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Robust control of unstable nonlinear quantum systems
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Adiabatic passage is a standard tool for achieving robust transfer in quantum systems. We show that in driven
nonlinear quantum systems adiabatic passage becomes highly nonrobust when the target is unstable. This occurs
for a generic (1:2) resonance, for which the complete transfer corresponds to a hyperbolic fixed point featuring an
adiabatic connectivity strongly sensitive to small perturbations of the model. By inverse engineering, we devise
high-fidelity and robust partially nonadiabatic trajectories. They localize at the approach of the target near the
stable manifold of the separatrix, which drives the dynamics towards the target in a robust way. These results can
be applicable to atom-molecule Bose-Einstein condensate conversion and to nonlinear optics.
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I. INTRODUCTION

Development of quantum control is an essential task for
quantum technology [1,2]. Quantum control means manip-
ulating dynamical processes of quantum systems, via the
control of their states aiming typically the transfer from one
to another state, using external fields. Besides requirements of
high-fidelity transfer, an important issue is the robustness of
the control, for instance, with respect to imperfect knowledge
of the system or to systematic deviations in experimental
parameters. Adiabatic passage is a well-known technique for
achieving robust transfer [3]. Other robust techniques have
been demonstrated, such as composite pulses [4,5], optimal
control [6,7], or single-shot shaped pulses [8,9] as a variant of
shortcut to adiabaticity [10–13].

Nonlinear quantum systems are central in recent applica-
tions, such as the ones involving many-particle systems in
a mean field [14–16] or nonlinear optics [17–21], but little
is known about the applicability of the control principles
developed for linear systems. Since the corresponding Hamil-
tonian depends on the state of the system, nonlinear quantum
dynamics can be described by Hamilton’s equations with a
nonlinear Hamiltonian, from which issues of instabilities and
nonintegrability are expected to feature obstructions of control
[22,23].

Adiabatic passage techniques can be formulated for inte-
grable systems with trajectories formed by the instantaneous
(stable) elliptic fixed points defined at each value of the
adiabatic parameters and continuously connected to the ini-
tial condition. Obstructions to classical adiabatic passage are
given by the crossing of a separatrix [22,24,25]. Besides
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optimal control based on Pontryagin’s maximum principle
[26–28], the use of inverse engineering techniques allows
one to produce exact solutions without the need of invoking
adiabatic approximations [29]. Two- and three-level �-type
systems with second-order nonlinearities have been shown to
be noncontrollable exactly in the sense that such nonlinearities
prevent reaching the target state exactly [24,29]. However, one
can approach it as closely as required, and inverse-engineering
techniques have been developed for that purpose [29].

However, when the target state is itself unstable, e.g., asso-
ciated to an hyperbolic fixed point in the classical phase space
representation, as it is the case for a two-level system with a
generic (1:2) resonance, we show the counterintuitive result
that adiabatic solutions lack robustness.

We note that this results was not noticed in literature
dedicated to adiabatic passage in nonlinear systems even if
robustness was analyzed. We can mention Ref. [24] where
a relative robustness was apparent but only in a restricted
zone of parameters. In conventional nonlinear � three-level
systems, where the (1:2) nonlinearity is only for the transition
involving the initial state (traditionally associated to a pump
coupling), one can derive robust solutions by imposing that
the transient population in the upper state is small, in a similar
way as for its linear counterpart [29]. Robustness can be natu-
rally achieved in such systems because the target state, linked
with a linear Stokes coupling, is stable in the phase space
[22]. This is also the case for two-level systems featuring
only third-order nonlinearity [28]. We can finally mention that
nonintegrability can be circumvented by appropriate design of
pulse’s parameters [23].

The existence of robust solutions for a (1:2) resonance be-
comes then questionable. The goal of this paper is to analyze
the obstruction of adiabatic passage and to design such robust
trajectories, using inverse engineering adapted to nonlinear
dynamics.

