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Thermodynamic principles are often deceptively simple and yet surprisingly powerful. We show how a simple
rule, such as the net flow of energy in and out of a moving atom under a nonequilibrium steady state condition,
can expose the shortcomings of many popular theories of quantum friction. Our thermodynamic approach
provides a conceptual framework in guiding atom-optical experiments, thereby highlighting the importance of
fluctuation-dissipation relations and long-time correlations between subsystems. Our results introduce consis-
tency conditions for (numerical) models of nonequilibrium dynamics of open quantum systems.
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Introduction. Fluctuations have a profound impact on phys-
ical reality, ranging from weak yet measurable forces all the
way to structure formation in the universe. In the quantum
realm, the existence of fluctuation-induced interactions was
confirmed by pioneering [1,2] and ensuing experiments with
increasing accuracy and scope [3–13].

Many theoretical approaches have been designed to explain
each distinct manifestation of these quantum fluctuation phe-
nomena. However, a broader perspective is captured by the
fluctuation-dissipation theorem (FDT): For an open system in
equilibrium, this theorem expresses the detailed balance be-
tween incoming and outgoing power, ensuring that the system
is in a state of maximal entropy [14]. When nonequilibrium
conditions prevail, the description of quantum fluctuation-
induced phenomena is remarkably more involved and, to the
best of our knowledge, general FDTs for fully nonequilibrium
systems are lacking. Instead, a convenient assumption known
as local thermal equilibrium (LTE) is often invoked [15]. This
assumption significantly reduces the mathematical complex-
ity of the problem and was broadly applied to the situation of
temperature gradients between macroscopic bodies [16–20],
atom-surface forces in thermal [21,22] as well as mechanical
[22,23] nonequilibrium or under the influence of external driv-
ing fields [24], and for computing the radiation of a relativistic
electron close to an interface [25]. However, the theoretical
basis for LTE and the conditions in which it fails to apply
are usually not so well discussed: First, under nonequilibrium
conditions, the detailed balance (which is implicitly contained
in LTE) is broken and, second, LTE is known to often disre-
gard backaction of the environment [26–28]. In quantitative
terms, LTE was already proven to be insufficient in the context
of atom-surface quantum friction, e.g., underestimating the
force by roughly half [29] or misrepresenting other important
mechanisms [30].
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In the framework of nonequilibrium atom-surface interac-
tions, other often used methods have their own strengths and
shortcomings. For instance, the Born-Markov approximation
(BM) [31,32] or a perturbative treatment of the atomic level
shift [33,34] do not rely on equilibrium. However, with re-
gards to backaction and memory effects, these methods can
only partially capture the impact of the environment [35]. For
quantum friction, they have been shown to lead to an incorrect
velocity scaling [36,37] or erroneously predict exponentially
vanishing forces (see the discussion in Refs. [22,35]).

In this Rapid Communication we address the deficiencies
of these commonly used assumptions and approximations
from another perspective, namely, the nonequilibrium ther-
modynamics of quantum friction. Even when the discrepancy
between the approximate and the more carefully derived re-
sults might seem to be quantitatively marginal on the level
of forces, the errors become manifest and easily identifi-
able when one applies the thermodynamic principles. In fact,
neglecting the memory of the interaction or the long-time
correlations between the system and environment—as the BM
and the LTE assumption do—can lead to nonexistent thermo-
dynamic instabilities, such as, in the case of quantum friction,
an over-time increase to infinity of the internal energy of
the atom. Our cure for this is the thermodynamic principle-
enforced, self-consistent (backaction-including) treatment of
the relevant nonequilibrium quantum processes. This provides
us with a benchmark to identify and explain why other approx-
imate theories succeed or fail.

Physical model. We consider an atom moving at nonrel-
ativistic velocity v along an axis of translational symmetry
relative to one or an entire arrangement of several macro-
scopic objects with an arbitrary cross-sectional shape. These
objects comprise nonmagnetic, reciprocal, and spatially ho-
mogeneous materials. We assume that the atom moves at
a distance from the objects which is much larger than its
size. Within a multipolar approach [38,39], this allows us
to focus on the fluctuation-induced interaction between the
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atomic electric dipole moment d̂ and the material-modified
fluctuating electric field Ê. We also demand that the atom’s
center of mass approximately obeys a classical trajectory. This
implicitly includes the existence of an external “agent” driving
the atom in such a way as to maintain uniform motion. We
assume that the backaction of our total system, composed
of the atom+field+matter, on the agent is sufficiently small
compared to the force the agent exerts on the system to keep
the atom moving at uniform velocity. Thus we can safely
consider the inflow of energy to the moving atom from the
agent separately from the outflow of energy from the atom
to the field modified by the material. The backaction of the
material-modified field on the atom appearing as quantum
friction is of course included, it being the main character in
the drama [40]. Finally, we assume zero temperature and an
initial state factorized in the distant past [41].

