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Quantum incompatibility of a physical context
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Pivotal within quantum physics, the concept of quantum incompatibility is generally related to algebraic
aspects of the formalism, such as commutation relations and unbiasedness of bases. Recently, the concept
was identified as a resource in tasks involving quantum state discrimination and quantum programmability.
Here, we link quantum incompatibility with the amount of information that can be extracted from a system
upon successive measurements of noncommuting observables, a scenario related to communication tasks. This
approach leads us to characterize incompatibility as a resource encoded in a physical context, which involves
both the quantum state and observables. Moreover, starting with a measure of context incompatibility we derive
a measurement-incompatibility quantifier that is easily computable, admits a geometrical interpretation, and is
maximum only if the eigenbases of the involved observables are mutually unbiased.
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Introduction. One of the most intriguing phenomena in-
volving microscopic systems, quantum incompatibility is
commonly associated with the noncommutativity of self-
adjoint operators. This means that, contrary to the state of
affairs within the classical paradigm, when two observables
do not commute, their eigenvalues cannot be simultaneously
obtained through a single measurement. It is then natural to
take violations of joint measurability—the hypothesis that a
set of measurements can be decomposed in terms of a single
“parent” measurement—as a faithful symptom of incompati-
bility [1–3].

Such an idea has shown to be very insightful, as it un-
veils interconnections between the so-called measurement
incompatibility and nonlocal resources, as, for instance,
Bell nonlocality [4–8] and Einstein-Podolsky-Rosen steer-
ing [9–11]. As for a quantitative assessment of the concept,
incompatibility robustness measures have been introduced
[12,13] with a basis on the amount of noise needed to ren-
der the measurements (or devices [14]) compatible. From
that, further developments were accomplished within the
contexts of device-independent characterizations [15–17],
state-discrimination tasks [18–21], and quantum programma-
bility [22], through which operational interpretations were
conceived to measurement incompatibility. Recently, how-
ever, unexpected features have been noted for some widely
used robustness-based measures of incompatibility [23].

Intuition requires that quantum incompatibility should
vanish as the system approaches the classical domain—an in-
stance that is usually accomplished through the quantum state.
Accordingly, measurement incompatibility has been shown to
disappear under noise [24]. In such an approach, however,
one can use the duality relation Tr[�(ρ)X ] = Tr[ρ �∗(X )] to
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maintain a state-independent notion of measurement incom-
patibility. Indeed, one can always interpret any local noisy
channel �, leading ρ to a classical state, as implying some
degree of fuzziness in the X measurement. Nevertheless, this
concept seems to be related more to experimental imper-
fections [23] than to fundamental classicalization processes
involving the discard of correlated systems [25,26]. A subtler
classical scenario can be conceived as follows. As far as heavy
bodies are concerned, measurements are expected to be nearly
nondisturbing, so that the resulting physical state should be
independent of the ordering with which two noncommuting
observables are measured. We then have a clear dependence
of the notion of measurement incompatibility with an intrinsic
property (the mass) of the probed body. In this case, it is less
obvious how to effectively rephrase classicality in the formal
structure of the measurement operators.

In this Rapid Communication, by considering a scenario
designed to test the safety of a communication channel,
we link quantum incompatibility with information—the most
fundamental resource for quantum information and quan-
tum thermodynamics tasks [27–29]. Our approach employs
a key principle powering quantum cryptography [30], namely,
that no information can be extracted from a system without
disturbing it [31]. Here, the crux is that disturbances can
only occur if the measured observables and the quantum
state do not commute with each other. We then introduce
the concept of context incompatibility and show that it is
a quantum resource for communication tasks and can be
linked with a formulation of measurement-incompatibility
geometry.

Context incompatibility. Let C ≡ {ρ, X,Y } ⊂ B(H ) be a
context such that X = ∑

j x jXj and Y = ∑
k ykYk are non-

degenerate discrete observables, with respective eigenbases
{|x j〉}d

j=1 and {|yk〉}d
k=1, Xj = |x j〉 〈x j | and Yk = |yk〉 〈yk| are

projectors, ρ is a generic quantum state,H is a d-dimensional
Hilbert space, and B(H ) is the set of linear bounded operators
acting on H . Let us consider the generic protocol depicted in