2469-9926/2020/102(5)/052203(6) 052203-1 ©2020 American Physical Society

https://orcid.org/0000-0002-4277-1730
https://orcid.org/0000-0003-4221-4288
https://orcid.org/0000-0002-9826-9598
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.052203&domain=pdf&date_stamp=2020-11-04
https://doi.org/10.1103/PhysRevA.102.052203


ZHU, CHEN, JAUSLIN, AND GUÉRIN PHYSICAL REVIEW A 102, 052203 (2020)

In Sec. II we present the model and the underlying Bloch
sphere generalized to nonlinear systems, on which the solu-
tions will be interpreted as trajectories. In Sec. III we show
the nonrobustness of adiabatic passage. In Sec. IV we show
robust solutions designed from reverse engineering methods.
The last section is devoted to the conclusion.

II. NONLINEAR (1:2) RESONANCE MODEL
AND THE GENERALIZED BLOCH SPHERE

We consider a nonlinear driven two-level model including
a second-order nonlinearity as a (1:2) resonance (appearing in
the coupling term) [25]:

iḃ1 = �√
2

b̄1b2, (1a)

iḃ2 = (� − �a + 2�s|b2|2)b2 + �

2
√

2
b2

1, (1b)

with the amplitude probabilities b1 and b2 satisfying |b1|2 +
2|b2|2 = 1, i.e., with the nonlinearity associated to state 2.
The time-dependent driving field couples the two states via
its Rabi frequency � ≡ �(t ) (assumed positive for simplicity
and without loss of generality) in a near-resonant way, and a
detuning � ≡ �(t ). Additional third-order nonlinearities are
considered as diagonal terms through the coefficients �a and
�s (known as Kerr terms). In the language of Bose-Einstein
condensation, this system (1) models the transfer from atomic
to molecular condensates, where |b1|2 (2|b2|2) is the probabil-
ity of atomic (molecular) BEC. The term �a can be trivially
compensated by a static detuning, while the �s term can be
dynamically compensated by a time-dependent detuning, in a
similar way as the one presented in Ref. [29] for the three-state
problem.

Similarly to the linear counterpart, the dynamics of this
nonlinear system can be parametrized by three angles θ ∈
[0, π ], α ∈ [0, 2π [, γ ∈ [0, 2π [ as [24,30]:

[b1(t )
b2(t )

]
=

[
cos(θ/2)

1√
2

sin(θ/2) e−i(α+γ )

]
e−iγ . (2)

The problem can be reformulated with the (complex) Hamil-
ton equations

ḃ j = ∂h

∂ b̄ j
, j = 1, 2, (3)

with the Hamiltonian [24,25]

h = (
� − �a + �s|b2|2

)|b2|2 + �

2
√

2

(
b2

1b̄2 + b̄2
1b2

)
.

(4)

Canonical transformations into the variables defining
the phase space (I = |b2|2, α) lead to the coordinates,
involving population inversion and the generalized
coherence:


z := |b1|2 − 2|b2|2 = 1 − 2p, (5a)


x := 2
(
b2

1b̄2 + b̄2
1b2

) = 2
√

2(1 − p)
√

p cos α, (5b)


y := −2i
(
b2

1b̄2 − b̄2
1b2

) = 2
√

2(1 − p)
√

p sin α, (5c)

with twice state-2 population p = 2I = 2|b2|2 = sin2(θ/2).
For convenience, one can alternatively consider the z coor-

FIG. 1. Portraits of the system on the generalized Bloch sphere
in the late part of the dynamics (t = 1.2T ) for adiabatic tracking and
robust control (with parameters of Fig. 4), including an additional
static detuning (a) T �0 = −0.6 and (b) T �0 = 0.6, the separatrix
(thick yellow line), elliptic fixed point (green dot), actual dynamics
for adiabatic tracking (blue dot) and for robust control (magenta dot).
At the chosen time, the values of the instantaneous detuning �(t ) and
of the Rabi frequency �(t ) are almost identical in the two techniques,
thus leading to the same portraits for each �0.

dinate as p instead of 
z. The phase space can be reduced to
a two-dimensional surface, defined as the generalized Bloch
sphere, of equation


2
x + 
2

y = 8(1 − p)2 p, p ∈ [0, 1], (6)

embedded in the three-dimensional space of coordinates

x,
y, p, as shown in Fig. 1. The south and north poles
correspond, respectively, to p = 0 and p = 1.

