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Identifying which master equation is preferable for the description of a multipartite open quantum system is
not trivial and has led in recent years to the local vs global debate in the context of Markovian dissipation. We
treat here a paradigmatic scenario in which the system is composed of two interacting harmonic oscillators A
and B, with only A interacting with a thermal bath—collection of other harmonic oscillators—and we study
the equilibration process of the system initially in the ground state with the bath finite temperature. We show
that the completely positive version of the Redfield equation obtained using coarse-grain and an appropriate
time-dependent convex mixture of the local and global solutions give rise to the most accurate approximations
of the whole exact system dynamics, i.e., both at short and at long timescales, outperforming the local and global
approaches.
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I. INTRODUCTION

In the rising field of quantum technology [1], considering
a quantum system isolated from its surroundings is a nonre-
alistic idealization. In the majority of the implementations of
quantum information algorithms [2] and quantum computa-
tion [3], the interaction with the environment is detrimental for
quantum resources, becoming a crucial ingredient to monitor,
with the scope of reducing its effects or with the aim of ac-
counting for it by applying quantum error correction methods.
Interestingly, in more rare cases the environment itself acts as
a mediator for the production of quantum correlations into the
system [4].

Unfortunately, our ability in accounting for environmen-
tal effects is severely limited by the difficulty of keeping
track of the exact dynamics of the entire system-environment
compound: a problem which is made computationally hard
by the large number of degrees of freedom involved in the
process. For this reason, effective models for the way the
environment acts on the reduced system density matrix have
been developed, leading to the master equation (ME) formal-
ism [5,6]. The lowest level of approximation contemplates
the assumption of weak system-environment coupling (Born
approximation) and time divisibility for the system dynamics
(Markov approximation). This leads to the Redfield equation
[7–9] which regrettably, while being able to capture some
important features of the model [10,11], does not ensure
positive (and hence completely positive) evolution [12–19].
In quantum mechanics, the positivity of density matrices,
i.e., the fact that all their eigenvalues are non-negative, is an

essential property imposed by the probabilistic interpretation
of the theory [2]. Allowing for mathematical structures that
do not comply with such requirement paves the way to a
series of inconsistencies that include negative probabilities
of measurements outcomes, violation of the uncertainty re-
lation, and, ultimately, the noncontractive character of the
underlying dynamics. Ways to correct or to circumvent the
pathology exhibited by the Redfield equation typically relay
on the full [8] or the partial [20–25] implementation of the
secular approximation: a coarse-grain temporal average of the
system dynamics which, performed in conjunction with the
above mentioned Born and Markov approximations, leads to a
more reliable differential equation for the system density ma-
trix known as the Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) master equation [5,6].

The situation becomes more complicated when the system
is composed of two or more interacting subsystems that are
locally coupled to possibly independent reservoirs [26]. In
this case, a brute force application of a full secular approx-
imation leads to the so called global ME, a GKSL equation
obtained under the implicit assumption that the environment
will perceive the composite system as a unique body irrespec-
tively from the local structure of their mutual interactions.
While formally correct in terms of the positivity and complete
positivity requirements and predicting long term behaviors
which are thermodynamically consistent, the resulting ME is
prone to introduce errors in the short term description of the
dynamical process. A suitable alternative is provided by the
so called local ME approach where, contrarily to the global
ME, each subsystem is assumed to independently interact
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with its own environment, keeping track of the local nature
of the microscopic interaction. Despite in certain situations it
can imply the breaking of the second law of thermodynamics
[27], it allows for a more precise description of the short
term dynamics of the composite system. A local approach is
usually allowed when the subsystems interact weakly between
each other [28–30]. As well as the global ME, the local ME
can be microscopically derived [28] and is in GKSL form.
Notably, such a master equation has recently acquired full
dignity showing that it exactly describes the dynamics induced
by an engineered bath schematized by a collisional model
[31]. Furthermore, even under a more conventional descrip-
tion of the environment, thermodynamics inconsistencies only
occur at the order of approximation where the local approach
is not guaranteed to be valid and, eventually, it is possible
to completely cure such inconsistencies by implementing a
perturbative treatment around the local approximation [32].

The scope of the present work is to test the effectiveness
of different classes of MEs to describe the system dynamics,
particularly focusing on alternative approaches beyond those
adopted in deriving the local and global MEs and using as a
benchmark a model that we are able to solve exactly. Differ-
ently from previous studies [28,29], where the focus was on
the steady state properties of a bipartite system with each sub-
system coupled to a different thermal reservoir, we deal with
a bipartite system asymmetrically coupled to a single thermal
bath and analyze its whole dynamics including both the tran-
sient and asymptotic regime. More specifically, in our case the
system of interest is composed of two interacting harmonic
oscillators A and B, with only A microscopically coupled with
an external bosonic thermal bath described as a collection of
extra harmonic oscillators. About the exact dynamics bench-
mark, the unitary evolution of the joint system+environment
compound has been calculated by restricting ourself to ex-
change interactions and Gaussian states [33]. Our analysis
leads to the conclusion that the completely positive version of
the Redfield equation obtained as described in [25] by apply-
ing the secular approximation via coarse-grain averaging in a
partial and tight way, provides a semigroup description of the
system dynamics that outperforms both the local and global
ME approaches. We also observe that analogous advantages
can be obtained by adopting a phenomenological description
of the system dynamics, constructed in terms of an appropriate
time-dependent convex mixture of the local and global ME
solutions.

Despite the selected model has been chosen primarily for
its minimal character [34], possible implementations of the
setup we deal with can be found in cavity (or in circuit) quan-
tum electrodynamics. An example is the open Dicke model
[35] for a large enough number of two-level atoms inside the
cavity [36] and assuming that the interaction of the cavity
mode with the radiation field is more relevant than the direct
coupling of the radiation field with the atoms. Alternatively,
our bipartite system may directly describe coupled cavities in
an array [37] in the instance of two cavities. About the kind
of dynamics we chose, it may be of interest for ground state
storage in quantum computation [2] or, conversely, for thermal
charging tasks [38,39].

The paper is organized as follows. In Sec. II we intro-
duce the model. The different approximations are described in

FIG. 1. Schematic of the model: the composite system S is
formed of two harmonic oscillators A and B of equal frequency ω0

which interact via an exchange Hamiltonian coupling characterized
by the constant g. The subsystem A is also coupled with the modes
k ∈ {1, 2, . . . , M} of a thermal environment E at temperature 1/β

(again the interaction is mediated by an exchange Hamiltonian with
constants γk).

Sec III. In Sec. IV we integrate the dynamical evolution under
the various approximations and present a comparison between
the various results. In Sec V we draw the conclusions and we
discuss possible future developments. Details on the approxi-
mation methods and on the evaluation of the exact dynamics
are reported in the Appendixes.

II. THE MODEL

The model we consider is schematically described in
Fig. 1. It consists of a bipartite system S composed of two
resonant bosonic modes A and B of frequency ω0 and de-
scribed by the ladder operators a, a† and b, b† that interact
through an excitation preserving coupling characterized by an
intensity parameter g � 0. Accordingly, setting h̄ = 1, the free
Hamiltonian of S reads

HS := HS,0 + HS,g,

HS,0 := ωAa†a + ωBb†b, with ωA = ωB := ω0,

HS,g := g(a†b + H.c.),

(1)

which can also be conveniently expressed as

HS = ω+γ
†
+γ+ + ω−γ

†
−γ−, (2)

with

ω± := ω0 ± g, γ± := 1√
2

(a ± b), (3)

being, respectively, the associated eigenmode frequencies and
operators [36], the last obeying the commutation rules

[γ−, γ+]− = [γ−, γ
†
+]− = 0, [γ±, γ

†
±]− = 1. (4)

Through the exclusive mediation of subsystem A, we then as-
sume S to be connected to an external environment E formed
of a collection of a large number M of independent bosonic
modes, no direct coupling being instead allowed between B
and E . Indicating with ck, c†

k the ladder operators of the kth
mode of E , we hence express the full Hamiltonian of the joint
system S + E as

H := HS + HE + H1, (5)
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with

HE :=
M∑

k=1

ωkc†
kck, H1 :=

M∑
k=1

γk (a†ck + H.c.), (6)

being, respectively, the free Hamiltonian of the environment
and the exchange coupling between A and E . More in details,
in our analysis we shall assume the frequencies ωk of the
environmental modes to be equally spaced with a cut-off value
ωc > ω0, i.e.,

ωk := k

M
ωc, k ∈ {1, . . . , M}, (7)

and take the system-environment coupling constants γk to
have the form

γk :=
√

κ (ω0)
(ωk

ω0

)α ωc

2πM
, (8)

with κ (ω0) controlling the effective strength of the interaction
between A and E . The parameter α � 0 appearing in Eq. (8)
gauges the bath’s dispersion relation by imposing the follow-
ing form for the (rescaled) spectral density of the reservoir
modes [28]:

κ (ω) := 2π

M∑
k=1

γ 2
k δ(ω − ωk ) = κ (ω0)

( ω

ω0

)α
	(ωc − ω),

(9)
with 	(x) being the Heaviside step function (α = 1, α > 1,
and α < 1 being associated with the Ohmic, super-Ohmic,
and sub-Ohmic scenarios, respectively [40]). Finally, we shall
assume the joint S + E system to be initialized into a factor-
ized state

ρSE(0) = ρS(0) ⊗ ρE(0), (10)

where the bath is in a thermal state of temperature 1/β > 0:

ρE(0) := e−βHE

tr[e−βHE ]
= ρ1(β ) ⊗ · · · ⊗ ρM (β ), (11)

ρk (β ) := e−βωkc†
k ck

tr[e−βωkc†
k ck ]

. (12)

III. APPROXIMATED EQUATIONS FOR S

In this section we review the different ME approaches one
can use to effectively describe the evolution of the system S
by integrating away the degrees of freedom of the environ-
ment E . We shall start our presentation by introducing the
coarse-grained regularized version of the Redfield equation
[25], which includes the global ME as a special case. We
then introduce the local ME approach and finally discuss the
phenomenological approach which employs convex combi-
nations of local and global ME solutions. Since most of the
derivations of the above expressions are discussed in detail
elsewhere (see, e.g., [8]) here we just give an overview of the
methods involved and refer the interested reader to Appendix
A for further details.

