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Transition probabilities and transition rates in discrete phase space
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The evolution of the discrete Wigner function is formally similar to a probabilistic process, but the transition
probabilities, like the discrete Wigner function itself, can be negative. We investigate these transition probabili-
ties, as well as the transition rates for a continuous process, aiming particularly to give simple criteria for deciding
when a set of such quantities corresponds to a legitimate quantum process. We also show how the transition rates
for any Hamiltonian evolution can be worked out by expanding the Hamiltonian as a linear combination of
displacement operators in the discrete phase space.
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I. INTRODUCTION

The Wigner function is a real function on phase space
representing the quantum state of a system of particles. In
Wigner’s original paper [1], he points out that the equation of
evolution of this function can be written in a form that makes
the deterministic dynamics look like a probabilistic process.
Specifically, for each set of positions of the particles, and for
each set of possible shifts in the particles’ momenta, there is
a certain probability per unit time that the particles’ momenta
will undergo the specified shifts. These transition rates, like
the Wigner function itself, can be negative, so one cannot
interpret the equation as literally representing a probabilistic
process in the usual sense. Elsewhere in the paper, though,
Wigner observes that one will be able to obtain valid results
by manipulating negative probabilities mathematically just as
one would manipulate ordinary probabilities. Several decades
later, Feynman similarly argued that one should not automat-
ically rule out the use of negative probabilities, again because
the end result can be perfectly sensible even if certain inter-
mediate steps are difficult if not impossible to interpret [2].

The original Wigner function has now been extended, in
a few different ways, to systems with a finite-dimensional
Hilbert space. One well-developed approach preserves the
continuous nature of the phase space but gives it a shape and
geometry appropriate to the system under study [3–12]. For a
single spin, with any Hilbert space dimension, the phase space
is taken to be a two-dimensional spherical surface, matching
the set of possible states of the analogous classical system. A
different approach—the one we follow in this paper—makes
the phase space a discrete lattice with a size that depends on
the dimension of the Hilbert space [13–32]. In this approach,
the function representing a quantum state assigns a real num-
ber to each lattice point and is called a discrete Wigner
function. Discrete Wigner functions have found interesting
applications in studies of entanglement characterization [33],

quantum teleportation [34,35], quantum algorithms [36–38],
quantum computation [39,40], error-correcting codes [41],
and quantum state tomography [42–44]. As with the original
Wigner function, the evolution of the discrete Wigner function
can be expressed in the form of a probabilistic process, again
with possibly negative transition rates [27,45]. Alternatively,
one can make the transition rates non-negative by adding more
structure to the discrete phase space (either a new binary
variable [17,18] or a phase [46]).

In this paper we explore further the formulation of quan-
tum evolution in discrete phase space, for two distinct
ways of characterizing this evolution. (i) For a general
normalization-preserving quantum transformation, that is,
for a trace-preserving completely positive map, we express
the transformation in terms of (possibly negative) transition
probabilities in the discrete phase space. (ii) For the spe-
cial case of Hamiltonian evolution—that is, for a closed
system—we express the evolution in terms of transition prob-
abilities per unit time (closely related work can be found
in Refs. [17,18,27,45,46]). These transition rates come di-
rectly from a discrete version of the Moyal bracket [47,48].
In both cases, our main goal is to formulate simple criteria
for deciding whether a given set of transition probabilities or
transition rates corresponds to a legitimate quantum process.
That is, it turns out that one is not free to choose any properly
normalized (but possibly negative) transition probabilities or
transition rates, and we want to know what the constraints are.
With a specification of these constraints, the Wigner-function
formulation of the evolution of finite-state systems becomes
self-contained, not requiring any reference to Hilbert space or
to probability amplitudes. The identification of the constraints
is the main contribution of this paper.

The paper is organized as follows. In Sec. II we specify the
particular form of the discrete Wigner function that we will
be using. In Sec. III we consider the transition probabilities in
phase space for a general normalization-preserving quantum
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transformation and ask what constraints there are on these
probabilities. We also show in that section exactly how these
constraints are strengthened when the evolution is unitary. We
do a similar analysis in Sec. IV for the transition rates in the
case of continuous Hamiltonian evolution. These transition
rates can be computed easily if one expands the Hamiltonian
as a linear combination of displacement operators in the dis-
crete phase space, as we explain in Sec. V. Finally we present
our conclusions in Sec. VI. In Appendix A, we work out
the explicit form of the four-point structure function, which
figures prominently in the definition of the transition prob-
abilities. Appendices B and C prove technical results useful
for characterizing, respectively, the allowed sets of transition
probabilities and transition rates.

II. DISCRETE WIGNER FUNCTION

For our analysis we use the discrete Wigner function de-
fined in Ref. [15]. That Wigner function is simplest when the
dimension of the Hilbert space is a prime number and, for
simplicity in the present paper, we restrict our attention to
that case. (When the state-space dimension is composite, the
system is, in effect, treated as a composite object).

The discrete phase space can be pictured as an N × N
array of points, where N is the dimension of the system’s
Hilbert space. We will use Greek letters to label the points of
phase space and, for the point α = (α1, α2), we will picture α1

and α2 as the horizontal and vertical coordinates, respectively,
where each αi takes the values 0, 1, . . . , N − 1. Because N is
prime, these values, together with the operations of addition
and multiplication mod N , constitute a finite field. With the
coordinate labels understood as elements of this field, the
phase space acquires the structure of a toroidal array. In this
phase space one can identify exactly N (N + 1) lines, that is,
solutions of linear equations in α1 and α2, and these lines can
be sorted into N + 1 sets, each set consisting of N parallel
lines. We call a complete set of parallel lines a “striation” [25].

For any density matrix ρ̂, the corresponding Wigner func-
tion is defined as

Wα = 1

N
Tr(Âαρ̂ ), (1)

where the operators Âα are given as follows. For N = 2,

Âα = 1
2 [Î + (−1)α1 Ẑ + (−1)α2 X̂ + (−1)α1+α2Ŷ ], (2)

where Î is the 2 × 2 identity matrix and X̂ , Ŷ , and Ẑ are the
Pauli matrices (to be generalized below). For prime N greater
than 2, we write Âα in terms of the phase-space displacement
operators D̂β , defined by [26,49]

D̂β = ωβ1β2/2X̂ β1 Ẑβ2 . (3)

Here ω = e2π i/N and the arithmetic in its exponent is under-
stood to be mod N . (So ω1/2 = ω(N+1)/2). The basic displace-
ment operators X̂ and Ẑ—generalized Pauli matrices—are
defined in terms of a standard orthonormal basis {|q〉} as [50]

X̂ |q〉 = |q + 1 (mod N)〉,
Ẑ|q〉 = ωq|q〉. (4)

Now we define the operators Âα by

Âα = 1

N

∑
β

D̂βω〈α,β〉, (5)

where 〈·, ·〉 denotes the symplectic product
〈α, β〉 = α2β1 − α1β2. In terms of its matrix components
(in the standard basis), we can write Âα as

(Âα )kl = δ2α1,k+l ωα2(k−l ), (6)

where the matrix indices k and l take the values 0, 1, . . . ,

N − 1, and the arithmetic in the subscript of the Kronecker
delta is mod N .