2469-9926/2020/102(5)/050201(6) 050201-1 ©2020 American Physical Society

https://orcid.org/0000-0002-5614-3647
https://orcid.org/0000-0002-9398-6344
https://orcid.org/0000-0002-7832-9821
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.050201&domain=pdf&date_stamp=2020-11-04
https://doi.org/10.1103/PhysRevA.102.050201


E. MARTINS, M. F. SAVI, AND R. M. ANGELO PHYSICAL REVIEW A 102, 050201(R) (2020)

FIG. 1. (a) For a preparation ρ, Alice measures an observable X
and thus sets an amount I i = I (�X (ρ )) of information (depicted by
the first green thick stripe). Aware of the calibration procedure per-
formed by Alice, the trusted partner Bob makes state tomography and
then checks the information received. Upon the action of an eaves-
dropper, Eve, who measures Y , the received information actually is
just I f = I (�Y X (ρ )). The incompatibility of a context C ≡ {ρ, X,Y }
is a resource, quantified as IC := I i − I f , that allows for Alice and
Bob to detect, via information leakage, Eve’s espionage. (b) Aiming
at discouraging potential eavesdroppers, Alice now prepares a highly
noisy state ρε = Nε (ρ ) [Eq. (6)] and injects a very limited amount of
information I i

ε in the channel. Bob receives an even more restrictive
amount I f

ε of information. However, because the information leakage
is proportional to the injected information, by looking at the ratio
(I i

ε − I f
ε )/I i

ε he still succeeds to detect Eve’s intervention.

Fig. 1. Alice prepares a state ρ, with informational content

I (ρ) := ln d − S(ρ), (1)

where S(ρ) = −Tr(ρ ln ρ) is the von Neumann entropy of ρ.
After measuring X , without registering the outcome of any
particular run of the experiment, Alice transforms the initial
preparation into

�X (ρ) :=
d∑

j=1

Xj ρ Xj =
d∑

j=1

p jXj, (2)

where p j = Tr(ρXj ). The completely positive trace-
preserving (CPTP) unital map �X removes quantum
coherence from ρ in the basis {|x j〉}. At this stage,
the informational resource is reduced to the value I i ≡
I (�X (ρ)) = ln d − H (pj ), where H (p j ) = −∑

j p j ln p j

is the Shannon entropy of the probability distribution p j .
The system is then delivered to Bob, who expects to receive
an amount I i of informational resource, as prearranged
with Alice. Upon a successful verification, the trusted
partners will have ascertained that the channel is safe from
information leakage. Now, suppose that an eavesdropper,
Eve, intercepts the system sent by Alice and probes it by
measuring Y . The procedure is conducted by means of a

unitary transformation U ∈ B(H ⊗HE) that entangles the
system, which left Alice’s laboratory in the state �X (ρ), with
Eve’s apparatus E initially prepared in a state ρE0 ∈ B(HE).
The composite state �0 = �X (ρ) ⊗ ρE0 thus evolves into
�t = U�0U †. Using Eq. (1) we can rewrite the mutual
information, defined by I(�t ) = S(ρt ) + S(ρEt ) − S(�t ), in
the form I (�t ) = I (ρt ) + I (ρEt ) + I(�t ), where ρEt is the
reduced state of the apparatus and ρt = TrE�t = �Y X (ρ)
(via the Stinespring theorem). Unitary invariance of the von
Neumann entropy guarantees that I (�0) = I (�t ), from which
we obtain I (�X (ρ)) + I (ρE0 ) = I (�Y X (ρ)) + I (ρEt ) + I(�t ).
With the notation �IE ≡ I (ρEt ) − I (ρE0 ) and I f ≡ I (�Y X (ρ)),
we arrive at

I i − I f = I (�X (ρ)) − I (�Y X (ρ)) = �IE + I(�t ), (3)

where �Y X (ρ) = ∑
j,k ℘k| j p j Yk , ℘k| j = | 〈x j |yk〉 |2 = Tr(Xj

Yk ), and I f = ln d − H (
∑

j ℘k| j p j ). Clearly, the resource
consumed from Alice’s system, IC ≡ I i − I f , was used to
change the local information of Eve’s apparatus and to in-
crease the correlations between the system and the apparatus.
If IC > 0, Alice and Bob then discover that the chan-
nel is being spied upon [Fig. 1(a)]. Now, using