A. From CP-Redfield ME to global ME

The starting point of this section is the Redfield equation
which one obtains by expressing the dynamical evolution of

the joint system in the interaction picture, and enforcing the
Born and, then, the Markov approximations [8]. The Born
approximation assumes that the S − E coupling is weak in
such a way that the state of E is negligibly influenced by
the presence of S , while the Markov approximations as-
sume invariance of the interaction-picture system state over
timescales of order τE, the last being the time over which
E loses the information coming from S and can be esti-
mated from the width of the bath correlation functions (see
Appendix D).

As anticipated in the Introduction, the Redfield equation
does not ensure completely positive evolutions and in cer-
tain cases neither positive evolution, hence preventing one
from framing the obtained results with the probabilistic in-
terpretation of quantum mechanics. Methods for avoiding
nonpositive behaviors have been developed in literature. First
of all, choosing appropriate initial conditions often allows
one to preserve positivity, while retaining all the advanta-
geous features of the Redfield equation [11]. On the contrary,
second-order approximation to the full density matrix in
interaction picture and subsequent—eventually dynamically
adapted—coarse-grain averaging was proposed [20] as a con-
sistent method for all coarse-grain timescales and factorized
initial conditions. It was also noted that not performing the
Markovian approximation which enforces semigroup dynam-
ics can lead to completely positive evolutions [41]. These last
two approaches completely circumvent the Redfield equation
in its handy semigroup form. Recently, some of us have
proposed instead a procedure (working for any factorized
initial conditions) to tightly cure the nonpositive character
by performing coarse-grain averaging directly on the “fully
Markovian” Redfield equation in the interaction picture [25].
Responding to the question on which is the most accurate
method for this particular task, i.e., both ensuring positivity
and providing an effective approximation of the system state,
by using Redfield-like approaches, is beyond the scope of the
present work (see [42] for this issue). Specifically, here we test
the version of the partial secular approximation described in
Ref. [25]. Performing a coarse-grain averaging on the Redfield
equation in interaction picture over a time interval �t that is
much larger than the typical timescale of the system state in
interaction picture, is a way to appropriately smooth the non-
secular terms responsible of the nonpositive character, even in
a tight way. As schematically pictured in Fig. 2, by moving the
parameter �t along the interval [0,∞[, the reported technique
is also capable to formally connect the original Redfield equa-
tion (�t = 0) and the full secular approximation (�t = ∞)
in a continuous way. Expressed in the Schrödinger picture,
the coarse-grained Redfield equation for the evolution of ρS

for fixed coarse-graining time �t reads

ρ̇S(t ) = −i
[
HS + H (�t )

LS , ρS(t )
]
−

+
∑

σ,σ ′=±
S(�t )

σσ ′

{
γ

(1)
σσ ′

(
γ †

σ ρS(t )γσ ′−1

2
[γσ ′γ †

σ , ρS(t )]+

)

+γ
(2)
σ ′σ

(
γσ ′ρS(t )γ †

σ − 1

2
[γ †

σ γσ ′ , ρS(t )]+

)}
, (13)
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FIG. 2. Schematic representation of the continuous transitions
from the Redfield ME to the global ME (25) passing through the
coarse-grained Redfield MEs (13), and from the local ME (28) to the
global ME using the time-dependent convex mixture (31). The dot
indicates the completely positive map defined by the CP-Redfield
ME obtained by saturating the bound in Eq. (23).

where hereafter we shall use the symbols [ · · · , · · · ]∓ to rep-
resent commutator and anticommutator relations, γ± are the
eigenmode operators of HS introduced in Eq. (3) and

H (�t )
LS :=

∑
σ,σ ′=±

S(�t )
σσ ′
(
η

(1)
σσ ′ + η

(2)
σ ′σ

)
γ †

σ γσ ′ (14)

is the so called Lamb-shift Hamiltonian correction term. As
indicated by the notation, the dependence of Eq. (13) upon the
coarse-graining time interval �t is carried out by the tensor
S(�t )

σσ ′ of components

S(�t )
σσ ′ := sinc

(
(σ − σ ′)g�t

2

)

= δσσ ′ + (1 − δσσ ′ ) sinc(g�t ), (15)

with sinc(x) := sin(x)/x being the cardinal sinus. The func-
tional dependence of the right-hand side of (13) upon the bath
temperature is instead carried on by the tensors γ

(i)
σσ ′ and η

(i)
σσ ′ .

Specifically, for σ, σ ′ ∈ {+,−} and i ∈ {1, 2}, these elements
fulfill the constraints

γ
(i)
σσ ′ := γ (i)

σσ + γ
(i)
σ ′σ ′

2
+ i
(
η(i)

σσ − η
(i)
σ ′σ ′
)
, (16)

η
(i)
σσ ′ := −i

γ (i)
σσ − γ

(i)
σ ′σ ′

4
+ η(i)

σσ + η
(i)
σ ′σ ′

2
, (17)

which allow one to express all of them in terms of their
diagonal (σ = σ ′) components

γ (1)
σσ := 1

2
κ (ωσ )N (ωσ ), (18)

γ (2)
σσ := 1

2
κ (ωσ )[1 + N (ωσ )], (19)

η(1)
σσ := 1

2
−
∫ ∞

0
dε

1

2π

κ (ε)N (ε)

ε − ωσ

, (20)

η(2)
σσ := −1

2
−
∫ ∞

0
dε

1

2π

κ (ε)[1 + N (ε)]

ε − ωσ

, (21)

with κ (ω) the spectral density of the reservoir defined in
Eq. (9), the symbol −

∫
meaning the principal value of the

integral, and with

N (ωk ) := Tr[c†
kckρk (β )] = 1

eβωk − 1
(22)

10−5 10−3 10−1 101

N (ω0)

0.0

0.5

1.0

i = 1
i = 2

FIG. 3. Plot of the quantities on the right-hand side of the in-
equality (23) for i = 1 (black full line) and i = 2 (red dashed line)
as function of the bath temperature 1/β which we parametrize
through N (ω0) = 1/(eβω0 − 1). The blue region represents the
values of |S(�t )

+− | which satisfy the inequality (23) ensuring com-
pletely positive dynamics of the coarse-grained Redfield equation
(13). We chose the parameters g = 0.3ω0, ωc = 3ω0, and α = 1
(Ohmic spectral density regime). Notice the logarithmic scale on the
abscissa.

being the Bose-Einstein factor of the mode k of the thermal
bath.

For g�t → 0, S(�t )
σσ ′ assumes constant value 1 for all σ and

σ ′: this corresponds to the pathological case of the (uncor-
rected) Redfield equation in which both the diagonal (secular)
and the off-diagonal (nonsecular) σ, σ ′ terms of the right-hand
side of Eq. (13) contribute at the same level to the dynamical
evolution of ρS(t ) paving the way to unwanted nonpositive
effects. As g�t increases, the off-diagonal component S(�t )

+− =
sinc(g�t ) acts as the smoothing factor for the nonsecular (σ 	=
σ ′) part of the ME, which gets progressively depressed as the
coarse-grain time interval �t gets comparable or even larger
than the inverse of the energy scale g of the system. Following
Ref. [25] one can then show that the model admits a (finite)
threshold value for �t above which Eq. (13) acquires the
explicit GKSL form that is necessary and sufficient to ensure
complete positivity of the resulting evolution. Specifically, as
discussed in detail in Appendix B, such threshold is triggered
by the inequality

∣∣S(�t )
+−
∣∣ � min

i∈{1,2}

√
γ

(i)
++γ

(i)
−−

|γ (i)
+−|2 . (23)

In the following, Eq. (13) at positivity threshold, i.e., with the
choice of S(�t )

+− tightly saturating the bound of Eq. (23), will
be called CP-Redfield.