The Hermitian operators Âα , which we call phase-point
operators (they are also called Fano operators [17]), have a
number of special properties, as follows.

(i) Tr Âα = 1.

(ii) Tr(ÂαÂβ ) = Nδαβ.

(iii) For any striation consisting of lines λ, the operators
Q̂λ = (1/N )

∑
α∈λ Âα are projection operators onto the ele-

ments of an orthonormal basis of the Hilbert space. Moreover,
the bases corresponding to different striations are mutually
unbiased; that is, if the lines λ1 and λ2 are not parallel, then
Tr(Q̂λ1 Q̂λ2 ) = 1/N .

(iv) As follows immediately from (iii), (1/N )
∑

α Âα = Î ,
where Î is the identity.

For N = 2, statements (i) and (ii) can be proven using
compositional properties of the Pauli operators. The same
statements can be verified directly for odd prime N by replac-
ing each Â with its definition (5) and using the fact that

D̂αD̂β = ω〈α,β〉/2D̂α+β. (7)

This multiplication rule for the displacement operators fol-
lows from Eqs. (3) and (4) via the commutation relation
X̂ nẐm = ω−mnẐmX̂ n [26,49]. Finally, one can obtain state-
ment (iii) [and thus also statement (iv)] from Eqs. (2) and
(6) by explicitly summing over the lines of the discrete phase
space to find the operators Qλ [15].

The second of the above statements expresses the fact
that the Â’s constitute an orthogonal basis for the space of
N × N matrices, so that we can write any such matrix as
a linear combination of the Â’s. In particular, we can invert
Eq. (1):

ρ̂ =
∑

α

WαÂα. (8)

That is, the values of the Wigner function are simply the
coefficients in the expansion of ρ̂ in the phase-point operators.
Meanwhile, the first and third of the above statements imply
the following properties of the Wigner function.

(a)
∑

α Wα = 1.
(b) The sums of Wα over the lines of a striation are the

probabilities of the outcomes of the orthogonal measurement
associated with that striation.

These properties, which are analogous to properties of the
continuous Wigner function, provide a sense in which the
discrete Wigner function acts like a probability distribution:
the Wigner function is normalized like a probability distri-
bution, and the marginal distribution over each direction in
phase space is an actual, non-negative probability distribution,
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corresponding to a complete orthogonal measurement. For
example, for the spin of a spin-1/2 particle, with N = 2, the
three marginals (over the horizontal, diagonal, and vertical
lines) can be interpreted as the probability distributions for
spin measurements along the x, y, and z axes [2,15]. However,
like the continuous Wigner function, Wα can take negative
values. Indeed, for the case N = 2, the Wigner function we are
using is essentially the same as a function Feynman defined in
one of his examples of negative probabilities [2].

For a particle moving in one continuous dimension, we
usually interpret the axis variables of phase space as position
and momentum. In our discrete case, the interpretation of
the axis variables will depend on the particular system under
study; e.g., the horizontal axis may be associated with values
of the z component of spin. The example we give in Sec. V –
a particle confined to a discrete ring of possible locations—is
probably the discrete system most closely analogous to the
continuous case. There we interpret the horizontal axis vari-
able as position and the vertical axis variable as the discrete
wave number, which is analogous to momentum. In general,
though, the results we present in this paper are independent of
the interpretation of the axes.

Not every normalized real function on phase space corre-
sponds to an actual quantum state. One way of identifying
the legitimate functions Wα is simply to say they are the ones
for which

∑
α WαÂα is a positive semidefinite matrix. Another

way is to focus first on pure states. Recall the property ρ̂ = ρ̂2

of pure state density matrices. Recasting this as a discrete
phase-space expression, one finds that the pure states are
represented by normalized functions Wα satisfying

Wα =
∑
βγ


αβγWβWγ , (9)

where 
αβγ is the three-point structure function


αβγ = 1

N
Tr(ÂαÂβ Âγ ). (10)

Mixed states can then be identified as the convex combina-
tions of pure states [15].

Later we will use the following symmetries of 
αβγ :

(a) 
α+δ,β+δ,γ+δ = 
αβγ ,

(b) 
αβγ = 
γαβ = 
∗
αγβ,

(11)

where δ is any ordered pair (δ1, δ2) and the asterisk indicates
complex conjugation. For odd N , property (a) in Eq. (11) can
be proven by expressing the phase-point operators in terms of
the unitary displacement operators using Eq. (5) and then ob-
serving, via the multiplication rule (7), that Âα+δ = D̂δÂαD̂†

δ .
This last equation holds also for N = 2 with the Pauli op-
erators playing the role of the D̂’s. Property (b) in Eq. (11)
follows from the cyclic property of the trace and the fact that
for any square matrix M̂, (Tr M̂ )∗ = Tr(M̂†).

Finally, we note here two further properties of the Â oper-
ators that we will find useful. For any N × N matrix M̂,

(a)
∑

α

ÂαTr(M̂Âα ) = NM̂,

(b)
∑

α

ÂαM̂Âα = N (TrM̂ )Î. (12)

Both of these equations follow directly from the orthogonal-
ity and normalization of the phase-point operators. Equation
(12b) can be proved as follows. First consider the simple or-
thonormal basis Êα = | j〉〈k| for the space of N × N matrices,
where α stands for the pair ( j, k). One can show directly that∑

α ÊαM̂Ê†
α = (TrM̂ )Î . Any other orthonormal basis F̂α can

be written as F̂α = ∑
β Uαβ Êβ , where U is an N2 × N2 unitary

matrix. It follows that F̂α satisfies the same sum rule. We get
Eq. (12b) by taking into account the different normalization
of the Â’s.