In the static case (v = 0), it can be shown that such a
dynamical system equilibrates at late times [42]. For atomic
velocities v �= 0, however, the state of the system can deviate
from the global equilibrium condition [43]. Also, for finite
coupling strength, the system and environment are insepara-
bly intertwined and the assumption that equilibrium ensues
locally is not warranted. Yet, dissipation (e.g., in the material)
leads to finite correlation times between the system and en-
vironment establishing irreversibility in the interaction. When
the different irreversible processes balance, the dynamics of
the system becomes stationary and it reaches a nonequilibrium
steady state (NESS) [44]. Such a state is thermodynamically
characterized by the existence of a nonvanishing current of
energy, sourced by some external drive [45] or temperature
gradient [46,47], that compensates for all different forms of
losses in the system [Eq. (8)]. For the atomic subsystem the
NESS requires a balance between incoming Pin and outgoing
power Pout from and to the material-modified vacuum, respec-
tively. If otherwise, the atomic energy would be increasing
indefinitely, contradicting the stationarity and the stability of
the atomic dynamics. In the following, in lieu of a rigorous
proof of the existence of the NESS [48], we provide an explicit
late-time solution for a specific model [see Eq. (1)] and show
that the anticipated power balance Pin = Pout holds, but only
under certain conditions. This supplies a physical reasoning
for its existence in more general contexts.

Moving at constant velocity, the atom’s internal de-
grees of freedom are in continuous exchange of energy,
translational, and angular momentum with the surrounding
material-modified quantum field. In the steady state, these
processes can be described in terms of the three-dimensional
Langevin equation [49]

¨̂d(t ) + ω2
ad̂(t )

α0ω2
a

+ 2
∫ ∞

0
dτ γ (τ, v) · ˙̂d(t − τ ) = ξ̂(t, v),

(1)

where α0 is the atomic static polarizability and ωa the bare res-
onance frequency of the lowest energetically accessible dipole
transition. Here, α0 plays the role of the coupling constant
between the microscopic object and its surrounding electro-
magnetic environment. The quantum Langevin force and the

dissipative memory kernel, respectively, can be written as [30]

ξ̂(t, v) =
∫

dω

2π

∫
dq

2π
Ê0(q, Ra, ω)e−iω−

q t , (2a)

γ (t, v) =
∫

dω

2π

∫
dq

2π

G�(q, Ra, ω)

ω−
q

e−iω−
q t . (2b)

Here, q is the component of the radiation’s wave vector in
the direction of motion, while Ra is the atom’s position in the
plane orthogonal to it. We also defined the Doppler-shifted
frequency as ω±

q = ω ± qv. The atomic system is driven by

the fluctuations of the field in the absence of the atom, Ê0. The
dispersion as well as dissipation mechanisms are encoded in
the Green’s tensor G with G� = (G − G†)/(2i). G solves the
Maxwell equations with appropriate boundary conditions and
hence incorporates the material properties, the translational
symmetry of our system, and ensures the causality of the
interaction [50]. Consequently, G� is a Hermitian positive
semidefinite matrix for ω > 0, while a stationary and a causal
dynamics of the dipole implies that γ (ω, v) must be positive
definite. Since without the moving atom the system is in
equilibrium, the field Ê0 must satisfy the FDT

〈Ê0(q, ω)Ê0(q′, ω′)〉
= h̄(2π )2 sgn(ω)G�(q, Ra, ω)δ(ω + ω′)δ(q + q′), (3)

where sgn(ω) is the sign function and δ(x) the Dirac delta.
Hereafter we consider the symmetric quantum average, i.e.,
〈ÂB̂〉 ≡ 〈ÂB̂ + B̂Â〉/2 [51,52]. Equation (1) is solved in the
Fourier domain as d̂(ω, v) = α(ω, v) · ξ̂(ω, v) by means of
the dressed and velocity-dependent atomic polarizability
α(ω, v) (see Ref. [53] for details). Physically, the latter con-
tains spontaneous emission [54], dispersion, and dissipation
due to the presence of the material [55]. The correlation
matrix of the Langevin force becomes stationary and real in
the steady state [51], i.e., 〈ξ̂(t, v)ξ̂(t ′, v)〉 ≡ h̄ ν(t, t ′, v) →
h̄ ν(τ, v) (τ ≡ t − t ′). Moreover, the quantum noise is
colored:

