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Contrary to what was previously believed, two-loop radiative corrections to the g factor of an electron bound
in a hydrogenlike ion at O(α2(Zα)5) exhibit logarithmic enhancement. This previously unknown contribution is
due to a long-distance light-by-light scattering amplitude. Taking an effective field theory approach, and using
the Euler-Heisenberg Lagrangian, we find �g = −( α

π
)2(Zα)5 56π

135 ln Zα.
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The gyromagnetic factor g describes the proportionality of
a particle’s magnetic moment μ to its spin s,

μ = g
e

2m
s, (1)

where e is the particle’s charge, m its mass, and we use units
c = h̄ = 1. Boldface letters denote usual vectors.

We consider the electron, for which Dirac’s theory predicts
g = 2. This value is corrected at the per mille level by the
electron’s self-interactions, at present known to the fifth order
in the fine-structure constant α � 1/137 [1,2].

Larger corrections can arise from the electron’s interac-
tion with its environment. The simplest such influence is the
Coulomb field of the nucleus to which the electron is bound.
These binding corrections are reviewed in Ref. [3]. Full nu-
merical evaluation of two-loop self-energy diagrams is under
way [4] and first results for a class of diagrams are already
available [5,6].

These calculations are of great metrological interest, be-
cause the electron mass [m in Eq. (1)] is best determined
with an ion in a Penning trap, rather than by trapping an
electron alone (binding to a nucleus greatly decreases errors
caused by the electron’s thermal motion). In the future, a
competitive value of the fine-structure constant may also be
obtained from such measurements [7–9], complementary to
atom interference [10] and the free-electron g − 2 [11]. The
potential of the bound g factor to constrain scenarios beyond
the standard model is discussed in Ref. [12].

Neglecting nuclear structure corrections, g for the 1s state
can be expressed in a double series in powers of α/π (self-
interactions) and in powers and logarithms of Zα (interactions
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with the nucleus). With L = − ln(Zα)2,

g = 2

3
[1 + 2

√
1 − (Zα)2] + α

π

∞∑
i, j=0

ai j (Zα)iL j

+
(

α

π

)2 ∞∑
i, j=0

bi j (Zα)iL j + O

((
α

π

)3)
. (2)

This structure mirrors the expansion of atomic energy lev-
els (Lamb shift [13]) and so far it has been found that if a
logarithm is present in one observable in a given order, it is
also present in the other. This rule is very important because
the Lamb shift is better understood theoretically than the g
factor. Measurements with ions of various Z have been used
to fit unknown coefficients in Eq. (2) [3] to extract the electron
mass.

Here we find the first exception to this rule: in the Lamb
shift the coefficient corresponding to b51 vanishes, whereas
we find that

b51 = 28π

135
. (3)

In principle, logarithmic effects can always be calculated in
at least two ways. The argument Zα is really a ratio of two
distance scales, for example, the large Bohr radius and the
small electron Compton wavelength. One can calculate only
the long-distance or short-distance part. In both cases one
finds the same magnitude of logarithmic divergence.

In the present case, we did both, to be sure that the log-
arithmic contribution really exists. Below we briefly outline
both parts of the calculation. We leave for future work the
evaluation of the nonlogarithmic part, together with providing
further technical details of the computation.

The new logarithmic contribution is an effect of the virtual
light-by-light (LBL) scattering. It arises through the coupling
of four photons induced by their interaction with a virtual
charged particle such as an electron. Figure 1 provides an
example, where the Coulomb field of the nucleus couples to an
external magnetic field, and two photons are interacting with
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FIG. 1. An LBL loop contributing to α2 corrections to the bound
electron g factor. The thick double line denotes the nucleus. Thin
solid lines are electrons and wavy lines are photons, including the
external magnetic field B.

the bound electron, thus changing the electron’s g factor and
modifying its response to the magnetic field.

LBL was first predicted by Heisenberg and Euler [14,15]
and by Weisskopf [16] who determined corrections to
Maxwell’s Lagrangian of the electromagnetic field L =
1
2 (E2 − B2),

LEH = α2

m4
[c1(E2 − B2)2 + c2(E · B)2], (4)

with c1 = 2
45 and c2 = 14

45 . While L leads to linear Maxwell’s
equations, LEH introduces nonlinear effects. Nowadays, this
classic result is often the first nontrivial example encountered
by students learning effective field theory methods.