III. TRACE-PRESERVING QUANTUM OPERATIONS

Consider a quantum system S with Hilbert-space dimen-
sion N , possibly interacting with an environment. As long as
there is no initial correlation between the system and the envi-
ronment, the most general transformation of S is represented
by a completely positive map. If this map takes an initial
density matrix ρ̂ of S to a final, normalized density matrix
ρ̂ ′ of the same system, it can be expressed in the form

ρ̂ ′ =
∑

j

B̂ j ρ̂B̂†
j , (13)

where the N × N Kraus matrices B̂ j satisfy the condition∑
j

B̂†
j B̂ j = Î. (14)

It is a straightforward matter to reexpress Eq. (13) as a
transformation of the discrete Wigner function. For each B̂ j ,
let us define the corresponding phase-space function B( j)

α by

B( j)
α = 1

N
Tr (ÂαB̂ j ), (15)

so that B̂ j = ∑
α B( j)

α Âα . The condition (14) then becomes∑
αβ

Bαβ Âβ Âα = Î, (16)

where

Bαβ =
∑

j

B( j)
α B( j)∗

β . (17)

Expanding ρ̂, ρ̂ ′, and the B̂’s in Eq. (13), we obtain

W ′
α = 1

N

∑
βγ δ

Tr(ÂαÂβ Âγ Âδ )BβδWγ . (18)

Thus by defining Pαγ to be

Pαγ = 1

N

∑
βδ

Tr(ÂαÂβ Âγ Âδ )Bβδ, (19)

we can express the evolution as

W ′
α =

∑
γ

PαγWγ . (20)

If we interpret Wγ as the probability of finding the system
at the phase-space point γ , then Pαγ plays the role of the
probability that a system at the point γ will make a transition
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to α (but Pαγ can be negative). In what follows, we will save
a bit of space by defining the four-point structure function

�αβγ δ = 1

N
Tr(ÂαÂβ Âγ Âδ ). (21)

Then Eq. (19) becomes

Pαγ =
∑
βδ

�αβγ δBβδ. (22)

We note for future reference that in addition to being invariant
under cyclic permutations of its indices, �αβγ δ also has the
following symmetry:

�γβαδ = �∗
αβγ δ, (23)

since switching α and γ effectively reverses the order of the
A operators inside the trace [and we again use the fact that
(Tr M̂ )∗ = Tr(M̂†)].

We can extend the definition of Pαγ to the case of linear
transformations E that are not necessarily completely positive.
Let Eq. (20) serve as the definition of Pαγ for such a transfor-
mation. Then, from ρ̂ ′ = E (ρ̂) and Eq. (20), we have

E
( ∑

β

Wβ Âβ

)
=

∑
σ

W ′
σ Âσ =

∑
στ

PστWτ Âσ . (24)

Now inserting for the initial Wigner function the illegal state
Wβ = δβγ , we get

E (Âγ ) =
∑

σ

Pσγ Âσ , (25)

from which it follows that

Pαγ = 1

N
Tr[ÂαE (Âγ )]. (26)

(It is perfectly fine to use the illegal state Wβ = δβγ in this
derivation. The map E is defined for all operators acting on
the N-dimensional Hilbert space, not just density operators.
This illegal Wigner function corresponds to the operator Âγ ).
The specific formula for Pαγ given in Eq. (22) follows from
Eq. (26) when E can be expressed in the form (13).

Now, if we were allowed to choose Pαγ arbitrarily, even
if we were to insist on the standard normalization condition∑

α Pαγ = 1, we would easily be able to create an illegal
quantum state from a legal one. For example, all points in
phase space could be mapped with probability 1 to a specific
point. Then according to property (b) of the Wigner function
in Sec. II, the final state W ′ would produce a deterministic
outcome for each of the N + 1 mutually unbiased measure-
ments associated with the striations, which is impossible. So
we now ask this question: given a proposed set of transition
probabilities Pαγ , how does one know whether it corresponds
to a valid quantum transformation?

We begin by inverting Eq. (19) so as to express Bβδ in
terms of the P’s. The details of this inversion are found in
Appendix B, with the result

Bβδ = 1

N2

∑
αγ

�βαδγ Pαγ . (27)

Comparing this equation to Eq. (22), we see that the P’s
and the B’s are related to each other in a symmetric way.

One consequence of Eq. (27) is that the values Bβδ are
uniquely determined by the quantum transformation: accord-
ing to Eq. (20), specifying the transformation is equivalent to
specifying the transition probabilities, and these probabilities
in turn determine the B’s through Eq. (27). In this respect the
B’s differ from the set of operators B̂ j , for which one can
choose among many different sets that all represent the same
transformation.

In the preceding paragraph, we began by assuming implic-
itly that the P values we were given could be expressed in
the form (19). But how do we know that, for a given set of P
values, there exist a set of complex numbers Bβδ such that the
P’s can be expressed in that form? (In asking this question we
are not yet insisting that the B’s arise from a legitimate set of
B̂ j operators). In fact this is not a problem. For any numbers
Pαγ , if we insert the B’s of Eq. (27) back into Eq. (19), we find
that we arrive again at the values of Pαγ that we started with.
This is because

1

N2

∑
βδ

�αβγ δ�βσδτ = δασ δγ τ , (28)

as can be shown directly using the properties of the A’s given
in Eq. (12). Thus any set of P’s is consistent with Eq. (19) if
we allow the B’s to be entirely unconstrained.

Our first constraint on the P’s comes from Eq. (16), which
places a condition on B. Let us use Eq. (27) to express
this condition in terms of the transition probabilities. Using
Eq. (12), we obtain

Î =
∑
μν

Bμν Âν Âμ = 1

N3

∑
μναγ

Pαγ Tr(ÂμÂαÂν Âγ )Âν Âμ

= 1

N2

∑
ναγ

Pαγ Âν ÂαÂν Âγ [by Eq. (12a)]

= 1

N

∑
αγ

Pαγ (Tr Âα )Âγ [by Eq. (12b)]

= 1

N

∑
γ

(∑
α

Pαγ

)
Âγ . (29)

This condition will be satisfied as long as the P’s are normal-
ized in the sense that

∑
α Pαγ = 1 for every γ . Moreover, the

equation implies this normalization condition, as can be seen
by multiplying both sides by Âτ and taking the trace. Thus
the condition (16) is equivalent to the natural normalization
condition on the P’s.

