), we obtain
that the amplitude depends on the same variable z as

A(x, t )2 = A(z)2 = df

dz
, (10)

where z is defined as

z ≡ x − k

m
t . (11)

A quantum particle interacting with an external potential
V (x, t ) = V (z), propagates with phase (9), if the amplitude
fulfills Eq. (6), in the form

V (z) = h̄2

2mA(z)

d2A(z)

dz2
. (12)

For this case, all considered external potentials V must depend
on the z variable, and therefore they are not static. In this
form, any solution of Eq. (12) corresponds to a quantum

particle which propagates with the action of a free classical
particle, and its probability density moves with the velocity
k/m. Several different solutions are described below.

Constant force. Consider a constant force F = −V ′, with
potential V (z) = −Fz. Thus, Eq. (12) produces an amplitude
given in terms of Airy functions

A(x, t ) = Ai
(

−
(

2mF

h̄2

)1/3

z

)
. (13)

This Airy wave packet propagates as a free classical particle
(without acceleration) under a constant force.

Moving potential trap. An attractive potential with the form
V (z) = −γ δ(z) is used to manipulate particles [19,20]. Here,
γ is a constant, and δ is the Dirac delta function. The ampli-
tude solution of Eq. (12) becomes

A(x, t ) = mγ β

h̄2 z sgn(z) − β, (14)

for an arbitrary constant β, and where sgn is the sign function.
Coulomb potential for a moving charge. Let us assume

a potential with the form V (z) = α/z, for a moving charge
with constant nonrelativistic velocity (α is a constant). This
corresponds to the nonrelativistic expression for the Liénard-
Wiechert four-potential [21]. In this case, Eq. (12) gives an
amplitude in terms of Bessel functions K1,

A(x, t ) =
√

2mα z

h̄
K1

(
2
√

2mα z

h̄

)
. (15)

Solutions in terms of Bessel functions I1 are also possible.
Thus, this Coulomb potential produces Bessel wave packets
that allow the particles to propagate freely.

Electromagnetic wave. A particle interacting with an elec-
tromagnetic wave (with wave number κ and frequency κk/m)
experience a potential of the form V (z) = γ cos(κz) (with
constant γ ). In this case, Eq. (12) becomes a Mathieu equation

d2A

dz2
− 2mγ

h̄2 cos (κz)A = 0. (16)

Explicit solutions are written in terms of the recurrence re-
lations [22,23]. In this form, Mathieu beam wave packets
support quantum solutions that propagate in a free classical
fashion.

Harmonic oscillator. For a shifted harmonic oscillator
V (z) = mω2z2/2 [24], with frequency ω, Eq. (12) has a so-
lution of parabolic cylinder functions [23],

A(x, t ) = D− 1
2

(√
2mω

h̄
z

)
. (17)

Pöschl-Teller potential. Consider the moving potential
V (z) = −γ sech2 z, with a constant γ . The amplitude solution
of (12) is written in terms of a Legendre polynomial P and a
Legendre function of the second kind Q as

A(x, t ) = a1Pn(tanh z) + a2Qn(tanh z) (18)

with arbitrary a1 and a2, and n = (
√

1 + 8mγ /h̄2 − 1)/2.
Constant modified harmonic oscillator. The above exam-

ples have the feature that the wave functions have nodes in
x. However, normalizable states without nodes can also be
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found satisfying Eq. (12). An example of this is the sys-
tem subject to a (shifted) harmonic oscillator, with V (z) =
mω2z2/2 − h̄ω/2, and arbitrary frequency ω. This potential
solves Eq. (12) for the amplitude

A(x, t ) =
(

mω

h̄π

)1/4

exp

(
−mω

2h̄
z2

)
, (19)

which gives rise to a square-integrable wave function.
Constant modified Pöschl-Teller potential. Examples of

physical states can also be obtained for the following Pöschl-
Teller potential V (z) = −(h̄2/m) sech2z + h̄2/(2m). In this
case, the solution of Eq. (12) gives a propagating solitonic
amplitude

A(x, t ) = 1√
2

sech z, (20)

which produces a square-integrable wave function with a
probability amplitude that propagates as a free classical parti-
cle with action (9).

III. NONSEPARABLE ACTION FOR FREE
CLASSICAL PARTICLE

Another very well-known solution for the classical HJ (1)
for classical free particles is

S(x, t ) = m (x − x0)2

2(t − t0)
, (21)

for an arbitrary initial position x0 and initial time t0 < t . This
action is a nonseparable function of space and time.