A numerical study of the condition (23) for some se-
lected values of the system parameters is presented in Fig. 3.
This plot makes it clear that the low temperature regime
[N (ω0) 
 1] constraints one to take very small values of
|S(�t )

+− | to guarantee the completely positive character of the
evolution [25], while just a tiny correction is needed at high
temperatures. These facts are in full agreement with the ob-
servation [14,17,43] that the nonpositivity character of the
Redfield equation is enhanced at low temperature as a sig-
nature of the deviations from the Born-Markov assumptions
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underlying it [42]. We stress that, in this context, nonposi-
tivity is originated by the multipartite nature of S: indeed,
as g → 0, the right-hand side of Eq. (23) tends to 1 and
consequently the nonpositivity of the Redfield ME disap-
pears in this limit. Notice finally that irrespectively from
the value of g, Eq. (23), is trivially fulfilled in the asymp-
totic g�t → ∞ limit where |S(�t )

+− | approaches the value zero

leading to
S(∞)

σσ ′ = δσσ ′ . (24)

This condition identifies the full secular approximation of
Eq. (13) that transforms this equation into the global ME of
the model which, for the sake of completeness, we report here
in its explicit form

ρ̇S(t ) = −i
[
HS + H (glob)

LS , ρS(t )
]
− +
∑
σ=±

{
1

2
κ (ωσ )N (ωσ )

(
γ †

σ ρS(t )γσ − 1

2
[γσ γ †

σ , ρS(t )]+

)

+1

2
κ (ωσ )[1 + N (ωσ )]

(
γσρS(t )γ †

σ − 1

2
[γ †

σ γσ , ρS(t )]+

)}
, (25)

with

H (glob)
LS := H (∞)

LS =
∑
σ=±

δωσγ †
σ γσ , (26)

δωσ := η(1)
σσ + η(2)

σσ = 1

4π
−
∫ ∞

0
dε

κ (ε)

ωσ − ε
, (27)

being the secular component of the Lamb-shift term [28].

B. Local ME

The local ME for S is a GKSL equation characterized by
Lindblad operators which act locally on the A mode. Explic-
itly, it is given by

ρ̇S(t ) = −i
[
HS + H (loc)

LS , ρS(t )
]
−

+ κ (ω0)N (ω0)

(
a†ρS(t )a − 1

2
[aa†, ρS(t )]+

)

+κ (ω0)[1 + N (ω0)]

(
aρS(t )a† − 1

2
[a†a, ρS(t )]+

)
,

(28)

with κ (ω0) and N (ω0) defined as in the previous section and
where now the Lamb-shift term is expressed as a modification
of the local Hamiltonian of the A mode only, i.e.,

H (loc)
LS := δωA a†a, (29)

δωA := 1

2π
−
∫ ∞

0
dω

κ (ω)

ω0 − ω
. (30)

Effectively Eq. (28) can be obtained starting from a Hamilto-
nian model for the full compound S + E where one initially
completely neglects the presence of the B mode, generally
enforces the same approximations that lead one to (25) (i.e.,
the Born, Markov, and full secular approximation), and fi-
nally introduces B and its coupling with A as an additive
Hamiltonian contribution in the resulting expression. More
formally, as shown, e.g., in Ref. [28], Eq. (28) can be derived
in the weak internal coupling limit gτE 
 1 (τE being the bath
memory timescale, see Appendix D for details) which allows
one to treat the interaction between A and B as a perturba-
tive correction with respect to the direct A-E coupling—see
Appendix A for more on this.

C. Convex mixing of local and global solutions

As we shall explicitly see in the next section [see Eq. (39)],
the main advantage offered by the global ME (25) is that
it provides an accurate description of the steady state of S
at least in the infinitesimally small S − E coupling regime
where on pure thermodynamic considerations one expects in-
dependent thermalization of the eigenmodes γ± of the system.
On the contrary, the steady state predicted by the local ME
(28) is wrong (even if increasingly accurate as g/ω0 → 0)
because it implies the thermalization of the subsystems A
and B regardless of the presence of the internal coupling
HS,g. Conversely, the local ME has the quality to predict Rabi
oscillations between A and B at shorter timescales that are
completely neglected when adopting the global ME.

In view of these observations (see, however, [20] for an-
other strategy for melting different behaviors as a function of
time), a reasonable way of keeping local effects during the
transient still maintaining an accurate steady state solution
is to adopt an appropriate phenomenological ansatz describ-
ing the evolution of S in terms of quantum trajectories that
interpolate between the solutions ρ

(glob)
S (t ) and ρ

(loc)
S (t ) of

the global and local ME, see Fig. 2. The simplest of these
construction is provided by the following time-dependent
mixture:

ρ
(mix)
S (t ) := e−Gtρ

(loc)
S (t ) + (1 − e−Gt )ρ (glob)

S (t ). (31)

In this expression G > 0 is an effective rate, whose inverse
fixes the timescale of the problem that determines when global
thermalization effects start dominating the system dynamics.
Accordingly, Eq. (31) allows us to keep local effects for
short timescales t � G−1 and the correct thermalization of the
eigenmodes of the system at longer timescales t � G−1. The
above formula can be interpreted as follows: the environment
needs a finite amount of time to become aware of the presence
of the B part because of its short time correlations (Markovian
hypothesis). The specific value of G is a free variable in
this model and works as a fitting parameter: its value can
be even estimated quite roughly because of the relatively
large time interval at intermediate timescales where the global
and local approximations look alike (more on this later). It
is finally worth observing that from the complete positivity
properties of both the solutions of the global and local ME,
it follows that (31) also fulfills such a requirement (indeed
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convex combinations of completely positive transformations
are also completely positive). On the contrary, at variance
with the original expressions (25) and (28), as well as the CP-
Redfield expression of (13), Eq. (31) will typically exhibit a
non-Markovian character and it will not be possible to present
it in the form of a GKSL differential equation. This property
is a direct consequence of the fact that the set of Markovian
evolutions is not closed under convex combinations [44].

IV. DYNAMICS

In the study of the approximated equations introduced in
the previous section, as well as for their comparison with the
exact solution of the S + E dynamics, an important simpli-
fication arises from the choice we made in fixing the initial
condition of E . Indeed thanks to Eqs. (11) and (12) the result-
ing CP-Redfield, global, and local MEs happen to be Gaussian
processes [33] which admit complete characterization only in
terms of the first and second moments of the field operators
γ± [notice that while the mixture (31) does not fit into the
set of Gaussian processes—formally speaking it belongs to
the convex hull of such set—we can still resort to the above
simplification by exploiting the fact that ρ

(mix)
S (t ) is explicitly

given by the sum of the global and local ME solutions].
Accordingly, in studying the dynamics of our approximated
schemes, we can just focus on the functions 〈γσ 〉(t ) :=

Tr[γσρS(t )], 〈γσ γσ ′ 〉(t ) := Tr[γσ γσ ′ρS(t )], and 〈γ †
σ γσ ′ 〉(t ) :=

Tr[γ †
σ γσ ′ρS(t )] whose temporal dependence can be deter-

mined by solving a restricted set of coupled linear differential
equations. We also observe that since the full Hamiltonian (5)
conserves the total number of excitations in the S + E model,
coupling between excitations conserving and nonconserving
moments are prevented [45] yielding further simplification in
the analysis.

Having clarified these points, in what follows we shall
focus on the special case where the input state of S is fixed
assuming that both A and B are initialized in the ground states
of their local Hamiltonians, i.e.,

ρS(0) = |0〉A 〈0| ⊗ |0〉B 〈0| , (32)

with |0〉 representing the zero Fock state of the corresponding
mode. Under these conditions the input state is Gaussian [33]
and, evolved under CP-Redfield, global, local, and the exact
dynamics, will remain Gaussian at all times. Furthermore, all
the first order moments and all the non-excitation-conserving
second order terms exactly nullify, i.e.,

〈γσ 〉(t ) = 0, 〈γσ γσ ′ 〉(t ) = 0, (33)

leaving only a restricted set of equations to be explicitly in-
tegrated. For the case of the coarse-grained Redfield equation
(13) we get

d

dt
〈γ †

+γ+〉(t ) = −1

2
κ (ω+)[〈γ †

+γ+〉(t ) − N (ω+)] (34)

+ S(�t )
+− {2 Im((η(1)

+− + η
(2)
−+)〈γ−γ

†
+〉(t )) + Re[(γ (1)

+− − γ
(2)
−+)〈γ−γ

†
+〉(t )]},

d

dt
〈γ †

−γ−〉(t ) = −1

2
κ (ω−)[〈γ †

−γ−〉(t ) − N (ω−)]

+ S(�t )
+− {−2 Im((η(1)

+− + η
(2)
−+)〈γ−γ

†
+〉(t )) + Re[(γ (1)

+− − γ
(2)
−+)〈γ−γ

†
+〉(t )]},

d

dt
〈γ−γ

†
+〉(t ) =

{
i(ω+ + δω+ − ω− − δω−) − 1

4
[κ (ω+) + κ (ω−)]

}
〈γ−γ

†
+〉(t )

+ S(�t )
+−

{
i(η(1)

−+ + η
(2)
+−)[〈γ †

−γ−〉(t ) − 〈γ †
+γ+〉(t )] + γ

(1)
−+ + 1

2
(γ (1)