We get a more restrictive condition on the P’s from the
form of the definition of Bβδ . Regarded as a matrix with β

and δ as the matrix indices, we can see from Eq. (17) that
Bβδ must be positive semidefinite: any matrix that can be
written in this form is positive semidefinite, and any positive
semidefinite matrix can be written in this form. Thus we arrive
at our criteria for determining whether a given set of transition
probabilities Pαγ represents a legitimate quantum process:

(a)
∑

α

Pαγ = 1 for every γ ,

(b)
∑
αγ

�βαδγ Pαγ is positive semidefinite,
(30)
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where the mathematical expression in Eq. (30b) is understood
to be a matrix with indices β and δ.

As an example, consider the set of transition probabilities
for a single qubit defined as follows:

Pαγ = 1
2 − δα+γ ,ζ , (31)

where ζ is the ordered pair (1,1). That is, P has the value
1/2 unless the transition is to the opposite corner of the 2 × 2
phase space, in which case P has the value −1/2. These values
of P are properly normalized. To check whether they represent
an actual quantum transformation, we use Eq. (27) and Eq. (2)
to find Bβδ . The result is

B = 1

4

⎛
⎜⎝

1 1 1 −1
1 1 −1 1
1 −1 1 1

−1 1 1 1

⎞
⎟⎠, (32)

where the vertical and horizontal indices are interpreted
as β and δ, respectively, each index taking the values
(0, 0), (0, 1), (1, 0), (1, 1) in that order. This matrix has the
eigenvalues (1/2, 1/2, 1/2,−1/2) and is therefore not pos-
itive semidefinite. So the transition probabilities defined in
Eq. (31) do not correspond to a possible transformation on a
qubit. In fact, one can show from Eq. (25) that they correspond
to the transpose operation, which is the prototypical example
of a positive but not completely positive map.

The condition (30b) requires determining whether a certain
N2 × N2 matrix—the matrix Bβδ given by Eq. (27)—is posi-
tive semidefinite. In this respect it is similar to a more standard
test for complete positivity, namely, to see whether the Choi
operator, another N2 × N2 matrix, is positive semidefinite
[51–53]. In fact, it turns out that Bβδ is simply the Choi
operator written in a specific basis, as we now show.

From Eqs. (26) and (27), we have

Bβδ = 1

N4

∑
αγ

Tr(Âβ ÂαÂδÂγ )Tr[ÂαE (Âγ )]

= 1

N3

∑
γ

Tr[ÂδÂγ ÂβE (Âγ )]. (33)

The Choi operator is

Ĉ = 1

N

∑
jk

| j〉〈k| ⊗ E (| j〉〈k|). (34)

Let us define the orthonormal basis |�β〉 by

|�β〉 = (Î ⊗ Âβ )|�〉, (35)

where |�〉 is the maximally entangled state

|�〉 = 1√
N

∑
m

|m〉 ⊗ |m〉. (36)

Then we claim that

Bβδ = 〈�β |Ĉ|�δ〉. (37)

Indeed, by plugging the definitions (34) and (35) into the
right-hand side of Eq. (37), we find that

〈�β |Ĉ|�δ〉 = 1

N2

∑
jk

Tr[|k〉〈 j|ÂβE (| j〉〈k|)Âδ]

= 1

N2

∑
α

Tr[Ê†
α ÂβE (Êα )Âδ], (38)

where we are defining Êα to be | j〉〈k|, with α = ( j, k). We
know that we can write the orthonormal matrix basis {Êα} in
terms of the alternative orthonormal matrix basis {Âγ /

√
N} as

Êα =
∑

γ

Uαγ (Âγ /
√

N ), (39)

where U is an N2 × N2 unitary matrix. [In fact, one can
check that Uαγ = (1/

√
N )δ2γ1, j+kω

−γ2( j−k)]. It follows that
we can replace the basis {Êα} in Eq. (38) with {Âγ /

√
N}. This

gives us

〈�β |Ĉ|�δ〉 = 1

N3

∑
γ

Tr[Âγ ÂβE (Âγ )Âδ], (40)

which agrees with Eq. (33). Thus B is the Choi operator
written in the basis |�β〉.

The above analysis becomes simpler in the case of unitary
evolution. In that case, we can get an expression for the tran-
sition probabilities directly from Eq. (26):

Pαρ = 1

N
Tr(ÂαÛ ÂρÛ †), (41)

where U is the unitary evolution operator. From Eq. (41) and
Eq. (12a), we can see that this Pαρ , regarded as a matrix with
indices α and ρ, is an orthogonal matrix: PPT = I . We also
note that in this case Bβδ has the simple form

Bβδ = BβB∗
δ , Bβ = 1

N
Tr(Û Âβ ), (42)

from which it follows that
∑

β |Bβ |2 = 1.
In Ref. [15] it was shown that, among all real functions of

two phase-space points, those P’s that correspond to unitary
transformations are completely characterized by the following
two properties:

(a)
∑

α

Pαρ = 1,

(b)
∑
ρστ

PαρPβσ Pγ τ
ρστ = 
αβγ ,
(43)

where 
αβγ is the three-point structure function we defined
in Eq. (10). That is, in addition to the standard normalization
condition, the P’s must leave 
 unchanged.

In the spirit of Eq. (30), we can replace Eq. (43b) with
an alternative condition, so that the conditions for a unitary
transformation become

(a)
∑

α

Pαγ = 1,

(b) Bβδ = 1

N2

∑
αγ

�βαδγ Pαγ has rank 1, (44)
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where again β and δ are understood to be matrix indices. It is
clear from Eq. (42) that statement (44b) is true for a unitary
transformation. To see that (44a) and (44b) are also sufficient
to certify unitarity, note first that the matrix B defined in Eq.
(44b) is necessarily Hermitian, because of the symmetry (23)
of �. Moreover, the normalization condition (44a) implies that
the trace of B is unity. So the sole nonzero eigenvalue of B
must be 1; that is, B must be a one-dimensional projection
operator. Now, if B is a one-dimensional projection, then there
is essentially only a single B̂ operator in Eq. (13). (There could
be several B̂ j’s, but they would all be proportional to each
other). In that case the sum condition (14), which, as we have
seen, follows from the normalization condition (44a), implies
that this B̂ is unitary.

