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Impossibility of creating a superposition of unknown quantum states
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The superposition principle is fundamental to quantum theory. Yet a recent no-go theorem has proved
that quantum theory forbids superposition of unknown quantum states, even with nonzero probability. The
implications of this result, however, remain poorly understood so far. In this Rapid Communication we show
that the existence of a protocol that superposes two unknown pure states with nonzero probability (allowed to
vary over input states) leads to the violation of other no-go theorems. In particular, such a protocol can be used
to perform certain state discrimination and cloning tasks that are forbidden not only in quantum theory but in
no-signaling theories as well.
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In quantum theory, a state of a physical system is a vec-
tor |ψ〉 of unit norm in a Hilbert space H. Furthermore,
|ψ〉 and eiϑ |ψ〉 describe the same physical state of the sys-
tem, where |eiϑ | = 1; thus, a global phase is inconsequential.
The “superposition principle” states that for any two vectors
|ψ〉, |φ〉 ∈ H and nonzero complex numbers γ , δ satisfying
|γ |2 + |δ|2 = 1, the linear superposition γ |ψ〉 + δ|φ〉 ∈ H is
also a state of the system under consideration. However, un-
like a global phase, the relative phase in a superposition is
physically significant, i.e., γ |ψ〉 + δ|φ〉 and γ |ψ〉 + δeiϑ |φ〉
represent two different states of the same physical system.
The superposition principle is fundamental to quantum the-
ory. In fact, almost all nonclassical properties exhibited by
quantum systems, e.g., nonorthogonality of quantum states
[1], quantum interference [1,2], quantum entanglement [1,3],
and quantum coherence [4], are consequences of quantum
superpositions.

Recently a basic question, closely related to quantum su-
perposition, was considered [5]: Does there exist a quantum
operation that would superpose two unknown pure quantum
states with some complex weights? The question is of par-
ticular interest because quantum theory is known to forbid
physical realizations of certain operations, even plausible ones
[6–15], and therefore it is important to understand whether
similar restrictions are also in place on something as basic
as the creation of quantum superpositions. Besides, exploring
such questions often reveals new ways of manipulating quan-
tum systems that have found useful applications in quantum
information and computation.

Before we proceed, we note here that a special case of
the above question was initially posed in Ref. [16] where
the authors asked about the existence of a quantum adder, a
unitary operator that would add two unknown pure quantum
states, and proved that such a unitary operator cannot exist.
The proof followed from the observation that an unobservable
global phase associated with the input state can distribute
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itself in infinitely many ways in a superposition, thereby lead-
ing to infinitely many superpositions with observable relative
phases, which is unphysical.

Let us now consider the general formulation of the ques-
tion on the existence of quantum superposers [5]: For given
nonzero complex numbers α, β satisfying |α|2 + |β|2 = 1 and
any given pair of vectors |ψ〉, |φ〉 ∈ H, does there exist a
quantum protocol that prepares the superposed state |	〉 ∝
α|ψ〉 + β|φ〉? The ambiguity of the relative phase, which
ruled out the existence of a quantum adder, however, is also
present in this general formulation. Let ρχ = |χ〉〈χ | denote
the density matrix for any normalized vector |χ〉. Then it
is easy to see that ρ	 cannot be a well-defined function of
ρψ and ρφ for the simple reason that the density matrix ρχ

corresponds not only to |χ〉 but also to any other normalized
vector |χ ′〉 = eiθ |χ〉. The authors [5] therefore relaxed the
definition of superposing such that there is no phase ambi-
guity. Specifically, for any pair of vectors |ψ〉, |φ〉 ∈ H they
allowed for complex superpositions of any two vectors with
density matrices ρψ and ρφ . With this, the question becomes
well defined. Then a superposition protocol, if one such exists,
could be realized by application of a quantum channel on the
input systems and then tracing out one of them. The authors
also allowed postselection, which entails the possibility of
obtaining the desired output with some nonzero probability.
In other words, the most general class of quantum operations,
described in terms of trace-nonincreasing completely positive
(CP) maps, was considered in Ref. [5]. The answer, however,
turned out to be no.