−+ − γ
(2)
+−)[〈γ †

−γ−〉(t ) + 〈γ †
+γ+〉(t )]

}
,

with initial values

〈γ †
+γ+〉(0) = 〈γ †

−γ−〉(0) = 〈γ−γ
†
+〉(0) = 0 (35)

imposed by (32). In particular, in the case of full secular approximation (S(�t )
+− = 0), the above set of equations become

d

dt
〈γ †

+γ+〉(t ) = −1

2
κ (ω+)[〈γ †

+γ+〉(t ) − N (ω+)],

d

dt
〈γ †

−γ−〉(t ) = −1

2
κ (ω−)[〈γ †

−γ−〉(t ) − N (ω−)],

d

dt
〈γ−γ

†
+〉(t ) =

{
i(ω+ + δω+ − ω− − δω−) − 1

4
[κ (ω+) + κ (ω−)]

}
〈γ−γ

†
+〉(t ), (36)
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which yield the evolution of the moments for the global ME (25). Similar considerations hold true for the local ME (28). In this
case, following Refs. [28,38] we get

d

dt
〈γ †

+γ+〉(t ) = −1

2
κ (ω0)[〈γ †

+γ+〉(t ) − N (ω0) + Re〈γ−γ
†
+〉(t )] + δωA Im〈γ−γ

†
+〉(t ), (37)

d

dt
〈γ †

−γ−〉(t ) = −1

2
κ (ω0)[〈γ †

−γ−〉(t ) − N (ω0) + Re〈γ−γ
†
+〉(t )] − δωA Im〈γ−γ

†
+〉(t ),

d

dt
〈γ−γ

†
+〉(t ) =

[
i2g − 1

2
κ (ω0)

]
〈γ−γ

†
+〉(t ) + κ (ω0)

2

{
N (ω0) − 1

2
[〈γ †

+γ+〉(t ) + 〈γ †
−γ−〉(t )]

}
+ i

δωA

2
[〈γ †

−γ−〉(t ) − 〈γ †
+γ+〉(t )],

which, for a direct comparison with Eq. (36), we express here in terms of the eigenmodes γ±.

A. Evolution of the second moments

A closer look at Eq. (36) reveals that in this case one has
that for large enough t we get

〈γ †
±γ±〉|(glob)(∞) = N (ω±), 〈γ−γ

†
+〉|(glob)(∞) = 0. (38)

This enlightens the fact that, as anticipated at the beginning
of Sec. III C, the global ME (25) imposes S to asymptotically
converge toward the Gibbs thermal state

ρ
(glob)
S (∞) := e−βHS

tr[e−βHS ]
, (39)

in agreement with what one would expect from purely ther-
modynamics considerations under weak-coupling conditions
for the system-environment interactions. On the contrary, the
steady state predicted by the local ME is wrong (even if
increasingly accurate as g/ω0 → 0) because it implies the
thermalization of the subsystems A and B regardless of the
presence of the internal coupling HS,g. Indeed, from Eq. (37)
we get

〈γ †
±γ±〉|(loc)(∞) = N (ω0), 〈γ−γ

†
+〉|(loc)(∞) = 0 (40)

or equivalently

〈a†a〉|(loc)(∞) = 〈b†b〉|(loc)(∞) = N (ω0), (41)

〈ab†〉|(loc)(∞) = 0, (42)

which identifies

ρ
(loc)
S (∞) := e−βHS,0

tr[e−βHS,0 ]
, (43)

as the new fixed point for the dynamical evolution (see [46,47]
for pioneering discussions on the topic and Appendix E for
further details). The discrepancy between the above expres-
sions and Eqs. (38) and (39) is even accentuated in the low
temperature regime βω0 � 1, where in particular the ratio
N (ω−)/N (ω0) � eβg can explode exponentially.

The situation gets reversed at shorter timescales. Here
the local ME correctly presents coherent energy ex-
changes between A and B which instead the global
approach completely neglects. Indeed from Eq. (36)
it follows that the global ME predicts Im[〈ab†〉(t )] =
0, the term being responsible of the Rabi oscilla-
tions between A and B (see [28,38] and Appendix E
for details). The local ME on the contrary—when the Lamb-
shift correction can be neglected—gives Re[〈ab†〉(t )] = 0, the
latter being proportional to the average internal interaction
energy 〈HS,g〉.

The above observations are confirmed by the numerical
study we present in the remainder of the section (see however
also the material presented in Appendix E). In particular,
in Figs. 4(a) and 4(b) the temporal evolution of the second
order moments obtained by solving Eqs. (36) and (37) are
compared with the exact values of the corresponding quan-
tities obtained by numerical integration of the exact S + E
Hamiltonian model along the lines detailed in Appendix D.
In Fig. 4(c) we also present the results obtained by using the
effective model of Sec. III C, where according to Eq. (31) the
expectation values of the relevant quantities are computed as

〈γ †
σ γσ ′ 〉|(mix)(t ) = e−Gt 〈γ †

σ γσ ′ 〉|(loc)(t )

+(1 − e−Gt )〈γ †
σ γσ ′ 〉|(glob)(t ), (44)

with 〈γ †
σ γσ ′ 〉|(loc)(t ) and 〈γ †

σ γσ ′ 〉|(glob)(t ) representing the so-
lutions of Eqs. (37) and (36), respectively. In our analysis
the system parameters have been set in order to enforce
S − E weak-coupling conditions [ω0, ω± � κ (ω0)] to make
sure that the long term prediction (39) of the global ME
provides a proper description of the system dynamics. By
the same token, the temperature of the bath has been fixed
to be relatively high, i.e., 1/β ≈ 10.5ω0, to avoid to enhance
correlation effects between the bath and the system which are
not included in the Born and Markov approximations needed
to derive both the global and the local ME [39] (a study of the
impact of low temperature effects on the S − E correlations
is presented in Appendix D2). Finally, regarding the value of
the phenomenological parameter G entering in (44), we set it
equal to 0.4κ (ω0) finding a relatively good agreement with the
exact data at all times.

The convex combination (31) is not the only way of
keeping the best from both the local and the global approx-
imations. Indeed, by taking a step back, one can consider the
coarse-grained Redfield equations (34) once that the pathol-
ogy related to their nonpositivity has been cured. A detailed
study of the performances of this approach is presented in
Fig. 5. Here, for the same values of the parameters used in
Fig. 4, in Fig. 5(a) we exhibit the plots associated with the
CP-Redfield equation obtained by fixing S(�t )

+− in such a way
to saturate the positivity bound (23), i.e., S(�t )

+− = 0.989. As
in the case of Fig. 4(c), we notice that CP-Redfield is in
good agreement with the exact data both at long and short
timescales. As a check in Fig. 5(b) we also present the (un-
corrected) Redfield equation obtained by setting in Eq. (34)
�t = 0, corresponding to S(�t )

+− = 1 which for the system pa-
rameters we choose gives a clear violation of the positivity
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FIG. 4. Second order moments evaluated using the global ME (a), the local ME (b), the convex mixture of Eq. (31) with G = 0.4κ (ω0)
(c), compared with the ones predicted by the exact dynamics. As indicated by the legend, continuous lines in the plots represent the quantities
computed by solving the exact S + E Hamiltonian model (5); dotted and dashed lines instead refer to the approximated solutions associated
with global, local, and mixed approaches. Each panel contains two plots corresponding each to shorter (left) and longer (right) timescales.
As clear from the right plot of (a), the global ME approach provides a pretty good agreement with the exact solutions at large timescales,
while fails in the short time domain. Exactly the opposite occurs for the local ME approach presented in (b): here a good agreement with the
exact solutions is found in the short time domain (left plot), while differences arise in the large time domain (right plot). The convex mixture
approach (44) finally appears to be able to maintain a good agreement with the exact results at all times. In all the plots we used N (ω0) = 10
(corresponding to 1/β ≈ 10.5ω0), g = 0.3ω0, κ (ω0) = 0.04ω0, ωc = 3ω0, α = 1.
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FIG. 5. Comparison between second order moments evaluated using the CP-Redfield (a) and Redfield (b) with the ones predicted by the
exact dynamics. As in the case of Fig. 4, continuous lines represent the quantities computed by solving the exact S + E Hamiltonian model
(5) while dotted and dashed lines instead refer to the approximated solutions. Also each panel contains two plots corresponding each to shorter
(left) and longer (right) timescales. In all the plots we used N (ω0) = 10 (corresponding to 1/β ≈ 10.5ω0), g = 0.3ω0, κ (ω0) = 0.04ω0,
ωc = 3ω0, α = 1—same as those used in Fig. 4. The value of �t used to define CP-Redfield is such that S(�t )

+− = 0.989, which ensures the
saturation of the inequality (23).

bound (23). Interestingly enough, despite the fact that the
resulting equation does not guarantee complete positivity of
the associated evolution, we notice that also in this case one
has an apparent good agreement with the exact results for all
times (see also [11] where the effectiveness of the uncorrected
Redfield equation is pointed out in other setups). In particular,
both CP-Redfield and Redfield equations appear to be able
to capture a nonweak coupling correction to the asymptotic
value of 2Re〈γ−γ