IV. CONTINUOUS HAMILTONIAN EVOLUTION

In the preceding section, we were interested in a single
discrete transformation taking ρ̂ to ρ̂ ′. We now consider a
continuous transformation governed by the von Neumann
equation:

d ρ̂

dt
= − i

h̄
[Ĥ , ρ̂], (45)

where Ĥ is the Hamiltonian, which we assume to be constant.
Let Hα be the expansion coefficients of Ĥ in the phase-point
operators Âα:

Ĥ =
∑

α

HαÂα, so that Hα = 1

N
Tr(ĤÂα ). (46)

Then we can rewrite Eq. (45) in phase-space language as

dWα

dt
= 1

ih̄

∑
βγ


αβγ (HβWγ − WβHγ ), (47)

where again 
αβγ is defined in Eq. (10). Equation (47) can be
understood as a representation of the discrete Moyal bracket
[27,54]

dWα

dt
= 1

ih̄
(H � W − W � H )α ≡ 1

ih̄
{{H,W }}α, (48)

the star product between the phase-space representation of
two operators being defined by (B̂Ĉ)α = 1

N

∑
βγ BβCγ 
αβγ ≡

(B � C)α .
Using the fact that 
αγβ = 
∗

αβγ , we can reexpress
Eq. (47) as

dWα

dt
= 2

h̄

∑
βγ

Im(
αβγ )HβWγ . (49)

Note that this equation can be written as

dWα

dt
=

∑
γ

rαγWγ , (50)

where

rαγ = 2

h̄

∑
β

Im(
αβγ )Hβ. (51)

So if we again think of Wα as the probability of the system
being at the phase-space point α, then rαγ is playing the role

of the probability per unit time that a system at the point γ

will move to α. We will refer to the r’s as transition rates,
even though, like the P’s of the preceding section, they can
be negative even when α 
= γ . (In a classical continuous-time
Markov process, rαγ can be negative only if α and γ are
the same, since only in that case is rαγ not interpreted as a
probability per unit time. We discuss this point further in Sec.
VI). In fact, one can see immediately from the definition (51)
that rαγ is antisymmetric in its two indices.

It is not a coincidence that r is an antisymmetric matrix.
As we have seen, the P’s describing unitary transformations
constitute an orthogonal matrix, and the generators of the
orthogonal group are antisymmetric. To see the connection,
suppose P describes the transition probabilities corresponding
to some differentiable transformation over a short time �t
such that

Wα (t + �t ) =
∑

γ

PαγWγ (t ). (52)

Differentiability allows us to expand P to first order in �t
as Pαγ = δαγ + sαγ �t , where s is the infinitesimal generator
of P. The limit �t → 0 in Eq. (52) then leads to dWα/dt =∑

γ sαγWγ , which is the same form as Eq. (50). So r is the
infinitesimal generator of P.

Another remarkable property of rαγ is that the sum of the
transition rates into α from all points in phase space is zero:∑

γ

rαγ = 0, (53)

as follows directly from Eq. (51). More fundamentally, this
property is a consequence of Eq. (50), the normalization of W ,
and the antisymmetry of rαγ . This does not mean, of course,
that the value of Wα does not change—the rate of change also
depends on the values of Wγ —but it does immediately imply
that if Wγ is the constant function on phase space (representing
the completely mixed state), then it is also constant in time.
That is, the completely mixed state is unchanged by any
Hamiltonian evolution (which is of course correct).

As in the preceding section, our main concern here is to
identify constraints on the transition rates rαγ that characterize
actual Hamiltonian flows in phase space. We begin by invert-
ing Eq. (51) so as to express the Hamiltonian function Hα in
terms of the r’s, if indeed the given set of r values is consistent
with a Hamiltonian.

Starting with Eq. (51), we use the properties expressed in
Eq. (12) to get

∑
αγ

rαγ ÂαÂγ = − i

h̄
N2

(∑
β

Hβ Âβ − 1

N

∑
β

Hβ

)
. (54)

Now multiply by Âδ and take the trace to get

ih̄

N2

∑
αγ

rαγ 
αγ δ = Hδ − 1

N2

∑
β

Hβ, (55)

which gives us the Hamiltonian function Hδ up to an additive
constant. (The additive constant does not affect the dynam-
ics). By renaming indices and making use of the symmetries
of 
 and rαγ , we can reexpress Eq. (55) somewhat more
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elegantly as

Hβ − 1

N2

∑
δ

Hδ = h̄

N2

∑
αγ

rαγ Im(
αβγ ). (56)

Now, given any candidate set of values rαγ , Eq. (56) will
give us some function Hβ (up to an additive constant). But not
every set of r values actually arises from a Hamiltonian. To tell
whether the given set does represent Hamiltonian evolution,
we insert the Hβ of Eq. (56) back into Eq. (51) and see whether
that equation yields the same r values we started with. If so,
then those values do arise from a Hamiltonian; otherwise, they
do not.

Carrying out this strategy, we arrive at the following con-
dition characterizing those sets of values rαγ that represent
Hamiltonian evolution:

rαγ = 2

N2

∑
α′γ ′

[∑
β

Im(
αβγ )Im(
α′βγ ′ )

]
rα′γ ′ . (57)

To write this condition more compactly, let us think of rαγ as a
column vector with αγ as its single index (taking N4 values).
Let us call this column vector �r. We also define a matrix R in
terms of its components as follows:

Rαγ ,α′γ ′ = 2

N2

∑
β

Im(
αβγ )Im(
α′βγ ′ ). (58)

Then the condition (57) can be reexpressed simply as

�r = R�r. (59)

In Appendix C we show that the symmetric real matrix R is
in fact a projection operator; that is, it has only two distinct
eigenvalues, 0 and 1. According to Eq. (59), a set �r of transi-
tion rates represents a Hamiltonian evolution if and only if it
lies in the eigenvalue-1 subspace of R. Moreover, if we start
with any real N4-component vector �v and apply R to �v, the
result will be a legitimate set of transition rates associated with
some Hamiltonian evolution. (Possibly the result will be the
zero vector, but this vector does indeed define a legitimate set
of transition rates).

For odd prime values of N , the three-point structure func-
tion 
αβγ takes a particularly simple form, and we can use
this fact to write down the condition (57) more explicitly.
Specifically, we have


αβγ = 1

N
exp

[
−4π i

N
(〈α, β〉 + 〈β, γ 〉 + 〈γ , α〉)

]
, (60)

where again 〈α, β〉 = α2β1 − α1β2. Plugging this expression
into Eq. (57) and doing the sum over β, we get

rαγ = 1

N2

∑
ζ

(rα+ζ ,γ+ζ − rγ+ζ ,α+ζ ) cos

[
4π

N
〈α − γ , ζ 〉

]
.