Searches for effects of LEH have so far been in vain [17].
Observed nonlinear effects arise either from interactions with
matter (nonlinear optics) or from high-energy processes with
photon momenta much larger than the electron mass, beyond
the validity of LEH. For example, photon splitting γ N →
γ γ N has been measured [18] (see [19] for a theoretical re-
view). A related process is Delbrück scattering γ N → γ N
[20]. The high-energy LBL scattering has been observed in
ultraperipheral heavy-ion collisions [21].

The LEH effect described in this Rapid Communication
likely has the best chance of being experimentally accessible.

It often happens with bound-state radiative corrections that
a single Feynman diagram contributes to different orders in
the perturbative expansion. To disentangle corrections of dif-
ferent orders, it is convenient to use the expansion by regions
[22–26]. Once the relevant modes are identified, a systematic
expansion can be achieved by setting up an effective field
theory (EFT) whose operators capture the low-energy physics,
while the so-called matching coefficients contain information
about short-distance phenomena.

In bound-state quantum electrodynamics (QED), the rele-
vant EFT is obtained in a two-step process. First, we integrate
out the hard modes, i.e., momenta of the order of electron
mass m. The resulting theory is known as nonrelativistic
QED (NRQED), introduced by Caswell and Lepage [27]. The
NRQED Lagrangian is organized in powers of the electron’s
velocity (in an ion with the atomic number Z , that velocity is
v ∼ Zα), or inverse powers of electron mass [28]. The Euler-

Heisenberg (E-H) Lagrangian LEH is part of the NRQED
Lagrangian and contributes at O(v4).

NRQED is still complicated and contains modes with a
range of energy scales. In the second step, one integrates
out soft modes whose momenta scale as mv, and potential
photons with energy E ∼ mv2 and three-momentum p ∼ mv.
The resulting theory is called potential NRQED (PNRQED)
[29–31]. It contains instantaneous, nonlocal interactions be-
tween the electron and the nucleus, the so-called potentials.

The leading one is the Coulomb potential responsible for
the binding and described by the operator∫

d3r[χ†
e χe](x + r)

(
− Zα

r

)
[N†N](x), (5)

where χe is the nonrelativistic electron field, and N is the
nucleus field. Other potentials are treated as perturbations.

To compute the contribution of the E-H interaction to the
bound electron g factor, we have to generalize potentials to
include spin-dependent interactions with an external magnetic
field. The two-step EFT approach has been successfully used
to compute spin-independent observables before. Technical
details can be found in Ref. [32] (see also [33–38]).

LBL scattering first contributes to the bound electron g-
factor at O(α(Zα)5) [39] and O(α2(Zα)4) [40]. In both these
cases, the LBL scattering was a part of a short-distance cor-
rection to the bound electron g factor. Here we focus on the
former type of diagrams, where two photons are attached to
the electron line.

We start by analyzing the diagram in Fig. 1. The case where
both loops are hard was discussed in [40]. In that case, the
loops collapse to a point in NRQED, where the diagram is rep-
resented by an effective operator with two photon fields. This
operator is then matched on the effective spin-dependent po-
tential. Here we consider a situation where only the fermionic
loop is hard, while the second loop is soft. This means that
only the LBL fermionic loop is a short-distance phenomenon,
while photons are part of the long-distance physics. The hard
matching leads to the E-H Lagrangian in Eq. (4). The soft
loop in the QED diagram is now represented in NRQED by a
time-ordered product of the E-H Lagrangian

1

3!

∫
d4x

∫
d4y

∫
d4z T [LI(x),LI(y),LEH(z)], (6)

with the interaction Lagrangian containing the leading
Coulomb interaction and a Pauli interaction

LI = χ†
e

(
−eA0 + cF e

σ · B
2m

)
χe. (7)

Here cF = 1 + α
2π

+ O(α2) and σ is a vector composed of
Pauli matrices. The NRQED diagram representing the time-
ordered product (6) is depicted in Fig. 2.

To perform the second matching step, we compute the
amplitude for the diagram shown in Fig. 2; it reads

ic2cF
α2

m4

Ze3

32m

QiQj

|Q| χ̂†
e σ jχ̂eBi, (8)

with Q representing the momentum transfer between the elec-
tron and the nucleus, and the external magnetic field B that
carries zero momentum. χ̂e denotes nonrelativistic electron
spinors.
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FIG. 2. NRQED diagram corresponding to Fig. 1 with the Euler-
Heisenberg Lagrangian insertion replacing the electron loop.