The nonlinear Schrödinger equation leads to the following
system of equations:

θ̇ = � sin α cos(θ/2), or ṗ = �(1 − p)
√

p sin α (7a)
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α̇ = �

2
cos α

1 − 3 sin2(θ/2)

sin(θ/2)
+ � − �a + �s sin2(θ/2),

(7b)

γ̇ = �

2
cos α sin(θ/2), (7c)

which can be rederived with α̇ = ∂h/∂I , İ = ∂h/∂α, and the
Hamiltonian expressed with the phase space variables

h = (� − �a + �s p/2)p/2 + �

2
(1 − p)

√
p cos α. (8)

From Eq. (7a) the population p(t ) can be written in terms
of the angle α(t ) as

p(t ) = tanh2

[∫ t

ti

�(s)

2
sin α(s) ds

]
, (9)

where we have assumed an initial state b1(ti ) = 1 at the initial
time ti, i.e., p(ti ) = 0 (corresponding to the south pole of the
generalized Bloch sphere in Fig. 1). We consider the target
of a complete population transfer p(t f ) = 1 (corresponding to
the north pole of the generalized Bloch sphere in Fig. 1) at
the final time t f . This shows that the transfer probability p can
tend to one only in the limit of an infinite pulse area, in agree-
ment with the time-optimal solution [28]. The Rabi model
(for � = �a and �s = 0, i.e. α = π/2) gives a high-fidelity
transfer, robust with respect to the pulse area (unlike its linear
counterpart), but strongly sensitive to a detuning � �= 0 (or
equivalently to a third-order nonlinearity). It indeed induces
oscillations in the integral of p(t ), which are more intense for
a larger pulse area. The corresponding trajectory evolves on
the separatrix associated to the target state p = 1, which is a
hyperbolic fixed point.

III. NONROBUSTNESS OF ADIABATIC PASSAGE

We can limit our study for simplicity without third-order
nonlinearities (�a = �s = 0), since this system already fea-
tures an unstable target. The adiabatic trajectory is formed by
the instantaneous stable (elliptic) fixed points among the fixed
points defined by İ = 0, α̇ = 0:

� = −eiα �

2
√

p
(1 − 3p), α = 0 or π, (10)

at each value of the adiabatic parameters � and �, and contin-
uously connected to the initial condition p = 0. An adiabatic
tracking trajectory is derived by imposing for instance con-
venient p(t ) and �(t ), and using �(t ) resulting from (10)
[24,25].

The target p = 1 is a fixed point of the dynamics, which
is hyperbolic for |�/�| < 1 and elliptic for |�/�| > 1. The
number and the nature of the fixed points change as a function
of � and �: (i) for � = 0 and any � there are only two fixed
points p = 0 and p = 1, which are both elliptic; (ii) for � �=
0: if |�/�| < 1 there are three fixed points: p = 1, which is
hyperbolic, and two elliptic ones. If |�/�| � 1 there are two
fixed points, both elliptic.

The separatrix associated to the hyperbolic fixed point is
the curve of constant h passing by the hyperbolic fixed point
p = 1 of the equation

(ps − 1)(� − �
√

ps cos αs) = 0, (11)

FIG. 2. Contour plot of the final population transfer p(+∞)
for the adiabatic tracking �(t ) = �0 sech(t/T ) and ptrack(t ) =
sin2{arctan[sinh(t/T )]/2 + π/4} [24] with T �0 = 10 (and T the
characteristic duration of the process) with respect to deviations of
the detuning by a static quantity �0 (in units of 1/T ) and of the field
amplitude by 1 + β.

i.e.,

√
ps cos αs = �/� = eiα (1 − 3p0)/(2

√
p0), α = 0 or π,

(12)
when |�/�| < 1 [see Fig. 1(a)]. When |�/�| approaches 1
from below, the separatrix collapses to a single point and p =
1 becomes elliptic [see Fig. 1(b)].