(61)

If we now allow ourselves to assume that rαγ is antisymmetric
under interchange of α and γ , we can combine the two terms
in Eq. (61) to get

rαγ = 2

N2

∑
ζ

rα+ζ ,γ+ζ cos

[
4π

N
〈α − γ , ζ 〉

]
. (62)

Thus we can take as our condition on the r’s either Eq. (61)
by itself, which implies that rγα = −rαγ , or Eq. (62) together
with the condition rγα = −rαγ . Either of these statements
serves to characterize precisely those sets of transition rates
that correspond to Hamiltonian dynamics.

The case of a single qubit, with N = 2, is simpler. In that
case, one finds that Eq. (59) is equivalent to a combination of
two conditions on the r’s that we have already encountered:

(a)
∑

α

rαγ = 0,

(b) rγα = −rαγ . (63)

In fact one can prove that these conditions are sufficient just by
counting the number of free parameters. One finds that of the
16 possible values of an unconstrained rαγ , only three remain
after we impose the conditions in Eq. (63). This number is the
same as the rank of the projection operator R for a qubit: in
general, the trace of R is N2 − 1, as we show in Appendix C.
Since the linear constraint expressed in Eq. (63) is certainly
consistent with the linear constraint in Eq. (59), it follows
that these constraints are equivalent. We note also that, for
a qubit, three is indeed the number of free parameters in the
Hamiltonian, up to an irrelevant additive constant.

V. COMPUTING THE TRANSITION RATES

We now specialize to the case where N is an odd prime.
For such a system, the displacement operators D̂μ defined in
Eq. (3) constitute an orthogonal basis for the space of N × N
matrices [49], so, in particular, we can write the Hamiltonian
as a linear combination of them:

Ĥ =
∑

μ

κμD̂μ, (64)

where the κμ’s are complex numbers. One can show that
D̂(−μ) = D̂†

μ, so since Ĥ is Hermitian, we must have κ(−μ) =
κ∗

μ. It turns out that, for each term in the sum (64), the corre-
sponding transition rates are fairly simple, as we are about to
see. Moreover, the r’s are linear in Ĥ , so once we have the r’s
for each term in the sum, we can add them together to get the
transition rates for the whole Hamiltonian.

In this section, then, we will work out the analogs of
transition rates, with the non-Hermitian operator D̂μ taking
the place of the Hamiltonian. These can then be combined as
in Eq. (64) to get transition rates for Hamiltonians.

We begin by finding the phase-space function D(μ)
β corre-

sponding to D̂μ. That is, we will find

D(μ)
β = 1

N
Tr(D̂μÂβ ), so that D̂μ =

∑
β

D(μ)
β Âβ. (65)

To evaluate D(μ)
β , we make use of Eq. (7). As always, the

arithmetic in the exponent of ω is mod N . Inserting into
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Eq. (65) the definition (5) of the Â operators, we have

D(μ)
β = 1

N
Tr(D̂μÂβ ) = 1

N2
Tr

(∑
γ

D̂μD̂γ ω〈β,γ 〉
)

= 1

N2
Tr

(∑
γ

D̂μ+γ ω〈μ,γ 〉/2ω〈β,γ 〉
)

. (66)

Now, the trace of D̂α is zero unless α is zero, so we get a
contribution only from the term where γ = −μ. This gives us

D(μ)
β = 1

N
ω〈μ,β〉. (67)

We now substitute D(μ)
β in place of Hβ in Eq. (51) to get the

“transition rates” r (μ)
αγ corresponding to the operator D̂μ:

r (μ)
αγ = 2

h̄

∑
β

Im(
αβγ )D(μ)
β . (68)

Using Eq. (67) for D(μ)
β and Eq. (60) for 
αβγ , we get

r (μ)
αγ = − 2

h̄N2

∑
β

sin

[
4π

N
(〈α, β〉 + 〈β, γ 〉 + 〈γ , α〉)

]
ω〈μ,β〉.

(69)

The sums over β1 and β2 are straightforward and we find that

r (μ)
αγ = 1

ih̄

[
δα,γ+ μ

2
ω2〈α,γ 〉 − δα,γ− μ

2
ω−2〈α,γ 〉]. (70)

Thus the contribution to Ĥ from a specific displacement op-
erator D̂μ generates transitions from γ to γ + μ/2 and to
γ − μ/2. That is, the displacements effected by the transitions
are only half as large as the displacement μ. (But this “half”
is in the mod N sense). This factor of one-half has been noted
before in earlier work where choices of the phase associated
with the displacement operator are investigated [27].

As a simple example, consider a particle that can occupy
any of N sites, arranged in a ring, and let the Hamiltonian
be Ĥ = 2 − (X̂ + X̂ †) = 2 − (D̂(1,0) + D̂(−1,0)). This Hamil-
tonian is analogous to the kinetic-energy operator for a
particle moving on a continuous line. For example, the eigen-
states of Ĥ are of the form

|pk〉 = 1√
N

N−1∑
q=0

ωkq|q〉, k = 0, . . . , N − 1, (71)

with eigenvalues 4 sin2(kπ/N ), where the |q〉’s are eigen-
states of position. When k  N these eigenvalues are
proportional k2, like the eigenvalues of the ordinary kinetic-
energy operator. [Note that the constant term, 2, in the
Hamiltonian does not affect the dynamics as expressed in
Eq. (45) and does not affect the transition rates]. We take
the eigenstates of position to be the standard basis, associated
with the vertical lines in phase space. For our choice of the
phase-point operators, this implies that the eigenstates of mo-
mentum, given in Eq. (71), are associated with the horizontal
lines.

FIG. 1. Discrete phase space for a five-dimensional quantum sys-
tem. Each of the 25 dots indicates a phase-space point with a discrete
Wigner function value of zero except for the larger dots which have a
value of 1/5; this is the Wigner function for an eigenstate of position
with eigenvalue 2. Arrows display transition rates corresponding
to the kinetic energy operator for a particle that can occupy five
sites with periodic boundary conditions. Blue (solid) arrows indicate
positive rates and red (dashed) arrows indicate negative rates, while
the width of an arrow indicates the relative magnitude of the rate.
Only the transition rates out of the nonzero Wigner function points
are displayed.