ν(ω, v) =
∫

dq

2π
sgn(ω+

q )G�(q, Ra, ω
+
q ). (4)

Our self-consistent treatment of the system [Eq. (1)] describes
the connection between field fluctuations and dipole fluctua-
tions via the relation

〈d̂(ω)d̂(ω′)〉 = 2π h̄ 	(ω, v)δ(ω + ω′), (5)

where 	(ω, v) = α(ω, v)ν(ω, v)α†(ω, v) is positive semidef-
inite for all ω because of the properties of all involved matrices
[53]. The relations in Eqs. (4) and (5) generalize the FDT to
the NESS and lead to previously reported results on quantum
friction [29,30,56].

Nonequilibrium thermodynamics. We now examine the
thermodynamic implications of Eqs. (4) and (5). The “in” and
the “out” parts of the moving atom’s energy flow per unit time
are [57,58]

Pin = 〈ξ̂(t, v) · ˙̂d(t )〉, (6a)

Pout = 2
∫ ∞

0
dτ 〈 ˙̂d(t ) · γ (τ, v) · ˙̂d(t − τ )〉, (6b)
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which yield a change in energy E of the atom given by Ė =
P ≡ Pin − Pout. Using Eq. (1), we can show that P = 0 in the
NESS (see Ref. [53]), i.e., there is no net energy flow in or out
of the system since

Pin = Pout = 2
∫ ∞

0

dω

2π
h̄ω Tr[ν(ω, v)α�(ω, v)], (7)

where, similarly to G�, we defined α� = (α − α†)/(2i) and
“Tr” takes the trace of the resulting matrix.

A few comments are in order. First, Pin/out is positive since
α�(ω, v) is positive definite for ω � 0 [53]. Notably, within
our initial assumptions, the previous results hold for any
(nonrelativistic) velocity and arbitrary functional frequency
behavior of the memory kernel. In particular, the damping γ

need not be Ohmic and it can contain any physical resonance
of the system.

Second, a vanishing power is equivalent to the condition
〈 ˙̂d · Ê〉 = 0 in the NESS, where Ê is the total field acting
on the moving dipole. This allows us to formulate a relation
between the (mechanical) frictional force Ffric and the total
power radiated from the particle into the environment Prad

[53,59]. We have Prad = Pext ≡ −vFfric, where

Prad = 2Tr
∫ ∞

0
dω

∫
dq

2π
ω ST(−ω−

q , v)G�(q, Ra, ω), (8)

with “T” the transpose of a matrix. Here, S is the atomic power
spectrum tensor defined in previous work and for our system
it has a form very similar to 	 [36,53]. The expression for Ffric

is instead recovered by replacing ω → q in the previous inte-
grand [53]. The identity Prad = Pext is the black-box approach
counterpart to the microscopic perspective offered by Pout =
Pin. Although physically equivalent, Prad = Pext provides a
look from the outside of the microscopic object without pay-
ing attention to its internal dynamics. It sets the accent on the
balance between the total mechanical power entering the sys-
tem (performed by the external agent balancing the frictional
force) and what is coming out as electromagnetic energy dis-
sipated in the environment. Since it does not require a specific
microscopic model for the atom’s internal degrees of freedom
[36,53], the relation between Prad and Ffric offers therefore an
alternative, more general perspective on the irreversible flow
of energy (accompanied by the production of entropy) through
the system [60].

Third, P = 0 implies that the total energy E correspond-
ing to the atom’s internal dynamics is constant [61]. From
Eqs. (1)–(5), E can be written as an integral over positive
frequencies of the spectral density [42,53],

E (ω, v) = h̄

2π

ω2
a + ω2

ω2
a

Tr

[
	(ω, v)

α0

]
� 0. (9)

Typically, α0/ε0 
 λ3 (weak coupling), where λ is a length
scale which characterizes the system’s behavior: It is con-
nected to the system’s specific properties (e.g., the optical
response of the involved objects as well as their positions and
geometries) through the electromagnetic Green’s tensor. In
this weak-coupling limit and in equilibrium (v = 0), we have
E → 3h̄ωa/2 as expected, while a stronger coupling would
effectively modulate the value of the atomic energy [42,57].