In this case, Eq. (7) allows us to find that any function
with the functionality f (x, t ) = f (y) solves the continuity
equation, where we have introduced the variable

y ≡ x − x0

t − t0
. (22)

Therefore, the amplitude is given by

A(x, t ) = 1√
t − t0

A(y), (23)

with A2 = df /dy. In this case, any external potential with the
form

V (x, t ) = 1

(t − t0)2 V (y), (24)

allows us to rewrite Eq. (6) as

V (y) = h̄2

2mA(y)

d2A(y)

dy2
. (25)

Potentials with the exact space and time dependence of the
form (24) have been shown to produce exact Feynman propa-
gators [25]. In this form, any solution of Eq. (25) produces
a quantum particle that propagates classically with action
(21) and a probability density that propagates with constant
velocity (x − x0)/(t − t0). Below we study some of them in
our context.

Time-decreasing force. For a force decreasing in time with
the form F (t ) = F0/(t − t0)3, a potential V (y) = −F0 y can

be used. In this case, Eq. (25) produces Airy solutions, and
amplitude (23) is

A(x, t ) = 1√
t − t0

Ai

(
−

(
2mF0

h̄2

)1/3

y

)
. (26)

Thus, for such forces, the quantum system is solved exactly,
and the particle propagates as if it were free.

Harmonic oscillator. Consider the harmonic oscillator po-
tential V = mω2x2/2. For a time-decreasing frequency in
the form ω = ω0/(t − t0)2 [25] (with constant ω0), then the
harmonic oscillator with potential V (y) = mω2

0y2/2 can be
solved exactly. Using Eq. (25), amplitudes are given in terms
of the parabolic cylinder functions [23]

A(x, t ) = 1√
t − t0

D− 1
2

(√
2mω0

h̄
y

)
. (27)

Coulomb-like potentials. Consider a potential with the
form V (x, t ) = Z (t )/x. When Z decreases in time as Z (t ) =
Z0/(t − t0) [25], then V = Z0/y, and there exist solutions us-
ing our approach. The amplitude of the wave function is again
given in terms of the Bessel functions K1,

A(x, t ) =
√

2mZ0 y

h̄
√

t − t0
K1

(
2
√

2mZ0 y

h̄

)
. (28)

Constant modified harmonic oscillator. It is possible to
construct square-integrable wave functions satisfying con-
dition (25) for all of the examples presented here and in
Sec. II. A simple example of this is for the harmonic
oscillator with potential V (x, t ) = mω2x2/2 − h̄ω/2, with
time-decreasing frequency ω = ω0/(t − t0)2. This allows us
to define the potential V (y) = mω2

0y2/2 − h̄ω0/2, which ac-
cording to Eq. (25) produces an amplitude of the form

A(x, t ) =
(

mω0

h̄ π (t − t0)2

)1/4

exp

(
−mω0

2h̄
y2

)
. (29)

This amplitude defines a physical normalizable wave function
that propagates with action (21) under this harmonic oscillator
potential.

IV. DISCUSSION

With the above several examples and calculations we have
shown that is possible for interacting quantum particles to
have a probability density that propagates as a free classical
particle for a wide range of known potentials. These quantum
solutions have a phase that coincides with the action for a free
classical particle, and therefore they are nontrivial solutions
of quantum mechanics. This is only achieved because the
Bohm potential of the wave function cancels out the external
potential. By doing this, the external potential completely
determines the amplitude of the wave packets, as it can be
seen in Eqs. (12) and (25).

The condition (6) allows us to describe our solutions as
quantum particles that propagate as classical ones, as they
satisfy the HJ equation (1). However, they also satisfy the
free-space Liouville equation ∂tF + (p/m)∂xF = 0, for the
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phase-space density [26]

F (x, p, t ) = A(x, t )2δ

(
p − ∂S

∂x

)
, (30)

where δ is the Dirac delta function, and A2 = ∫
Fd p is the

probability density of the studied solutions in each section.
Here, p = ∂xS is the constant momentum, which for solutions
of Sec. II is p = k, while for solutions of Sec. III is p = m(x −
x0)/(t − t0). The solutions presented above satisfy the free-
space Liouville equation which implies that they behave as
free classical particles.

It is remarkable the solutions explored in this work oc-
cur for the large family of potentials treated here. We
think they can bring different insights in the propagation
of quantum particles, as the quantum characteristics remain
confined to the amplitude, while the phase is associated

with the action of a free classical particle. Furthermore, we
have shown that square-integrable wave functions can be
obtained for known potentials, thus representing physical
states.

Any solution fulfilling condition (6) can now be interpreted
as a nondiffracting wave packet that modified its own prob-
ability density in order to propagate as if it were free. The
implications of this behavior are not difficult to be envisaged
as very interesting, as other quantum wave packets, with sim-
ilar features, such as accelerating and curved properties, have
been constructed and measured in laboratories [2–7].
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