For this Hamiltonian, according to Eq. (70) the transition
rates rH are

rH
αγ = −r (1,0)

αγ − r (−1,0)
αγ

= −2

h̄
(δα,γ+η + δα,γ−η ) sin

(
4π

N
〈α, γ 〉

)

= 2

h̄
(δα,γ+η − δα,γ−η ) sin

(
2π

N
γ2

)
, (72)

where η = [(N + 1)/2, 0]. So if a particle could start at a
specific phase-space point γ , it would, to first order in time,
move to the two points farthest from γ1 on the circle and not
change its momentum coordinate γ2 at all. Of course a system
cannot start in such a state. If it starts in an eigenstate of
position—for definiteness let us say it starts at γ1 = 2—then
its initial Wigner function is uniform over the vertical line
γ1 = 2. An example of such a scenario for a ring with N = 5
sites is shown in Fig. 1. To first order in time, the contribution
from each point on this line moves halfway around the circle,
to the points 2 + (N + 1)/2 and 2 + (N − 1)/2, but because
of the factor sin(2πγ2/N ) in Eq. (72), when we sum over γ2

to get the probability distribution over position, we find that
it has not changed at all. And indeed, starting from a position
eigenstate, the distribution of positions should not change at
all to first order in time. (The change is of second order).
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VI. CONCLUSIONS

An ordinary stochastic process on an N × N grid of points
would be defined by specifying, for each pair of points (α, γ ),
the probability Pαγ that the system will make the transition to
the point α if it is currently at the point γ . The only constraints
on these probabilities are

(a)
∑

α

Pαγ = 1 for each γ ,

(b) Pαγ � 0 for each pair (α, γ ). (73)

We have seen that, for a quantum process described in dis-
crete phase space, the constraints are different. We still have
the normalization constraint of Eq. (73a), but Eq. (73b) is
replaced by a different positivity condition, namely, that the
matrix

Bβδ = 1

N2

∑
αγ

�βαδγ Pαγ , (74)

in which β and δ are understood to be the matrix indices, is
positive semidefinite. Here �βαδγ is a complex-valued func-
tion of its four arguments, but as we see in Appendix A,
it is a fairly simple function when N is an odd prime. It is
nonzero only when its arguments form a parallelogram in the
discrete phase space, and in that case its magnitude is always
unity and its phase is proportional to the parallelogram’s area.
Note that both the classical stochastic process and the general
quantum process allow the same number of free parameters,
namely, N2(N2 − 1). It is only the inequalities constraining
these parameters that are different.

For the special case in which the quantum process is
a unitary transformation, the condition that B be positive
semidefinite can be replaced by the stronger requirement that
B be of rank one [in which case the sole nonzero eigenvalue
must be 1 in order for the normalization condition (73a) to be
satisfied]. It is interesting to count parameters in this case as
well. If we ignore normalization for now, it takes 2N2 − 1 real
numbers to specify an N2 × N2 rank-one Hermitian matrix
Bβδ . (It takes N2 complex numbers, or 2N2 real numbers, to
specify a vector Bβ from which Bβδ is constructed via Bβδ =
BβB∗

δ , but one of those real numbers is the overall phase of B,
which is lost in B). Imposing the N2 normalization equations
in Eq. (73a) then leaves us with N2 − 1 real parameters, which
is indeed the number of parameters required to specify a
special unitary transformation in an N-dimensional Hilbert
space. (An overall phase of the unitary transformation does
not affect the evolution of the density matrix and therefore
does not affect our transition probabilities).

We now turn to the case of a continuous transformation. An
ordinary continuous-time Markov process can be described by
a set of differential equations of the form

dWα

dt
=

∑
γ

rαγWγ , (75)

where Wγ is the probability that the system is in the state γ

and the transition rate rαγ , for α 
= γ , is the probability per
unit time that a system in the state γ will make a transition
to α. The quantity rαα is the negative of the probability per
unit time that a system in the state α will leave that state. Any

set of transition rates is allowed that satisfy the following two
constraints:

(a)
∑

α

rαγ = 0,

(b) for α 
= γ , rαγ � 0. (76)

The first of these conditions follows directly from the require-
ment that the probability distribution Wα remains normalized
no matter what that distribution might be. The second require-
ment follows from the assumption that any probability must
be non-negative.

In the quantum case, for Hamiltonian evolution, the
discrete Wigner function Wα follows a set of differential equa-
tions of the same form as in Eq. (75), but the constraints
are different. Not surprisingly, these constraints allow fewer
free parameters than Eq. (76), just as the unitary conditions
considered above allow fewer parameters than the classical
rules (73) or the rules for a general trace-preserving quantum
transformation. We have seen that, for Hamiltonian evolution,
a vector of transition rates �r is allowed if and only if R�r = �r,
where the projection operator R is defined in Eq. (58). This
requirement implies two others:

(a)
∑

α

rαγ = 0,

(b) rγα = −rαγ . (77)

The first of these is the familiar normalization-preserving
constraint. The second is completely foreign to the classical
picture. First, it forces any nontrivial evolution to violate Eq.
(76b). It also forces rαα to be zero. This latter fact would mean
that a system in state α could not leave that state, if it were not
for the fact that some values of rαγ are negative. A negative
transition rate from γ to α reduces the value of Wα , but at a
rate proportional to Wγ , not to Wα .

For a single qubit, the two conditions in Eq. (77) are equiv-
alent to R�r = �r and are therefore sufficient to determine what
sets of transition rates are allowed. For the case where N is an
odd prime, we need an additional condition:

rαγ = 2

N2

∑
ζ

rα+ζ ,γ+ζ cos

[
4π

N
〈α − γ , ζ 〉

]
. (78)

This equation, like the form (A6) of the four-point structure
function � or the form (70) of the “transition rates” associated
with a displacement operator, highlights the important role of
the symplectic product for the odd-prime case.

It is worth commenting further on the significance of the
symplectic product. It is well known that, when N is an
odd prime, any unit-determinant linear transformation acting
on the phase space, regarded as a two-dimensional vector
space over the N-element field, is equivalent to a unitary
transformation acting on the phase-point operators (see, for
example, Refs. [26,55]). That is, if L is a unit-determinant
linear transformation, then there is a corresponding unitary
ÛL such that ÂLα = ÛLÂαÛ †

L for all points α. This means
that the basic structure of the theory is unchanged by such
a transformation. [For example, the forms of Eqs. (9) and
(47) are unchanged]. These special linear transformations—
symplectic transformations—do not preserve any nontrivial
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distance function or any notion of angle, but they do preserve
the symplectic product, which can be taken to define a notion
of area, as we discuss in Appendix A. This fact is roughly
analogous to the fact that, in classical mechanics, phase-space
volume is preserved under canonical transformations.