Theorem 1. (Ref. [5]) Let α, β be any two nonzero complex
numbers satisfying |α|2 + |β|2 = 1. Let H be a Hilbert space,
where dim H � 2. Then there does not exist a nonzero CP
map 
α,β : H⊗2 → H such that for all pure states ρψ, ρφ ∈
H, 
α,β (ρψ ⊗ ρφ ) ∝ |	〉〈	|, where |	〉 = α|ψ〉 + β|φ〉 and
the states appearing in the superposition may in general de-
pend on both ρψ and ρφ .

Noting that the superposition in general may depend on
both ρψ and ρφ and a global phase is not of any consequence,
one has the following corollary.

2469-9926/2020/102(5)/050202(4) 050202-1 ©2020 American Physical Society

https://orcid.org/0000-0002-4678-6331
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.050202&domain=pdf&date_stamp=2020-11-23
https://doi.org/10.1103/PhysRevA.102.050202


SOMSHUBHRO BANDYOPADHYAY PHYSICAL REVIEW A 102, 050202(R) (2020)

Corollary 1. Let α, β be any two nonzero complex numbers
satisfying |α|2 + |β|2 = 1. Let H be a Hilbert space, where
dim H � 2. Then there does not exist a nonzero CP map

α,β : H⊗2 → H such that for all pure states |ψ〉, |φ〉 ∈ H,

α,β (ρψ ⊗ ρφ ) ∝ |	〉〈	|, where |	〉 = α|ψ〉 + βeiθ |φ〉 for
some phase θ ∈ [0, 2π ) that may in general depend on the
input states.

The above result, known as the no-superposition theorem,
forbids the existence of a universal probabilistic quantum
superposer: a quantum operation that would superpose two
unknown pure quantum states with nonzero probability. The
result forms yet another no-go theorem in quantum theory.

Now the no-go theorems [6–15] in quantum theory are of
particular significance because they tell us which operations
are physically allowed and which are not. For example, the no-
cloning theorem [6] states that it is impossible to make exact
copies of an unknown quantum state. But at a more funda-
mental level, the no-go theorems can have deep implications.
For example, in a world without the no-cloning theorem, it is
possible to send signals faster than light [17,18] and reliably
distinguish nonorthogonal states, both of which would lead to
a complete breakdown of our existing physical theories. So
while the no-go theorems are fairly easy to understand, their
implications can be far reaching, but often not immediate.

The implications of the no-superposition theorem, how-
ever, remain poorly understood so far. Neither do we know
of any relation with any other existing no-go result, nor do we
know of the consequences, if any, should it be violated. Al-
though followup papers have come up with interesting results
[19–21] and variants [22], none could account for the most
basic questions: Why is it not possible to superpose unknown
quantum states, even with a nonzero probability? And what
would be the consequences if we could?

In this Rapid Communication, we will show that the exis-
tence of universal probabilistic quantum superposers implies
the existence of protocols that can perform certain quantum
state discrimination and cloning tasks forbidden not only in
quantum theory, but also in no-signaling theories. So indeed,
there will be unphysical consequences should such quantum
superposers exist.

We begin by assuming that universal probabilistic quantum
superposers exist. That is:

Assumption. For every pair of nonzero complex numbers
α, β satisfying |α|2 + |β|2 = 1, there exists a universal prob-
abilistic quantum superposer Qα,β that for any two pure
quantum states |ψ〉, |φ〉 prepares, with probability pα,β

ψ,φ > 0, a
superposition state |	〉 ∝ α|ψ〉 + βeiθ |φ〉 for some phase θ ∈
[0, 2π ), where θ may in general depend on the input states.

Thus Qα,β is a two-input, single-output, quantum black
box that takes a pair of pure quantum states as input and gen-
erates their linear superposition as output with some nonzero
probability which is allowed to vary over input states (for the
sake of full generality).

The basic idea is to show that the existence of Qα,β implies
violation of the following theorems:

Let Sψ = {|ψ1〉, |ψ2〉, . . . , |ψn〉} be a set of pure states such
that 0 � |〈ψi|ψ j〉| < 1 for i 	= j. Then,

(1) the states can be unambiguously distinguished (i.e.,
every state in the set can be correctly identified with a nonzero

probability) if and only if they are linearly independent [23],
and

(2) the states can be probabilistically cloned if and only if
they are linearly independent [24].