†
+〉(t ) = 〈a†a〉(t ) − 〈b†b〉(t ), an effect that

is present in the exact model due to the fact that subsystem A
remains slightly correlated with the bath degrees of freedom,
but which is not present when adopting either global, local, or
mixed approximations (see Fig. 6). An evidence of this can be

obtained by observing that from Eq. (34) we have

2Re〈γ−γ
†
+〉(∞)

= S(�t )
+−

ω+−ω−
−
∫ ∞

0
dε

κ (ε)

2π

(
N (ε)−N (ω+ )

ε−ω+
− N (ε)−N (ω− )

ε−ω−

)

+ O[κ (ω0)2], (45)

which is exactly null for the global ME (S(�t )
+− = 0), but which

is different from zero (and in good agreement with the exact
result) both for the uncorrected Redfield equation (S(�t )

+− = 1)
and CP-Redfield (S(�t )

+− = 0.989). Despite the apparent suc-
cess of the uncorrected Redfield equation reported above, a
clear signature of its nonpositivity can still be spotted by
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CP − Redfield

mixture

FIG. 6. Plot of the local excitation gap 〈a†a〉(t ) − 〈b†b〉(t ) for
the different approximation methods and for the exact dynamics.
Global ME (blue dashed line), local ME (red dotted line), and convex
mixture approach (cyan dot-dashed-dashed line) predict an asymp-
totically zero value for this quantity. On the contrary, Redfield (green
dot-dashed line) and CP-Redfield (black dot-dot-dashed line) give
an asymptotic nonzero value for such quantity in agreement with
the exact dynamics (magenta full and thicker line). In all the plots
we used N (ω0) = 10 (corresponding to 1/β ≈ 10.5ω0), g = 0.3ω0,
κ (ω0) = 0.04ω0, ωc = 3ω0, α = 1—same as those used in Figs. 4
and 5. The value of �t used to define CP-Redfield is such that
S(�t )

+− = 0.989, which ensures the saturation of the inequality (23).

looking at a special functional of the second order moments
of the model, i.e., the quantity

λc(t ) := 1

2
min{eigenvalues[�S(t ) + i�S]}. (46)

In the above definition �S(t ) and �S are, respectively, the
covariance matrix and the symplectic form of the two-mode
system S . Expressed in terms of the eigenoperators γ± their
elements are given by

[�S(t )]i j := 〈[�i − 〈�i〉(t ),�†
j − 〈�†

j〉(t )]+
〉
(t ) (47)

and

[�S]i j := −i
〈
[�i,�

†
j ]−
〉
(t ) = −i

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠,

(48)
with �i being the ith component of the operator vector � :=
(γ+, γ

†
+, γ−, γ

†
−)T . In particular, due to the choice of the input

state we made in Eq. (32), we get

�S(t ) =

⎛
⎜⎜⎝

2〈γ †
+γ+〉(t ) + 1 0 2〈γ−γ

†
+〉(t )∗ 0

0 2〈γ †
+γ+〉(t ) + 1 0 2〈γ−γ

†
+〉(t )

2〈γ−γ
†
+〉(t ) 0 2〈γ †

−γ−〉(t ) + 1 0
0 2〈γ−γ

†
+〉(t )∗ 0 2〈γ †

−γ−〉(t ) + 1

⎞
⎟⎟⎠ (49)

and hence

�S(t ) + i�S

2
=

⎛
⎜⎜⎝

〈γ †
+γ+〉(t ) + 1 0 〈γ−γ

†
+〉(t )∗ 0

0 〈γ †
+γ+〉(t ) 0 〈γ−γ

†
+〉(t )

〈γ−γ
†
+〉(t ) 0 〈γ †

−γ−〉(t ) + 1 0
0 〈γ−γ

†
+〉(t )∗ 0 〈γ †

−γ−〉(t )

⎞
⎟⎟⎠, (50)

λc(t ) = 1

2

{
〈γ †

+γ+〉(t ) + 〈γ †
−γ−〉(t ) −

√
[〈γ †

+γ+〉(t ) − 〈γ †
−γ−〉(t )]2 + 4|〈γ−γ

†
+〉(t )|2
}
. (51)

When evaluated on a proper state of the system, the
Robertson-Schrödinger uncertainty relation [33] forces the
spectrum of the matrix (50) to be non-negative—see Ap-
pendix C for details. Accordingly, when ρS(t ) is positive
semi-definite (i.e., it is a physical state) one must have λc(t ) �
0. The temporal evolution of λc(t ) is reported in Fig. 7 for
the various approximation methods and for the exact dynam-
ics: one notices that while global, local, and CP-Redfield
always comply with the positivity requirement, the uncor-
rected Redfield equation exhibit negative values of λc(t ) at
short timescales. Analytically, this can be seen from the short
timescale trend of λc(t ), which from Eq. (34) can be deter-
mined as

λc(δt ) �
(

γ
(1)
−−+γ

(1)
++

2

)

×
[

1 −
√

1 + 4
(
S(�t )

+−
2 − γ

(1)
++γ

(1)
−−

|γ (1)
+−|2
) |γ (1)

+−|2
(γ (1)

−−+γ
(1)
++ )2

]
δt,

(52)

which tightly gives λc(δt ) � 0 if and only if the complete
positivity constraint (23) is fulfilled. Notice also that while
none of the approximated methods are able to follow the
whole exact behavior of λc(t ), CP-Redfield and global provide
good agreement in the long time limit, while CP-Redfield and
local correctly predict λ̇c(0) = 0.

B. Fidelity comparison

In this section we further discuss the difference between
the various approximation methods, as well as their relation
with the exact solution, evaluating the temporal evolution
of the Uhlmann fidelity [2] between the associated density
matrices of S . We remind that given ρ

(1)
S and ρ

(2)
S two quantum

states of the system their fidelity is defined as the positive
functional

F
(
ρ

(1)
S , ρ

(2)
S

)
:=
∥∥∥
√

ρ
(1)
S

√
ρ

(2)
S

∥∥∥
1
, (53)
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FIG. 7. Plots of the quantity λc(t ) of Eq. (46) for different approximation methods and using the exact result, at shorter (a) and longer
(b) timescales. In all the plots we used N (ω0) = 10 (corresponding to 1/β ≈ 10.5ω0), g = 0.3ω0, κ (ω0) = 0.04ω0, ωc = 3ω0, α = 1—same
as those used in Figs. 4–6. The value of �t used to define CP-Redfield is such that S(�t )

+− = 0.989, which saturates the inequality (23).

with ‖	‖1 := Tr[
√

	†	] being the trace norm of the operator
	. This quantity provides a bona-fide estimation of how close
the two density matrices are, getting its maximum value 1
when ρ

(1)
S = ρ

(2)
S , and achieving zero value instead when the

support of ρ
(1)
S and ρ

(2)
S are orthogonal, i.e., when they are

perfectly distinguishable. In the case of two-mode Gaussian
states [33] with null first order moments, a relatively simple
closed expression for F (ρ (1)

S , ρ
(2)
S ) is known in terms of the

covariance matrices of the two density matrices [28,29,48].
Specifically, in the eigenmode representation one has

F2
(
ρ

(1)
S , ρ

(2)
S

) = 1
√

b + √
c −
√

(
√

b + √
c)2 − a

, (54)

with

a := 2−4 det
[
�

(1)
S + �

(2)
S

]
,

b := 2−4 det
[
�S �

(1)
S �S �

(2)
S − 14

]
,

c := 2−4 det
[
�

(1)
S + i�S

]
det
[
�

(2)
S + i�S

]
,

(55)

where �
(1)
S , �

(2)
S are the covariance matrices of ρ

(1)
S and ρ

(2)
S

defined in (47), and with �S the symplectic form given in
Eq. (48)—see final part of Appendix C for details. In what
follows we shall make extensive use of the identity (54) thanks
to the fact that for the input state (32) we are considering in our
analysis, the density matrix of S remains Gaussian at all times
when evolved under global, local, CP-Redfield ME, as well
as under the exact integration of the full S + E Hamiltonian
model. The same property unfortunately does not hold for the
convex mixture (31) which is explicitly non-Gaussian (indeed
it is a convex combination of Gaussian states). In this case,
hence the result of [48] cannot be directly applied to compute
F (ρ (mix)

S (t ), ρ (exact)
S (t )). Still the concavity property [2] of F

can be invoked to compute the following lower bound:

F
(
ρ

(mix)
S (t ), ρ (exact)

S (t )
)

� e−GtF
(
ρ

(loc)
S (t ), ρ (exact)

S (t )
)

+ (1 − e−Gt )F
(
ρ

(glob)
S (t ), ρ (exact)

S (t )
)
,

(56)

with the right-hand side being provided by Gaussian terms. Fi-
nally, the nonpositivity of the (uncorrected) Redfield equation
also gives rise to problems in the evaluation of the associ-
ated fidelity [as a matter of fact, in this case the quantity
F (ρ (red)

S (t ), ρ (exact)
S (t )) is simply ill-defined]. Aware of this

fundamental limitation, but also of the fact that the departure
from the positivity condition of the solution ρ

(red)
S (t ) of the

Redfield equation is small, in our analysis we decided to
present the real part of F2(ρ (red)

S (t ), ρ (exact)
S (t )).