The appearance of negative probabilities, both in the dis-
crete Wigner function itself and in the transition probabilities
and transition rates, would be more disturbing if it were not
for the fact that these nonstandard probabilities are always
associated with illegal states. For example, we speak of a
negative transition rate from some phase-space point γ to
another phase-space point α. But in standard quantum theory,
the system cannot actually be at the point γ and cannot go to
the point α. The rules we have derived that limit the sets of
allowed transition rates and transition probabilities, together
with the rules restricting the Wigner function, evidently en-
tail restrictions that force the probabilities of all observable
events to be non-negative. An interesting question for future
research is whether the constraints we have noted here can all
be derived, within a minimal framework, simply by requiring
non-negativity at this level.

ACKNOWLEDGMENTS

We gratefully acknowledge valuable discussions with M.
P. Blencowe, P. D. Johnson, and A. Vourdas. W.F.B. was
supported by the National Science Foundation under Grant
No. DMR-1807785.

APPENDIX A: FOUR-POINT STRUCTURE
FUNCTION �αβγδ

Here we evaluate the four-point structure function

�αβγ δ = 1

N
Tr(ÂαÂβ Âγ Âδ ) (A1)

for the case when N is an odd prime. From the definition

Âα = 1

N

∑
μ

D̂μ ω〈α,μ〉, (A2)

we have

�αβγ δ = 1

N5

∑
μνρσ

Tr(D̂μD̂νD̂ρD̂σ )ω(〈α,μ〉+〈β,ν〉+〈γ ,ρ〉+〈δ,σ 〉).

(A3)

Now we use the composition rule (7) for displacement opera-
tors to get

D̂μD̂νD̂ρD̂σ = D̂μ+ν+ρ+σ ω(〈μ,ν+ρ+σ 〉+〈ν,ρ+σ 〉+〈ρ,σ 〉)/2.

(A4)
The trace of D̂μ+ν+ρ+σ is Nδμ+ν+ρ+σ,0, so one of the sums in
Eq. (A3) can be done immediately. In the remaining sums, we
use, a few times, the fact that

N−1∑
x=0

ωxy = Nδy,0. (A5)

The final result can be written as

�αβγ δ = δα−δ,β−γ ω2〈δ−α,β−α〉. (A6)

The Kronecker delta forces the points α, β, γ , and δ to be
the corners of a parallelogram—possibly a degenerate paral-
lelogram in which all the vertices lie on a single line—and
the exponent of ω can be interpreted as twice the area of
the parallelogram. (If we picture the phase space as a lattice
with unit spacing between neighboring points, this area is
equal to the ordinary signed area in the plane, evaluated mod
N . The sign is positive if the path α → β → γ → δ → α is
counterclockwise). Thus �αβγ δ is zero for most values of its
indices. For any given values of α, β, and γ , there is only one
value of δ for which �αβγ δ is not zero.

APPENDIX B: INVERTING THE FORMULA FOR Pαγ

Recall that the transition probabilities Pαγ are given in
terms of Bβδ by Eq. (19):

Pαγ = 1

N

∑
βδ

Tr(ÂαÂβ Âγ Âδ )Bβδ. (B1)

Here we wish to invert this equation to get an expression for
Bβδ . We begin by recalling Eq. (12): for any N × N matrix M̂,

(a)
∑

α

ÂαTr(M̂Âα ) = NM̂,

(b)
∑

α

ÂαM̂Âα = N (TrM̂ )Î. (B2)

Starting with Eq. (B1), we multiply both sides by Âγ and use
Eq. (B2a) to get∑

γ

Pαγ Âγ =
∑
βδ

BβδÂδÂαÂβ. (B3)

Now multiply on the left by Âν and on the right by ÂμÂα , sum
over α, and use Eq. (B2b):∑

αγ

Pαγ Âν Âγ ÂμÂα = N
∑
βδ

BβδÂν ÂδTr(Âβ Âμ). (B4)

Finally, take the trace of both sides and use the fact that
Tr(ÂνÂδ ) = Nδνδ to get

Bμν = 1

N3

∑
αγ

Tr(ÂμÂαÂν Âγ )Pαγ = 1

N2

∑
αγ

�μανγ Pαγ .

(B5)

This is the desired equation for Bβδ .

APPENDIX C: SHOWING THAT R IS A PROJECTION

Here we want to show that the matrix R defined by

Rαγ ,α′γ ′ = 2

N2

∑
β

Im(
αβγ )Im(
α′βγ ′ ) (C1)

is a projection operator. Again, we are thinking of the pair αγ

as a single matrix index taking N4 values. The matrix is clearly
real and symmetric, so we need only show that R2 = R.

We begin by noting the following fact about Im(
):

2

N2

∑
αγ

Im(
αβγ )Im(
αβ ′γ ) = − 1

N2
+ δββ ′ . (C2)
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One can see that this is true by writing out Im(
) in terms
of traces of products of A matrices and then using the two
properties given in Eq. (12).

We want to show that∑
α′γ ′

Rαγ ,α′γ ′Rα′γ ′,α′′γ ′′ = Rαγ ,α′′γ ′′ . (C3)

Using the definition (C1) and letting Gαβγ = Im(
αβγ ), we
can write the left-hand side as

4

N4

∑
α′γ ′

(∑
β

Gαβγ Gα′βγ ′
∑
β ′

Gα′β ′γ ′Gα′′β ′γ ′′

)
. (C4)

Now doing the sum over α′ and γ ′ and invoking Eq. (C2), we
can rewrite this as

2

N2

∑
ββ ′

Gαβγ

(
− 1

N2
+ δββ ′

)
Gα′′β ′γ ′′ . (C5)

The term with 1/N2 yields zero, because the imaginary part
of 
 vanishes when we sum over one of the indices. So we

are left with 2
N2

∑
β Gαβγ Gα′′βγ ′′ , which equals Rαγ ,α′′γ ′′ . This

is what we wanted to show.
Finally, we will find it useful to know the dimension of the

subspace onto which R projects. This is given by the trace of
R, that is,

∑
αγ Rαγ ,αγ , which we can write as

− 1

2N4

∑
αβγ

[Tr(ÂαÂβ Âγ ) − Tr(ÂαÂγ Âβ )]2. (C6)

Using the properties given in Eq. (12), we find that∑
αβγ

Tr(ÂαÂβ Âγ )Tr(ÂαÂβ Âγ ) = N4,

∑
αβγ

Tr(ÂαÂβ Âγ )Tr(ÂαÂγ Âβ ) = N6. (C7)

It follows that Tr R = N2 − 1. So R projects onto a subspace
of dimension N2 − 1 (as it should, since this is the number of
parameters needed to specify a Hamiltonian, up to an additive
constant).
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