We drop the part of the amplitude that does not contribute
in s states and, after a Fourier transform, we find the spin-
dependent correction to the PNRQED potential,

e
∫

d3r

[
χ†

e

σ · Bext

2m
χe

]
(x + r) δV (r)[N†N](x), (9)

with

δV (r) = −c2cF
α2

π2

Zα

(mr)4

π

12
. (10)

This potential has r−4 dependence and it is thus more singular
for small r than the leading Coulomb potential in Eq. (5).
Consequently, the matrix element in an s state is divergent and
has to be regularized. We use dimensional regularization with
space-time dimension D = 4 − 2ε and find the E-H contribu-
tion to the bound electron g factor to be

�gEH =
(

α

π

)2 28π

135
(Zα)5

(
1

ε
− ln

(mZα)2

μ2
+ · · ·

)
, (11)

where dots represent terms that are not logarithmically en-
hanced. The computation of the matrix element is closely
related to the logarithmic correction to the Lamb shift de-
scribed in [40].

The 1/ε ultraviolet (UV) pole of the matrix element of δV
cancels with the high-energy contribution shown in Fig. 3. The
additional photon connecting the external electron to the nu-
cleus may be understood as a high-energy tail of the electron
wave function. This is why only the diagrams related to the

FIG. 3. The high-energy correction to the diagram in Fig. 1 arises
from an additional hard photon exchanged between the electron and
the nucleus. Two examples are shown. Other diagrams are found by
permuting photons coupled to each electron line. The diagram on the
right does not contribute to the divergent part in Eq. (13).

left diagram in Fig. 3 by permutation of photon attachments to
the closed electron loop contribute to the divergent part. In this
short distance part of the correction all loop momenta have a
hard scaling (∼m). Reference [41] explains the theory of the
high-energy contribution to the bound g factor at O((Zα)5).

In the short-distance calculation we proceed as in our
previous calculations [42,43]. All three-loop integrals are re-
duced to a small set of master integrals with the so-called
Laporta algorithm [44,45] implemented in the program FIRE

[46]. Even though we are dealing with diagrams that do not
contribute to the Lamb shift, almost all master integrals are
the same as before, and their results can be found in [42]. The
reason is that master integrals correspond to scalar diagrams,
where some of the lines are absent. In most cases, one can
transform these master integrals into known ones.

However, there is one new master integral,

∫
dDk1 dDk2 dDk3 δ

(
k0

2

)
k2

1 (k1 − k2)2
(
k2

3 + m2
)

[(k2 + k3)2 + m2]

= −64π7m3

3
+ O(ε), (12)

that could not be checked with previous calculations. For this
reason the computation of the hard part alone would not be a
sufficient proof of the presence of the logarithm. Fortunately,
the hard correction we found,

�gH = −
(

α

π

)2 28π

135
(Zα)5

(
1

ε
− ln

m2

μ2
+ · · ·

)
(13)

is consistent with the soft correction in Eq. (11). Summing
Eqs. (11) and (13) we find that 1/ε singularities cancel and
obtain our main result,

�g(Z ) = �gH + �gEH =
(α

π

)2
(Zα)5 28π

135
ln

1

(Zα)2
, (14)

from which we read off the coefficient b51 in Eq. (3).
It was believed that the missing LBL corrections were

small [5]. Our result shows that such estimates have to be
carefully scrutinized. Due to the logarithmic enhancement, the
correction is larger than anticipated and exceeds other LBL
corrections computed previously in [43]. The EFT approach
provides a systematic framework for analyzing higher-order
corrections, and we advocate a widespread usage of this for-
malism in future investigations.

For the hydrogenlike carbon ion, currently the best source
of the electron mass determination, the resulting relative cor-
rection to the g factor and, by the same token, to the electron
mass m, is

�g(Z = 6)

g
= �m

m
= 1.8 × 10−12, (15)

about 17 times smaller than the current experimental error.
This correction will likely become important for the measure-
ments in the near future [7].
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Because of the factor Z5, the correction grows rapidly for
heavier ions. For the experimentally important silicon [47],

�g(Z = 14)

g
= 0.9 × 10−10, (16)

exceeding the accepted theoretical uncertainty of 0.7 × 10−10

[3]. This is likely because Ref. [3] fitted unknown higher-order
corrections, assuming a vanishing b51, as we explained below
Eq. (2).

For the future, two extensions of this work are of interest.
While we have determined the E-H effect in a one-electron

hydrogenlike ion, few-electron systems, especially lithium-
and boronlike ions, are also experimentally relevant [48]. It
would also be interesting to evaluate the E-H correction for a
muonic atom [49] where it should be further enhanced by the
logarithm of the electron to muon mass ratio.

R.S. would like to thank Martin Beneke for useful dis-
cussions. The loop diagrams were calculated with FORM
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Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Grant No. 396021762-TRR 257.
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