To begin, in Fig. 8 we present the value of
F2(ρ (loc)

S (t ), ρ (glob)
S (t )): as clear from the plot, this quantity

is sensibly different from 1 at short and at long timescales
(confirming the observation of the previous section) while
it is ∼1 at intermediate timescales. In Fig. 9 instead we
proceed with the comparison of the approximate solutions
with the exact one. The reported plots confirm that the convex
combination of the local and global solutions (31) is an
effective ansatz to approximate the system evolution, giving
a (lower) bound for the fidelity computed as in Eq. (56)
that is close to 1 both at short and at long timescales. On
the same footing we find the CP-Redfield equation which,
still remaining positive, brings all the main qualities of the
(full) Redfield ME. For completeness, in Fig. 10 we report
two situations in which the global ME and the local ME
work extremely bad, respectively. In Fig. 10(a) we consider
weaker internal coupling g such that the local ME gives a
satisfying result for the whole dynamics while the inadequacy
of the global ME during the transient is accentuated. In
Fig. 10(b) we decrease instead the temperature accentuating
the inadequacy of the local ME in the steady prediction.
In both figures we report the curve corresponding to the
CP-Redfield approximation. The last follows either the local
or the global curve depending on which one performs better
in the two instances.

V. CONCLUSIONS

In the study of multipartite Markovian open quantum sys-
tems it has been widely discussed in literature whether the
local or the global dissipator is more adapt to effectively
reproduce the system dynamics [26,28–30]. Here we have

052208-11



D. FARINA et al. PHYSICAL REVIEW A 102, 052208 (2020)

0 10 20 30 40 50
ω0t

0.8

0.9

1.0
F2

(ρ
(l

o
c)

S
,ρ

(g
lo

b
)

S
)

0 100 200 300 400
ω0t

0.8

0.9

1.0

F2
(ρ

(l
o
c)

S
,ρ

(g
lo

b
)

S
)

FIG. 8. Fidelity between the solutions ρ
(loc)
S (t ) and ρ

(glob)
S (t ) of the local and global MEs associated with the initial condition (32) at

shorter (left) and longer (right) timescales. In the plots we used N (ω0) = 10 (corresponding to 1/β ≈ 10.5ω0), g = 0.3ω0, κ (ω0) = 0.04ω0,
ωc = 3ω0, α = 1—same as those of Figs. 4–7.

treated a case where the system is composed of two interacting
harmonic oscillators A and B, with only A interacting with a
thermal bath—collection of other harmonic oscillators—and
we have analyzed the equilibration process of the system ini-
tially in the ground state with the finite bath temperature. We

have shown that the “completely positive Redfield” equation,
i.e., the cured version of the Redfield equation by means
of coarse-grain averaging [25], and an appropriate time-
dependent convex mixture of the local and global solutions
[see Eq. (31)] give rise to the most accurate approximations
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FIG. 9. Fidelity between approximated system states and the exact system state. Different curves refer to the kind of approximation (see
the legend): Redfield, green dot-dashed line [using Re(F2)]; CP-Redfield, black dot-dot-dashed line; local, red dotted line; global, blue dashed
line; convex mixture of Eq. (31) with G = 0.4κ (ω0), magenta full line [using the lower bound given in the right-hand-side of Eq. (56)]. The
four panels differ just for the axes scales. In the plots we used N (ω0) = 10 (corresponding to 1/β ≈ 10.5ω0), g = 0.3ω0, κ (ω0) = 0.04ω0,
ωc = 3ω0, α = 1—same as those of Figs. 4–8.
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FIG. 10. Fidelity between approximated system states and the exact system state for (a) N (ω0) = 10, g = 0.04ω0 (weaker internal
coupling) and (b) N (ω0) = 0.01 (low temperature regime), g = 0.3ω0. As explained in the legend the black dot-dot-dashed lines refer to
the CP-Redfield solutions [S(�t )

+− = 0.9998 in (a) and S(�t )
+− = 0.4813 in (b)], the red dotted lines to the local ME solutions, and finally the

blue dashed lines to the global ME solutions. In all the plots we assumed α = 1 (Ohmic spectral density regime) and kept κ (ω0) = 0.04ω0,
ωc = 3ω0. Notice finally that in (b) the fidelity is generally higher [see the different ordinate scales in (a) and (b)]. This is due to the choice of
the ground state (32) as initial state, which implies that at low temperature such initial condition is just weakly modified.

of the exact system dynamics, both during the time transient
and for the steady state properties, going beyond the pure local
and global approximations. The convex mixture of the local
and global channels has been introduced phenomenologically
for allowing at the same time coherent local energy exchange
at short timescales between A and B and the steady state
expected from the thermodynamics at long timescales, i.e.,
the global Gibbsian state. Future developments on this route
may concern the search of a microscopic derivation of this
(non-Markovian) quantum channel.
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APPENDIX A: DERIVATION OF THE COARSE-GRAINED
REDFIELD AND LOCAL ME

In this Appendix we provide details about the derivations
of the coarse-grained Redfield (13) and local (28) MEs. For
(13) we make use of Refs. [8,28] and of the method to correct
the nonpositivity of the Redfield equation given in Ref. [25],
while for (28) we follow the approach of Ref. [28].

Expressed in the interaction picture the evolution of the
joint state of S + E induced by the Hamiltonian (5) is given
by the

Liouville–von Neumann equation

˙̃ρSE(t ) = −i[H̃1(t ), ρ̃SE(t )]−, (A1)

where given U0(t ) := ei(HS+HE )t we have

H̃1(t ) := U0(t )H1U
†
0 (t ) = a†(t )C(t ) + H.c., (A2)

with a†(t ) := eiHS,gt a†e−iHS,gt and C(t ) :=∑k γkcke−i(ωk−ω0 )t .
Tracing out the environment degrees of freedom, Eq. (A1) can

be written as

˙̃ρS(t ) = −iTrE[H̃1(t ), ρ̃SE(0)]−

−
∫ t

0
TrE[H̃1(t ), [H̃1(t ′), ρ̃SE(t ′)]−]−dt ′. (A3)

We assume now a weak system-environment coupling such
that the environment stays in its own Gibbs state (11) (invari-
ant in interaction picture) for all the system dynamics and the
SE state can be approximated by the tensor product

ρ̃SE(t ) � ρ̃S(t ) ⊗ ρE(0). (A4)

Equation (A4) means that the environment, being a macro-
scopic object, can be considered insensitive to the interaction
with the system (Born approximation [8]). On the contrary,
the system state is affected by the coupling with the environ-
ment. Being the first moments null over a thermal state, the
first commutator in (A3) is zero and, by inserting the tensor
product (A4), such equation becomes

˙̃ρS(t ) �
∫ t

0
dt ′c(1)(t − t ′)(a†(t ′)ρ̃S(t ′)a(t )

− a(t )a†(t ′)ρ̃S(t ′)) + c(2)(t − t ′)(a(t ′)ρ̃S(t ′)a†(t )

− a†(t )a(t ′)ρ̃S(t ′)) + H.c., (A5)

where c(1)(τ ) and c(2)(τ ) are bath correlation functions de-
fined as

c(1)(τ ) := 〈C†(τ )C〉 =
∑

k

γ 2
k N (ωk )ei(ωk−ω0 )τ ,

c(2)(τ ) := 〈C(τ )C†〉 =
∑

k

γ 2
k [1 + N (ωk )]e−i(ωk−ω0 )τ .

(A6)

Next step is the Markovian assumption τE 
 δt , where δt
is the typical timescale of the state in the interaction picture
and τE is the bath memory timescale, i.e., the characteristic
width of the bath correlation functions (A6). Such timescale
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separation allows us to replace in Eq. (A5) the upper in-
tegration bound with +∞ and to neglect the τ := t − t ′
dependence of the state ρ̃S, leading to the Redfield equation
(interaction picture):

˙̃ρS(t ) �
∫ ∞

0
dτ
[
c(1)(τ )(a†(t − τ )ρ̃S(t )a(t )

− a(t )a†(t − τ )ρ̃S(t )) + c(2)(τ )(a(t − τ )ρ̃S(t )a†(t )

− a†(t )a(t − τ )ρ̃S(t ))
]+ H.c. (A7)

As described in Ref. [28], if the bath correlation functions are
narrow enough with respect to the internal coupling timescale,
i.e., gτE 
 1, in Eq. (A7) one can approximate a(t − τ ) ≈
a(t ) obtaining the interaction picture version of the local ME
(28), which is in Lindblad form without the need of any sec-
ular approximation. Alternatively, passing to the eigenmode
basis of Eq. (3), Eq. (A7) can be equivalently written as

˙̃ρS(t ) = 1

2

∑
σ,σ ′

[
�(1)

σ ei(σ−σ ′ )gt
(
γ †

σ ρ̃S(t )γσ ′ − γσ ′γ †
σ ρ̃S(t )
)

+�
(2)
σ ′ ei(σ−σ ′ )gt

(
γσ ′ ρ̃S(t )γ †

σ − γ †
σ γσ ′ ρ̃S(t )