The issue of robustness of a typical adiabatic tracking
dynamics with respect to a static detuning �0 and to the Rabi
frequency amplitude is numerically analyzed in Fig. 2. This
shows that the fidelity dramatically decreases for negative
detuning �0 and positive β, while it is relatively preserved
on the other three quadrants. In what follows, we describe
the dynamics in the phase space and provide a qualitative
explanation of this global lack of robustness.

In order to reach the target p = 1 (north pole) by an adi-
abatic process, the trajectory must follow continuously the
instantaneous elliptic fixed points that connect p = 0 (south
pole) when � = 0 (initially) to p = 1 when �/� = 1 (fi-
nally) without crossing a separatrix [22,24], as it is shown
in Fig. 3(b). The initial state p = 0 corresponds to �/� →
−∞ and the target p = 1 to �/� � 1. The intermediate
state p = 1/3 corresponds to �/� = 0. Thus � necessarily
has to go through 0. In the adiabatic tracking technique �

is chosen such that �/� → 1 from below at final time. If
�/� = 1 at some finite time, the elliptic fixed point collides
with the hyperbolic one, and the separatrix collapses to a
single point. If there is an additional static detuning �0 �= 0
there are two scenarios, depending on the sign of �0. We
assume without loss of generality that the initial �(ti) < 0
and thus at the approach of the target � > 0. (i) If �0 > 0,
then (� + �0)/� goes through 1 at some finite time, then
the elliptic and the hyperbolic points collide, the separatrix
collapses, and p = 1 becomes elliptic [see Fig. 1(b)]. Since
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FIG. 3. Trajectories with the parameters of Fig. 1, followed by
the dynamics from the south pole (initial condition) to north, with
(a) a static detuning T �0 = −0.6 and (b) no static detuning T �0 =
0; trajectory of the instantaneous fixed points (green curves) associ-
ated to the adiabatic tracking dynamics, which connects the initial
and target fixed points (green dots) in (b), but does not reach the
target in (a); actual trajectory for adiabatic tracking (blue curves)
adiabatically following the green fixed point trajectory (except at the
end of the dynamics in (a), when the adiabatic connectivity fails);
actual trajectory for robust control field (magenta curves) reaching
the target closely to the separatrix at the approach of the target in
both cases. The separatrix (yellow) curve is made by the points of
the instantaneous separatrices, each of them having the same latitude
p of the actual trajectory. The four trajectories almost merge at the
target in (b).

� �= 0 this implies that the actual trajectory crosses the sep-
aratrix at some earlier time [see Fig. 3(b)] and the adiabatic
approximation is broken. However, during the crossing the
flow 
y > 0 goes into the direction of the separatrix which
points toward the target, according to (7a): ṗ = �
y/2

√
2,

despite a broken adiabatic approximation. This explains the
relative robustness of the process for �0 > 0. (ii) If �0 < 0,
since [� + �0]/� < 1, the elliptic fixed point stays at a finite
distance from p = 1, i.e., the elliptic fixed point never reaches

FIG. 4. Final transfer profile p(+∞) as a function of the static
detuning �0 (in units of 1/T ) showing (i) nonrobust adiabatic track-
ing (dashed red line) with the parameters of Fig. 2 for β = 0 and (ii)
robust control (solid blue line) (16) with C1 = −0.5, Cj>1 = 0, and
ε = 0.03, of average transfer fidelity 0.997 in the zone of the figure.
Inset: Corresponding pulse shapes of Rabi frequency (upper frame)
and detuning (lower frame).

the target: the adiabatic connectivity is broken [see Figs. 1(a)
and 3(a)]. We can state a similar explanation of nonrobustness
of the Rabi frequency when it is multiplied by a coefficient
larger than one. We can thus interpret this lack of robust-
ness by the fact that the adiabatic connectivity is strongly
sensitive to small perturbations of the model, which can be in-
terpreted as a direct consequence of the instability of the target
state.