FIG. 1. Spectral energy for an atom moving parallel to a planar
interface (solid line) and respective LTE result (dashed). We employ
the Drude model, where rTM = ω2

sp[ω2
sp − ω2 − i�ω]−1 [53] with

ωsp the surface plasmon-polariton resonance and � the associated
damping. We set v = 10−4c, za = 1 nm, and use parameters for gold
[64]. Inset: Fluctuation-dissipation inequality and the asymptote of
Eq. (13) (dashed).

Deviating from equilibrium (v �= 0), the energy becomes an
even function of the velocity and at the leading order in
α̃0 ≡ α0/(ε0λ

3) we have

E (0, v) ∝ α̃0 ε(v) �= 0, (10)

where ε is a function of velocity with ε(0) = 0 [53].
Equation (10) is thermodynamically related to the stationary
energy flow through the atom in the NESS and highlights
two important aspects of our analysis: On the one hand, low
frequencies (long-time correlations) play an important role in
correctly capturing the nonequilibrium physics of the system.
On the other hand, in equilibrium, E vanishes for ω → 0,
in agreement with the FDT and with a thermodynamically
consistent description of a dissipative atomic system at T = 0.
In contrast, assuming local equilibrium enforces E (0, v) = 0
for all atomic velocities (see also Fig. 1). Similarly, within
the BM or a related perturbative treatment, even at v = 0,
E approaches a nonzero constant for ω → 0, whose value
depends on the involved dissipative mechanisms and might be
related to the initial-state preparation [36,53]. This means then
that, in different ways, both the LTE and the BM descriptions
misrepresent the low-frequency contributions to the system’s
dynamics. Specifically for our system, Eqs. (9), (10), and
the expressions for Ffric [53] imply that an adequate descrip-
tion of the nonequilibrium process requires at least O(α̃2

0 ).
Consequently, the thermodynamical consistency and/or the
accuracy of results that address the frictional process to first
order in the atomic polarizability can be questionable and
must be interpreted with care, depending on the specific
approach being employed as well as on the dissipative mech-
anisms at work in the system. For instance, previous work has
shown that, although the LTE assumption for quantum friction
can be justifiable to some extent at orders O(α̃0) for a particle
dynamics that allows for strong intrinsic dissipation (e.g., for
metallic nanoparticles), it fails when radiation-induced damp-
ing prevails and backaction is relevant [29,56].

Finally, it is important to underline that despite its direct
appeal, the result P = 0 is technically nontrivial to realize. It
could only be achieved with careful “bookkeeping” of the sys-
tem’s full rototranslational spectrum of correlations taking the
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backaction from the environment fully into account [Eq. (5)].
Any deviation from this complete self-consistency can lead
to thermodynamical instabilities. This is indeed the case for
the LTE approach, which amounts to replacing ν(ω, v) →
ω sgn(ω)γ (ω, v) in Eq. (5). It effectively neglects the Doppler
shift of the radiation in the evaluation of the sign function in
ν(ω, v) and breaks the total power balance, contradicting the
stationarity condition for NESS. In this case we have [53]

PLTE = 2
∫ ∞

0

dω

2π
h̄ωTr[{ν(ω, v) − ωγ (ω, v)}α�(ω, v)]

≡ PLTE
in − PLTE

out �= 0. (11)

This is the thermodynamic evidence that not including
nonequilibrium backaction in perturbative approaches or sim-
plifying assumptions can lead to glaring mistakes. In contrast,
nonequilibrium dynamics with self-consistent backaction is
fully guaranteed from the thermodynamic principles which
we invoke.