∑
k Y 2

k = 1
and Yk�Y (σ ) = �Y (σ )Yk , one shows that Tr[σg(�Y (σ ))] =
Tr[�Y (σ )g(�Y (σ ))] for any state σ and function g. This
allows us to write S(σ ||�Y (σ )) = S(�Y (σ )) − S(σ ), with
S(σ ||
) = Tr[σ (ln σ − ln 
)] � 0 being the relative entropy
(equality holding if and only if σ = 
). We then arrive at the
form

IC = I (�X (ρ)) − I (�Y X (ρ)) = S(�X (ρ)||�Y X (ρ)), (4)

through which we can check that there are only two instances
in which IC = 0: (i) [X,Y ] = 0 (∀ρ) and (ii) �X (ρ) =
1/d (∀Y ). In case (i), the operators share the same set of
eigenstates and �Y X (ρ) = �X (ρ). Case (ii) implies that I i =
I f = 0. On the other hand, the consumed resource IC reaches
its maximum value, ln d , when ρ = Xj (an eigenstate of X )
and, in addition, the X and Y eigenbases form mutually unbi-
ased bases (MUB) [32], that is, | 〈x j |yk〉 |2 = 1/d . Therefore,
from Bob’s (Eve’s) viewpoint, noncommutativity and I i > 0
are necessary ingredients—resources—for a successful leak-
age detection (information acquisition). Thus, with respect to
the protocol depicted by Fig. 1(a), the following concept is
introduced.

Definition. Context incompatibility is the resource encoded
in a context C ≡ {ρ, X,Y } that allows one to test the safety of
a communication channel against information leakage. Quan-
tified via IC = I i − I f [Eq. (4)], it is operationally related to
the amount of information subtracted from the system upon
an external measurement.

Before proceeding with the proof that context incompat-
ibility can be framed in the formal structure of a resource
theory, it is interesting to note that a connection can be
made with quantum coherence—a well-established quantum
resource quantified by the {|yk〉}-basis relative entropy of co-
herence, CY (ρ) = S(ρ||�Y (ρ)) [33,34]. As one can readily
check, IC = CY (�X (ρ)), meaning that context incompati-
bility can be viewed as the amount of Y coherence that is
encoded in an X -incoherent state �X (ρ). This is how the
incompatibility of the set {X,Y } is captured by IC.
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Resource theory of context incompatibility. We now for-
mally characterize context incompatibility as a resource.
Unlike the usual account of resource theories, where the re-
source is encoded in the quantum state, here the resource is
encoded in the whole physical context C. Following standard
approaches [28,29], we devise a formal structure composed
of (i) resourceless contexts, (ii) resourceful contexts, (iii) free
operations, and (iv) a resource monotone. The last object
is naturally identified with the measure (4), but any other
contractive distance function involving the states �Y X (ρ) and
�X (ρ) would work as a proper monotone. The resourceless
(free) contexts, defined as Cfree such that ICfree = 0, are

Cfree
1 = {ρ, X,Y } s.t. [X,Y ] = 0 (∀ ρ), (5a)

Cfree
2 = {ρ, X,Y } s.t. �X (ρ) = 1/d (∀Y ). (5b)

Notice that for Cfree
2 one has I i = 0. The proof that the

above are the only existing free contexts is given in the Sup-
plemental Material [35]. Apart from them, any other context is
termed resourceful. With regard to free operations, since the
relative entropy is nonincreasing under generic CPTP maps
�, it follows that IC � I�(C), where �(C) ≡ {�(ρ), X,Y },
provided that � commutes with the maps �X and �Y X . In this
case, it is clear that resource is never created upon the action
of �. Also, to ensure that I�(Cfree ) = 0, we need to require
� to be unital, so as not to make Cfree

1 resourceful upon �.
Altogether, these aspects characterize the free operations �

with respect to context incompatibility. In our approach we
do not admit any operations on {X,Y }, as this would imply
aspects of measurement fuzziness that have been disregarded
from the outset.