IV. ROBUST CONTROL

We derive robust solutions on the basis of reverse engineer-
ing by adapting the technique developed for linear models in
Ref. [8]. We assume a convenient time variation

θ (t ) = π

2
(1 − ε)[1 + erf(t/T )] (13)

(where ε = 0.03 > 0 takes into account that the solution can-
not reach the target state exactly), and we define an expansion
of the phase γ as a function of θ , γ̃ (θ ) ≡ γ (t ), with n un-
known constants, Cj , j = 1 . . . , n:

γ̃ (θ ) = θ + C1 sin(θ ) + C2 sin(2θ ) + · · · + Cn sin(nθ ).
(14)

We determine α from (7c) and (7b) by eliminating � and
replacing � using (7a), giving a differential equation for α

as a function of θ , α̃(θ ) ≡ α(t ):

˙̃α = 1

tan α̃ sin θ
− 3 ˙̃γ , (15)

where α̃(0) = ±π/2 for θ = 0. The field shaping is then
determined from (7a) and (7c), respectively:

�(t ) = θ̇

sin α cos(θ/2)
, (16a)

�(t ) = 3

2
cot α tan(θ/2) − 3γ̇ + �a − �s sin2(θ/2). (16b)
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We have to determine numerically the coefficients Cj’s
leading to a desired robust transfer.

Figure 4 shows the remarkable robustness achieved with
respect to the static detuning �0 for C1 = 0.5 and Cj>1 = 0
and the corresponding pulse and detuning shapes. It surpasses
the robustness of adiabatic tracking with twice the lower Rabi
frequency area (5π and 10π , respectively). The robustness
of this derived trajectory is analyzed in the phase space (see
Fig. 3): The initial trajectory breaks the adiabaticity by start-
ing orthogonally to the fixed point curve (� = 0). When �

reaches a sufficiently large value, the actual dynamics be-
comes adiabatic along a trajectory that is not close to the ellip-
tic fixed points, until approaching a region near the separatrix.
The stable manifold of the separatrix drives then all the trajec-
tories in its vicinity towards the target, thus in a robust way.

V. CONCLUSION

We have shown that adiabatic passage in nonlinear quan-
tum systems is not robust when the target point is unstable
due to the sensitivity to small perturbations of the adiabatic
connectivity. We have developed alternative robust trajectories
that circumvent the instability. The main difference is that
adiabatic tracking tries to follow closely the instantaneous
fixed points, while the robust control field method operates
quite far away from the fixed points near the separatrix and
the stable manifold, breaking adiabaticity at the beginning
of the process. Inverse engineering is usually applied in the
context of (linear) quantum control to make a process exact,
fast, and/or robust. In this paper we have shown that inverse
engineering also allows remarkably circumvention of a non-
linear instability.

We remark that usual nonlinear STIRAP-type processes
[29] are not affected by this lack of robustness as the target
state, linked with the linear Stokes coupling, is stable. This is
also the case for two-level systems featuring only third-order
nonlinearity [28].

The present control has been designed to be robust with
respect to detuning (or equivalently to third-order nonlin-
earities). Robustness with respect to pulse amplitude or to
both amplitude and detuning requires other parametriza-
tions. We have determined that the coefficients C1 = −2.05,
C2 = −1, C3 = 0.35, Cj>3 = 0 lead to an averaged fidelity
of 0.964 in the range −1 � T �0 � 1, −0.1 � β � 0.1 (to
be compared to the one of adiabatic passage 0.86). We
notice that the chosen form of parametrization does not
improve much the robustness with respect to the pulse
amplitude.

These results can be immediately applicable to superchem-
istry [15,31,32] and other scenarios, including frequency
conversion beyond the undepleted pump approximation [21],
nonlinear coupled waveguides [33], and nonlinear Landau-
Zener problems for a Bose-Einstein condensate in an accel-
erating optical lattice [34]. Last but not least, the success of
inverse engineering and shortcuts to adiabaticity applied for
nonlinear systems opens the possibility of extending shared
concepts such as dynamical or adiabatic invariants and fast-
forward scaling [12,13].
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