)]+ H.c.,

(A8)

where

�(1)
σ :=
∫ ∞

0
dτc(1)(τ )e−iσgτ , (A9)

�
(2)
σ ′ :=
∫ ∞

0
dτc(2)(τ )eiσ ′gτ . (A10)

Last step is to perform a coarse-grain average on Eq. (A8)
over a time interval �t 
 δt , which amounts to applying the
following substitution:

ei(σ−σ ′ )gt −→ 1

�t

∫ t+�t/2

t−�t/2
ds ei(σ−σ ′ )gs

= ei(σ−σ ′ )gt sinc

(
(σ − σ ′)g�t

2

)
, (A11)

without affecting the system state in the interaction pic-
ture. Equation (13) is eventually obtained by passing to the
Schrödinger picture. Indeed the Lamb-shift and the dissipator
coefficients of Eqs. (16) and (17) are related to the quantities
�(i)

σ as

γ
(i)
σσ ′ = 1

2

(
�(i)

σ + �
(i)
σ ′

∗)
, (A12)

η
(i)
σσ ′ = 1

4i

(
�(i)

σ − �
(i)
σ ′

∗)
. (A13)

APPENDIX B: COMPLETELY POSITIVE MAP
REQUIREMENT FOR THE COARSE-GRAINED REDFIELD

EQUATION

To discuss the complete positivity condition for the coarse-
grained Redfield equation let us observe that its dissipator is
given by the last two lines on the right-hand side of Eq. (13).
Following Ref. [25] we write them as

∑
i,σ,i′,σ ′

γi′σ ′,iσ

(
A†

i′,σ ′ρS(t )Ai,σ − 1

2
[Ai,σA†

i′,σ ′ , ρS(t )]+

)
,

with A1,σ = γσ , A2,σ = γ †
σ , and γi′σ ′,iσ being the elements of

the 4 × 4 Hermitian matrix

γI,J =

⎛
⎜⎜⎜⎜⎝

γ
(1)
++ γ

(1)
+−S(�t )

+− 0 0

γ
(1)
−+S(�t )

+− γ
(1)
−− 0 0

0 0 γ
(2)
++ γ

(2)
+−S(�t )

+−
0 0 γ

(2)
−+S(�t )

+− γ
(2)
−−

⎞
⎟⎟⎟⎟⎠.

(B1)
Complete positivity of the evolution described by Eq. (13) can
now be guaranteed by imposing the positiveness of the spec-
trum of (B1), a condition which by explicit diagonalization
leads to Eq. (23).

APPENDIX C: COVARIANCE MATRICES

Expressed in terms of the system canonical coordinates

xA := (a + a†)/
√

2, pA := (a − a†)/(
√

2i),

xB := (b + b†)/
√

2, pB := (b − b†)/(
√

2i), (C1)

the covariance matrix �S associated with the quantum state
ρS of the two-mode system S is defined as the 4 × 4 real
Hermitian matrix

[�S]αβ := 〈[rS,α − 〈rS,α〉, rS,β − 〈rS,β〉]+〉, (C2)

where as usual we adopt the shorthand notation 〈· · · 〉 :=
Tr[· · · ρS], and where rS,α is the αth component of the operator
vector rS := (xA, pA, xB, pB)T . In this notation the symplectic
form of the system is defined by the matrix �S of elements

�S :=

⎛
⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎠, (C3)

which embodies the canonical commutation rules of the
model via the identity 〈[rS,α, rS,β]−〉 = i[�S]αβ . From the
Robertson-Schrödinger uncertainty relation [33] it hence fol-
lows that for all choices of ρS we must have that the matrix
�S + i�S is non-negative or equivalently that the following
inequality must hold:

min{eigenvalues[�S + i�S]} � 0. (C4)

Equation (C4) is at the origin of the study we presented in
Fig. 7. We notice indeed that introducing the unitary matrix

V := 1

2

⎛
⎜⎝

1 1 1 1
−i i −i i
1 1 −1 −1
−i i i −i

⎞
⎟⎠, (C5)

from Eq. (3) the following identity holds:

rS = V�S, (C6)

with �S the operator vector introduced in Eq. (47), which in
turn implies

�S = V�SV†, �S = V�SV†, (C7)

with �S as in Eq. (48). Accordingly, we get

�S + i�S = V (�S + i�S)V†, (C8)
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which finally allows us to translate Eq. (C4) into the positivity
condition for the quantity λc(t ) introduced in Eq (46).

Notice finally that the unitary relations (C7) are also at the
origin of Eqs. (54) and (55) which we derived from [28,29,48]
via the identities

det
[
�

(1)
S + �

(2)
S

] = det
[
�

(1)
S + �

(2)
S

]
,

det
[
�S �

(1)
S �S �

(2)
S − 14

] = det
[
�S �

(1)
S �S �

(2)
S − 14

]
,

det
[
�

( j)
S + i�S

] = det
[
�

( j)
S + i�S

]
, (C9)

where, for j = 1, 2, �
( j)
S and �

( j)
S represent the covariance

matrices (47) and (C2) of the matrices ρ
( j)
S .

APPENDIX D: THE EXACT MODEL

In this Appendix, following a procedure similar to [30],
we discuss how to explicitly solve the exact dynamics of the
Hamiltonian model for the joint system S + E .

Passing to the canonical variables of the full model,
i.e., introducing the operators xA = (a + a†)/

√
2, pA = (a −

a†)/(
√

2i), xB = (b + b†)/
√

2, pB = (b − b†)/(
√

2i) as in
Eq. (C1) and xk = (ck + c†

k )/
√

2, pk = (ck − c†
k )/(

√
2i), the

Hamiltonian (5) of S + E can be written as

H = 1

2
rTHr + const. (D1)

The vector operator r is the generalization of rS introduced in
Appendix C that now contains the canonical coordinates of all
the S + E modes, i.e.,

r = (xA, pA, xB, pB, x1, p1, . . . , xM , pM )T , (D2)

and H is a real symmetric (2M + 4) × (2M + 4) matrix, hav-
ing non-null elements only on the diagonal and on the first
two rows and on the first two columns. This is because only
the subsystem A is microscopically attached to the thermal
bath:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ωA 0 g 0 γ1 0 . . . γM 0
0 ωA 0 g 0 γ1 . . . 0 γM

g 0 ωB 0 0 0 . . . 0 0
0 g 0 ωB 0 0 . . . 0 0
γ1 0 0 0 ω1 0 . . . 0 0
0 γ1 0 0 0 ω1 . . . 0 0
...

...
...

...
...

...
. . .

...
...

γM 0 0 0 0 0 . . . ωM 0
0 γM 0 0 0 0 . . . 0 ωM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(D3)
Exploiting the above construction the expectation value of r
can now be shown to evolve in time as [33]

〈r(t )〉 := Tr[rρSE(t )] = e�Ht 〈r(0)〉, (D4)

where � is the symplectic form of the entire model, i.e., the
(2M + 4) × (2M + 4) matrix

� :=
M+2⊕
i=1

(
0 1

−1 0

)
, (D5)

whose elements embody the canonical commutation rules of
the entire S + E system via the identity 〈[rα, rβ]−〉 = i�αβ .
Similarly the covariance matrix of elements

�αβ (t ) := Tr[[rα − 〈rα (t )〉, rβ − 〈rβ (t )〉]+ρSE(t )]

= 〈[rα (t ) − 〈rα (t )〉, rβ (t ) − 〈rβ (t )〉]+〉 (D6)

can be shown to evolve as

�(t ) = e�Ht�(0)eH�T t . (D7)

For future reference it is worth stressing that the 4 × 4 prin-
cipal minor of the matrix �(t ) (i.e., the submatrix obtained
from the latter by taking the upper left 4 × 4 part) corresponds
to the covariance matrix �S(t ) of the S system alone, whose
elements can be formally expressed as in Eq. (C2).

In the evaluation of Eqs. (D4) and (D7) one can resort to
the exact diagonalization of the Hermitian matrix M defined
as

M := i�H. (D8)

Calling (g1, . . . , g2M+4) the eigenvalues of M and

Vαβ := [g(β )]α (D9)

the unitary matrix whose columns are the normalized eigen-
vectors g(α) corresponding to the eigenvalues gα , the diagonal
form of the matrix M is obtained as

diag(g1, . . . , g2M+4) = V †MV. (D10)

Accordingly, we can now rewrite Eqs. (D4) and (D7) in the
form

〈r(t )〉 = V E−(t )V †〈r(0)〉,
�(t ) = V E−(t )V †�(0)V E+(t )V †, (D11)

with

E∓(t ) = diag
(
e∓ig1t , . . . , e∓ig2M+4t

)
. (D12)

In summary, the exact dynamics is obtained thanks to the
numerical diagonalization of the matrix M of Eq. (D8) and by
performing the matrix multiplications in Eq. (D11). Regarding
the initial conditions, we observe that in the case of the input
state we have selected in Eqs. (10), (11), and (32), the initial
covariance matrix reads as

�(0) =

⎛
⎜⎜⎜⎜⎝

12 0 0 . . . 0
0 12 0 . . . 0
0 0 [2N (ω1) + 1]12 . . . 0
...