Measurement incompatibility. Let us come back to the
protocol, now considering a noisy scenario [Fig. 1(b)]. To
discourage any potential eavesdroppers, Alice introduces, in a
controllable way, an amount 1 − ε of noise in the input state,
which then reads

ρε = Nε (ρ) := (1 − ε)
1

d
+ ε ρ, (6)

where ε ∈ [0, 1] and Nε is a CPTP unital noise map. From
the concavity of the entropy and the joint convexity of the
relative entropy, one can check that I i

ε ≡ I (�X (ρε )) � ε I i and
INε (C) � ε IC, where Nε (C) = {ρε, X,Y } and Nε=0(C) =
C. Hence, the preparation ρε implies, for ε 
 1, a very lim-
ited amount of information in the channel and an equally
restrictive amount of consumable information. Aware of the
amount of noise introduced, Bob can still check the security
of the channel by looking at the amount of information that
leaks per unit of injected information. Bob computes the ratio
RNε (C) := (I i

ε − I f
ε )/I i

ε = INε (C)/I i
ε , with I f

ε ≡ I (�Y X (ρε )),
since, in the large-noise limit, it reads

lim
ε→0

RNε (C) = ||�Y X (ρ) − �X (ρ)||2
||�X (ρ) − 1/d||2 =: RC, (7)

where ||A|| :=
√

Tr(A†A) is the Hilbert-Schmidt norm of A.
The limit is calculated as follows. Since |x j〉 are eigenstates
of �X (ρε ) with eigenvalues 1−ε

d + εp j , we can explicitly
compute the von Neumann entropy and the associated infor-
mation, I i

ε . For d 
 1/ε, we expand the formulas and retain
only terms up to order ε2. With this procedure, we find I i

ε
∼=

ε2

2 [d||�X (ρ)||2 − 1] and I f
ε

∼= ε2

2 [d||�Y X (ρ)||2 − 1]. From
the result Tr[�X (ρ)�Y X (ρ)] = ||�Y X (ρ)||2, one is able to
show that ||�Y X (ρ) − �X (ρ)||2 = ||�X (ρ)||2 − ||�Y X (ρ)||2.
The emerging expression for INε (C)/I i

ε results to be ε in-
dependent and the limit trivially follows. Therefore, by use
of this ratio, Bob can still check information leakage for
arbitrarily large noise. An interesting feature of formula (7)
is that it is invariant upon noise maps of the form (6), that
is, RNε (C) = RC, for all ρ and ε ∈ [0, 1]. This allows us to
write, up to order ε2,

INε (C)
∼= RCI i

ε, (8)

which shows that the amount of information that is extracted
by Eve is directly proportional to the injected information [as
suggested by the green thick stripes in Fig. 1(b)]. Being ε

independent, the proportionality ratio RC might be expected
to be more closely associated with the algebraic relations
between X and Y solely (this will be shown to be true for
any qubit context), but in general it provides an estimate for
the context incompatibility, though in a norm-based way.

In search of a link between context incompatibility and
measurement incompatibility, the natural move is to restrict
ourselves to the context C j ≡ {Xj, X,Y }. Then, setting
ρ = Xj in Eq. (6), we find RC j = d

d−1 [1 − ||�Y (Xj )||2],
which is just the linear entropy of �Y (Xj ) = ∑

k ℘k| jYk =∑
k Tr(YkXj )Yk , and I i

ε
∼= ε2(d − 1)/2. It follows that

INε (C j )
∼= RC j I

i
ε , with I i

ε keeping no dependence on the
input state Xj . This result is relevant because it shows that
the ratio RC j , which is an easily computable measure,
suffices to capture the level of incompatibility in the context
C j . However, it cannot be our definitive figure of merit
for quantifying the measurement incompatibility of the set
{X,Y }, since it considers only a single element of the X
eigenbasis. We then examine the averaging

M{X,Y } := 1

d

d∑
j=1

RC j . (9)

By construction, M{X,Y } tends to be a more appropriate quan-
tifier of measurement incompatibility, for it (i) encompasses
the contribution of all X eigenstates and (ii) is symmetri-
cal upon the ordering permutation X ↔ Y , that is, M{X,Y } =
M{Y,X } (a desirable property for a measure meant to describe
an algebraic relation between two observables). This point can
be checked from the manipulated form

M{X,Y } =
d∑

j,k=1

||[Xj,Yk]||2
2(d − 1)

= 1

d − 1

⎛
⎝d−

d∑
j,k=1

| 〈x j |yk〉 |4
⎞
⎠,

(10)

The first equality makes it explicit a relation with the
commutator [X,Y ] = ∑

j,k x jyk[Xj,Yk]. This is an impor-
tant reference to the well-known fact that, when projective
measurements are concerned, joint measurability and commu-
tativity turn out to be equivalent notions, although this is not
true in general [3]. Moreover, we have 0 � M{X,Y } � 1, with
the upper (lower) bound being reached for, and only for, MUB
(commuting operators). As demonstrated in the Supplemen-
tal Material [35], M{X,Y } can be derived via an independent
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purely algebraic construction, which further reinforces the
claim that this can be taken as a reasonable quantifier of
measurement incompatibility.