Fluctuation-dissipation inequality. Equation (11) shows
that the relation between the quantum fluctuations ν(ω, v)
and the dissipative memory kernel γ (ω, v) gives a measure
of the impact of nonequilibrium onto the system. If we de-
fine G̃�(q, Ra, ω) = sgn(ω)G�(q, Ra, ω) and use the identity
sgn(x)[sgn(x) ± 1] = 2θ (±x), we can write

ν(ω, v) ± ωγ (ω, v) =
∫

dq

π
θ (±ω+

q )G̃�(q, Ra, ω
+
q ), (12)

which is Hermitian and positive semidefinite for all values of q
and ω. We can then conclude that for our system PLTE � 0 for
all velocities and colors of the noise. Also, using the Loewner
order [62], in accordance with the fluctuation-dissipation in-
equality put forward in Ref. [63], we can write ν(ω, v) �
|ωγ (ω, v)|. Specifically, this indicates that in the NESS the
field’s fluctuations (ν) are always equal to or exceed the field’s
induced dissipative power (ωγ ) [63]. The matrix ν(ω, v) −
ωγ (ω, v) only goes to zero either for v = 0 restoring the
equilibrium FDT, or asymptotically for frequencies ω � v/λ.
In agreement with the behavior of the energy spectral density
[Eq. (10)], the largest deviations occur at low frequencies
(ω 
 v/λ), emphasizing once again the connection of these
low frequencies to the nonequilibrium dynamics of our sys-
tem. Physically, this shows that simply using the equilibrium
FDT neglects the interaction energy that corresponds to corre-
lation times larger than λ/v (of the order of nanoseconds for
typical values). These correlations are an inalienable part of
the system interacting with its environment and an important
feature of nonequilibrium settings. The fluctuation-dissipation
inequality quantifies this mismatch and the complete descrip-
tion of the system requires a more careful treatment by means
of the generalized FDT [Eq. (4)].

To obtain quantitative insight, it is interesting to consider
the case of an atom moving at a distance za ∼ λ close to
a planar interface separating vacuum from an infinite half
space composed of a typical Ohmic dissipative and spatially
local material (Fig. 1) [65]. For this geometry, the analytic
expression for the Green’s tensor is known [50]. Since v/za is

usually in the material’s Ohmic region, we can write [53]

Tr[ν(ω, v)]

|ω Tr[γ (ω, v)]| =
{

1, ω � v
za

,
3

πω
v
za

, ω 
 v
za

.
(13)

Equation (13) shows that the usual FDT holds for v = 0. How-
ever, at nonzero velocity, it prescribes a finite low-frequency
domain encoding corrections to the nonequilibrium statistics
of the system. For the same setup, at the leading order in α0

and v, the net power within the LTE approach evaluates to
[22,53]

PLTE ∼ h̄
45

4

v4

(2π )3

α2
0

ε2
0

Im{limω→0 ∂ωrTM}2

(2za)10
� 0, (14)

where ε0 is the vacuum permittivity and rTM the bulk’s trans-
verse magnetic reflection coefficient. As expected, PLTE is
positive for v �= 0, showing the LTE to fail at O(α̃2

0 ) [53,59].
Conclusions. The existence of a nonequilibrium steady

state in a dissipative open quantum system implies the balance
of energy flow in and out of the system. Our analysis shows
that this condition imposes strict constraints on how different
contributing factors should behave to meet the stringent self-
consistency requirements in how the system interacts with its
environment and how the latter back-acts on the system. Our
formalism is rather general, it does not rely on a transient
behavior, and can be readily applied to explore different mate-
rials and geometries with at least one direction of translational
invariance. In addition, the full breadth of our analysis tran-
scends a specific context and similar arguments can be made
for other phenomena such as heat transfer [15,58,66,67].

The physical consistency condition which underlies our
results can also serve even broader purposes. With increasing
computational power, there has been a surge of interest in
the field of photonics in design and inverse design, where
one aims to find suitable physical setups for given functional
characteristics using numerical optimization procedures [68].
In nonequilibrium setups, this is a particularly complicated
problem since one is mostly concerned with vector-valued
quantities and a complex resonance structure that can
lead to numerical obstacles [69]. Also, due to the lack of
analytical solutions, one has to rely on limiting scenarios
as well as more general properties based on the system’s
symmetries for validating the obtained result. Power balance
and the described inequality hence serve as a benchmark
for such nonequilibrium calculations. Additionally, due to
the extensive efforts in controlling atomic systems (see also
Refs. [70–73] in addition to the above), the principles and
methodology presented here can be used for experimentally
understanding and probing nonequilibrium fluctuation
theorems [60] and entropy production in nonequilibrium
situations [43,74]. In particular, this means that we can
provide a general proof of what is often found case by case
based on partially justifiable assumptions. Experimentally,
when signatures of quantum friction are detected, our criteria
can be used to ascertain and discriminate whether it truly
originates from nonequilibrium quantum fluctuations.
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