...
...

. . .
...

0 0 0 . . . [2N (ωM ) + 1]12

⎞
⎟⎟⎟⎟⎠, (D13)
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FIG. 11. Plot of the modulus of the bath correlation functions c(1)(τ ) and c(2)(τ ) (units ω2
0) defined in Eq. (A6) that provide estimations

of the recurrence time (a) and of the memory time (b). In (a) we take M = 50 oscillators in the thermal bath. We chose the parameters
N (ω0) = 10, κ (ω0) = 0.04ω0, ωc = 3ω0, and α = 1.

with 12 being the 2 × 2 identity matrix and N (ωk ) being
the Bose-Einstein mean occupation numbers introduced in
Eq. (22). Regarding the first order moments instead, since
〈r(0)〉 = 0 the evolution law of Eq. (D4) leads to 〈r(t )〉 = 0
for all t � 0.

1. Memory and recurrence timescales

When resorting to numerical methods in solving the ex-
act Hamiltonian model one should be aware of the fact that
since it involves a finite number of parties (i.e., the system
modes A and B and the M environmental modes), it will be
characterized by a recurrence timescale Trec that, due to the
various approximations involved in their derivation, leave no
trace in the corresponding ME expressions. An estimation of
such quantity can be retrieved directly from the periodicity
of the correlation functions of Eq. (A6) which leads us to
[Fig. 11(a)]

Trec = 2πM/ωc. (D14)

The choice of the parameters ωc = 3ω0 and M ≈ 400 [28]
ensure that the discretization does not play any role in the time
window we have considered for all the plots.

The width of the correlation functions (A6) also plays an
important role in the model: it yields the time τE which takes
for the information that emerges from the system to get lost
into the environment and never come back [8]. Such timescale
cannot be resolved by any approximation we have discussed
so far, because of the Markovian assumption which is present
in all of them. The estimation of this timescale is given by the
half-width at half-maximum [see Fig. 11(b)] of |c(1)(τ )| and
|c(2)(τ )|. For N (ω0) = 10 we get

τE ≈ 3.8/ωc. (D15)

2. Low temperature effects

It is well known that in the low temperature regime corre-
lation effects between the bath and the system tend to arise,

challenging the Born approximation used in the derivation of
the Markovian MEs [39]. An evidence of this fact is presented
in Fig. 12 where the time evolution of the average components
of the Hamiltonian (5) are presented for two different choices
of the parameter 1/β.

APPENDIX E: ON THE THERMALIZATION OF THE
SYSTEM EIGENMODES

We show here the dual counterparts of the moments re-
ported in Figs. 4 and 5 in the basis of the eigenmodes (3),
making clearer when these eigenmodes reach the correct
thermalization or not depending on the implemented approx-
imation. The second order moments in the a, b basis and the
ones in the γ+, γ− basis are related to each other as

1

2
(〈a†a〉 − 〈b†b〉) = Re〈γ−γ

†
+〉, (E1)

Im〈ab†〉 = Im〈γ−γ
†
+〉, (E2)

Re〈ab†〉 = 1

2
(〈γ †

+γ+〉 − 〈γ †
−γ−〉), (E3)

〈a†a〉 + 〈b†b〉 = 〈γ †
+γ+〉 + 〈γ †

−γ−〉. (E4)

The steady state (39) is what one expects from thermodynam-
ics. It implies 〈γ †

±γ±〉(∞) = N (ω±), 〈γ−γ
†
+〉(∞) = 0. This

result is captured by applying the global approximation [see
Eqs. (36)], which under the initial conditions (35) gives

〈γ−γ
†
+〉
∣∣∣
(glob)

(t ) = 0, (E5)

〈γ †
±γ±〉
∣∣∣
(glob)

(t ) = N (ω±)
(
1 − e− 1

2 κ (ω± )t
)
. (E6)

On the other hand, the local approximation fails just about
the steady state properties. As discussed in [38], under the
same initial conditions and when the Lamb-shift correc-
tion δωA can be neglected, the local ME [see Eqs. (37)]
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FIG. 12. Time evolution of the average components of the Hamiltonian (5) obtained by numerically solving the exact dynamics of the
full S + E model in the high temperature regime N (ω0) = 10 (a), and in the low temperature regime N (ω0) = 0.01 (b). As indicated by the
legend, the red dashed line corresponds to the local energy of mode A; the blue dot-dashed line to the local energy term of mode B; the green
dotted line to the Hamiltonian A-B coupling term; and finally the black full line to the Hamiltonian S-E coupling term. Notice that as the
temperature decreases the incidence of the system-environment coupling gets relatively more consistent: this is explicitly shown in (c) where
we report the ratio 〈H1〉/〈HS〉 for the two regimes. In all the plots we assumed g = 0.3ω0, κ (ω0) = 0.04ω0, ωc = 3ω0, and α = 1.

leads to

Re〈γ−γ
†
+〉|(loc)(t ) = N (ω0)

e−κ (ω0 )t/2

ε
κ (ω0) sin(εt/2),

Im〈γ−γ
†
+〉|(loc)(t ) = 4N (ω0)κ (ω0)g

e−κ (ω0 )t/2

ε2
[1 − cos(εt/2)],

〈γ †
±γ±〉|(loc)(t ) = N (ω0)

{
1 − e−κ (ω0 )t/2

ε2
[16g2

− κ (ω0)2 cos(εt/2)]

}
,

with ε :=
√

(4g)2 − κ (ω0)2. Using the relations (E1)–(E4),
the above equations imply in the a, b basis:

〈a†a〉
∣∣∣
(loc)

(t ) = N (ω0)

{
1 − e−κ (ω0 )t/2

ε2

[
16g2 − κ (ω0)ε sin(εt/2) − κ (ω0)2 cos(εt/2)

]}
,

〈b†b〉
∣∣∣
(loc)

(t ) = N (ω0)

{
1 − e−κ (ω0 )t/2

ε2

[
16g2 + κ (ω0)ε sin(εt/2) − κ (ω0)2 cos(εt/2)

]}
,

Im〈ab†〉
∣∣∣
(loc)

(t ) = 4N (ω0)κ (ω0)g
e−κ (ω0 )t/2

ε2
[1 − cos(εt/2)],

Re〈ab†〉|(loc)(t ) = 0,

i.e.,

〈HS,g〉|(loc)(t ) = 0. (E7)
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FIG. 13. Comparison of second order moments in the eigenmodes basis evaluated using the global (a), local (b), convex mixture (c),
Redfield (d), and CP-Redfield (e) approximations with the ones predicted by the exact dynamics. As indicated by the legend, continuous lines
in the plots represent the quantities computed by solving the exact S + E Hamiltonian model (5); dotted and dashed lines instead refer to
the approximated solutions. Each panel contains two plots corresponding each to shorter (left) and longer (right) timescales. We chose the
parameters N (ω0) = 10, g = 0.3ω0, κ (ω0) = 0.04ω0, ωc = 3ω0, and α = 1.

Furthermore, Eqs. (37) can be written in the a, b basis as

d

dt
〈a†a〉(t ) = −2gIm〈ab†〉(t ) + κ (ω0)[N (ω0) − 〈a†a〉(t )],

d

dt
〈b†b〉(t ) = 2gIm〈ab†〉(t ),

d

dt
〈ab†〉(t ) = ig[〈a†a〉(t ) − 〈b†b〉(t )]

−1

2
κ (ω0)〈ab†〉(t ) − i δωA 〈ab†〉(t ).

The last equations are known results [28,38] that explicitly
show how in the local approach having non-null Im〈ab†〉(t )
[and hence Im〈γ−γ

†
+〉(t ) for (E2)] is required for the descrip-

tion of the dynamical coherent energy exchanges between
A and B. Moreover, Eq. (E1) shows that the real part
of 〈γ−γ

†
+〉(t ) controls the difference between 〈a†a〉(t ) and

〈b†b〉(t ). Both the terms Im〈γ−γ
†
+〉(t ) and Re〈γ−γ

†
+〉(t ) are

well approximated by the local ME and completely neglected
by the global ME, see Figs. 13(a) and 13(b). The fact that
the global ME predicts 〈γ−γ

†
+〉(t ) = 0 is a consequence of

the cancellation of the oscillating terms in Eq. (A8) via indis-
criminate coarse-grain averaging. This decouples Eqs. (34),
generating (36). In Fig. 13 we plot the moments in the eigen-
modes basis, comparing the results obtained by the global,
local, convex mixture, Redfield, CP-Redfield approximations
with the ones predicted by the exact dynamics, by includ-
ing this time also the Lamb-shift contributions. In the local
case for instance the Lamb-shift implies a tiny splitting be-

tween 〈γ †
+γ+〉|(loc)(t ) and 〈γ †

−γ−〉|(loc)(t ) at short timescales

[connected to a small but nonvanishing Re〈ab†〉|(loc)(t ), see
Eq. (E3)]. Again, the convex mixture of the local and global
approximations of Eq. (31) and the CP-Redfield equation
yield a very good approximation either of the transient than
of the steady state properties.
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