Note that the above two statements are equivalent in the
following sense: For any given set of states, if unambiguous
discrimination is possible, then probabilistic cloning is possi-
ble as well and vice versa. Further note that the constraint on
probabilistic cloning of states follows from the condition of
no faster-than-light signaling [18]. So quantum theory, and in-
dependently, the no-signaling condition, forbid unambiguous
discrimination and probabilistic cloning of linearly dependent
pure states. This in turn implies the following:

(1) Let Sψ = {|ψ1〉, |ψ2〉, . . . , |ψn〉} be a set of linearly
dependent pure states. Then, there does not exist a quantum
protocol that achieves the state transformation |ψi〉 → |	i〉
for every i with a nonzero probability such that the states
|	1〉, |	2〉, . . . , |	n〉 are linearly independent.

The proof is simple. Suppose that a quantum system is
prepared in a state chosen from the known set Sψ but we
do not know which state. Now as the states |ψi〉 are linearly
dependent, quantum theory will not allow us to correctly
identify the state of the system, or make copies of it, even
with nonzero probability. But it is easy to see that both the
tasks become possible if there exists a protocol that achieves
the transformation |ψi〉 → |	i〉 with nonzero probability for
every i, where the states |	1〉, |	2〉, . . . , |	n〉 are linearly
independent. Therefore such a protocol cannot exist.

Let us now consider a Qα,β -based state transformation
protocol that works as follows. We feed our quantum ma-
chine Qα,β with two input states: The first is chosen from a
known set Sψ = {|ψ1〉, |ψ2〉, . . . , |ψn〉} of pure states and the
second is some pure state |φ〉. In this way it is possible to
prepare an ensemble S	 = {|	1〉, |	2〉, . . . , |	n〉} of output
states, where each state |	 j〉 ∝ α|ψ j〉 + βeiθ j |φ〉 is generated
with some nonzero probability pα,β

ψi,φ
. Thus we have a protocol

that transforms |ψ j〉 → |	 j〉 with a nonzero probability for
every j.

For a given Qα,β and Sψ , observe that the output states will
be different for different choices of |φ〉. To make this explicit,
denote the set of output states by S	 (φ). So if the states
|ψ1〉, |ψ2〉, . . . , |ψn〉are linearly dependent, then for every |φ〉
the states in S	 (φ) must also be linearly dependent because
otherwise, the protocol would be unphysical.

We now give a simple proof that the protocol, in fact,
is unphysical for all Qα,β . Consider a set of three linearly
dependent pure states that belong to a d-dimensional Hilbert
space, where d � 3. The states are given by

|ψ1〉 = |ψ〉,
|ψ2〉 = |ψ⊥〉, (1)

|ψ3〉 = a|ψ〉 + b|ψ⊥〉,
where a, b 	= 0, a, b ∈ R, a2 + b2 = 1. By construction, the
states are linearly dependent as they live in the two-
dimensional subspace spanned by {|ψ〉, |ψ⊥〉}.

Following the protocol, we feed Qα,β with two input states,
where the first input is chosen from {|ψ1〉, |ψ2〉, |ψ3〉} as given
above, and the second input state is taken to be a pure state |φ〉
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which is orthogonal to both |ψ〉 and |ψ⊥〉. Then the possible
output states, each of which is generated with some nonzero
probability, are given by

|	1〉 = α|ψ1〉 + βeiθ1 |φ〉,
|	2〉 = α|ψ2〉 + βeiθ2 |φ〉, (2)

|	3〉 = α|ψ3〉 + βeiθ3 |φ〉.
We will show that the states |	 j〉 for j = 1, 2, 3 are linearly
independent; that is, the equation

x1|	1〉 + x2|	2〉 + x3|	3〉 = 0 (3)

holds if and only if x1 = x2 = x3 = 0. The if part is trivial. So
let us now consider the only if part.

First, we write Eq. (3) as

α(x1 + ax3)|ψ〉 + α(x2 + bx3)|ψ⊥〉 + β

3∑

j=1

eiθ j x j |φ〉 = 0.

(4)
As the states |ψ〉, |ψ⊥〉, |φ〉 are mutually orthogonal they are
linearly independent. Thus the coefficients appearing in the
above superposition must vanish, i.e.,

α(x1 + ax3) = 0, (5)

α(x2 + bx3) = 0, (6)

β(eiθ1 x1 + eiθ2 x2 + eiθ3 x3) = 0. (7)

Since α, β 	= 0, we have

x1 + ax3 = 0, (8)

x2 + bx3 = 0, (9)

eiθ1 x1 + eiθ2 x2 + eiθ3 x3 = 0. (10)

Let us now find the conditions under which the above three
equations are satisfied simultaneously. As a, b 	= 0, we see
that the above three equations are simultaneously satisfied
when xi = 0 for all i = 1, 2, 3. We will now show that this
is the only solution. To establish this, assume that xi 	= 0 for
all i = 1, 2, 3. Then from (8) and (9) we get x1 = −ax3, and
x2 = −bx3. Substituting these in (10) and noting that x3 	= 0
we obtain

eiθ1 a + eiθ2 b − eiθ3 = 0, (11)

or, equivalently,

a + eiθ21 b = eiθ31 , (12)

where θ21 = θ2 − θ1 and θ31 = θ3 − θ1. Equation (12) implies
that

|a + b′| = 1, (13)

where b′ = eiθ21 b. Now, recall that a, b 	= 0, a, b ∈ R, and
a2 + b2 = 1. Then

a2 + |b′|2 = 1. (14)

A simple calculation shows that Eqs. (13) and (14) are
satisfied only when θ21 = π/2, 3π/2 (since a, b 	= 0). Then
from (12) it follows that a = cos θ31 and b = ± sin θ31. But
the phases that Qα,β associate with the superposition cannot
have any dependence on a and b. This is because a and b are

basis-dependent coefficients and |ψ3〉 has infinitely many such
representations. In other words, while θ3 may depend on |ψ3〉
and |φ〉, it cannot depend on the basis representation of |ψ3〉.
So the solutions are not feasible.

Therefore, Eqs. (8)–(10) can only be simultaneously satis-
fied when xi = 0, i = 1, 2, 3. Consequently, the only solution
to (3) is x1 = x2 = x3 = 0. Thus the states |	1〉, |	2〉, |	3〉 are
linearly independent. Note that the analysis holds for all Qα,β .
This completes the proof.

Thus we have shown that the existence of Qα,β implies
the existence of a protocol that can transform linearly
dependent pure states into linearly independent pure states.
As explained earlier, such protocols can be used to perform
the tasks of unambiguous discrimination and probabilistic
cloning of linearly dependent pure states, both of which are
forbidden in quantum theory and also violate the no-signaling
condition. So the unconditional superposition of unknown
quantum states, even probabilistically, gives rise to unphysical
consequences.

Now, interestingly, there exists a probabilistic quantum
protocol to superpose two unknown pure states [5]. Not sur-
prisingly though, the protocol comes with strings attached—in
particular, each input state must have a fixed overlap with
a known reference state and the superposition coefficients
are functions of the overlaps as well. It is now clear why
these conditions are necessary, for without these constraints
probabilistic superposition would not be possible.

Our result also sheds light on a recent theorem [22] which
states that it is possible to superpose two unknown pure
states chosen from a known set if and only if the states are
linearly independent. The if part here is easy to understand:
If the states are linearly independent, then in the first step,
one correctly identifies the input states by performing suitable
unambiguous state discrimination measurements and in the
next step creates the desired superposition. Theonly if part,
on the other hand, can be understood by noting that Qα,β can
transform linearly dependent pure states into linearly indepen-
dent ones, which is unphysical. This implies the states in the
given set must all be linearly independent.

Conclusions. The no-go theorems in quantum theory help
us to understand the class of allowed physical operations. But
it is also equally important to understand the consequences
should no-go theorems be violated and the answers must
come from physics. Here, we showed that the existence of
a protocol that superposes unknown pure states, even with
nonzero probability, leads to unambiguous discrimination and
probabilistic cloning of linearly dependent pure states—tasks
that are forbidden in quantum theory and also in no-signaling
theories.

One question, in the context of the present result, however,
remains open: What kind of unphysical consequences would
arise if a universal probabilistic quantum superpower, assum-
ing it exists, is allowed to admit only qubit states? We could
not find a satisfactory answer. Nevertheless, we are hopeful
that a satisfactory answer will eventually be found, perhaps
considering a different physical scenario.

The author is grateful to G. Kar and T. Paterek for many
helpful discussions.
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