Geometrical interpretation. We now build a geometrical
picture for the incompatibility measures introduced above.
To this end, we employ the generalized Bloch representation,
which is based on the observation that the set of matrices
{1,�1, . . . , �d2−1} form a basis for linear operators acting on
the state space, where the d × d complex, traceless, orthogo-
nal, self-adjoint matrices �i are the generators of SU(d ), the
special group of degree d (see the Supplemental Material [35]
for a very brief review of the complete formalism [36,37]).
With the normalization Tr(�i� j ) = 2δi j , one can always ex-
press a quantum state as

ρr = 1

d
(1 + Cd r · �), (11)

where r = ∑d2−1
i=1 riei, � = ∑d2−1

i=1 �iei, {ei}d2−1
i=1 is an or-

thonormal basis in Rd2−1, and Cd = √
d (d − 1)/2. Through

the above parametrization, any quantum state is represented
by the vector r in a (d2 − 1)-dimensional real ball B(Rd2−1).
Projection operators admit the description

Xj = 1

d

(
1 + Cd x j · �

)
, (12)

with
∑

j x j = 0 and xi · x j = (δi j d − 1)/(d − 1), which fol-
low from

∑
j Xj = 1 and Tr(XiXj ) = δi j . From the algebra

induced by �i and pertinent vector products, one may prove
that Tr[(r1 · �)(r2 · �)] = 2(r1 · r2), with r1, r2 ∈ Rd2−1.
This simple formula allows one to show that ||ρr||2 = 1

d [1 +
(d − 1)r2], with r2 = r · r, and pxi = Tr(Xiρ) = 1

d [1 + (d −
1)xi · r]. In addition, one shows that ri = d

2Cd
Tr(�iρ). With

this formalism, we find

�X (ρr ) = 1

d
(1 + Cd u · �), u = d−1

d

d∑
j=1

(x j · r)x j,

(13a)

�Y X (ρr ) = 1

d
(1 + Cd v · �), v = d−1

d

d∑
k=1

(yk · u)yk,

(13b)

where u, v ∈ Rd2−1 and yi · y j = (δi j d − 1)/(d − 1). Trace-
less by hypothesis, the considered observables assume the
form X = x · � and Y = y · �, where x = (Cd/d )

∑
j x jx j

and y = (Cd/d )
∑

k ykyk . Relations (11)–(13) allow us to
speak of the incompatibility

IC = H

(
1 + (d − 1)yk · u

d

)
− H

(
1 + (d − 1)x j · r

d

)

(14)

of the “geometrical context” C = {r, x, y}. In connection with
the noisy state (6), we have Nε (C) = {εr, x, y}, for which
we find a particularly insightful result for the proportionality
ratio,

RC = ||u − v||2
||u||2 = 1 − ||v||2

||u||2 . (15)

To compute the measurement incompatibility we set ρ = Xj ,
which implies that r = x j = u and, hence, RC j = 1 − ||v j ||2,

with v j = d−1
d

∑d
k=1(yk · x j )yk . It then follows that

M{X,Y } = 1 − 1

d

d∑
j=1

||v j ||2 = 1 − d − 1

d2

d∑
j,k=1

(x j · yk )2.

(16)

The results (14)–(16) rephrase incompatibility in terms of the
geometry defined by the vectors r, x, y. Here, the free contexts
(5) manifest themselves with respect to IC as, for instance,
Cfree

1 = {r, x, y} with x j · yk = dδ jk−1
d−1 (“parallel operators,”

since one has x · y = 1
2

∑
i xiyi) and Cfree

2 = {yk, x, y} with
x j · yl = 0 (“orthogonal operators,” since x · y = 0). Interest-
ingly, as far as MX,Y is concerned, we see that it vanishes for
parallel (commuting) operators and reaches its maximum for
orthogonal (MUB forming) operators, this being the heart of
our geometrical interpretation.

The scenario becomes rather simple for generic qubit con-
texts. By setting d = 2, Cd = 1, � = (σ1, σ2, σ3), where σ1,2,3

are the Pauli matrices, x j = x jx, and yk = yky in the precedent
formulas we readily obtain

IC = h

(
1 + (x · y)(x · r)

2

)
− h

(
1 + (x · r)

2

)
, (17a)

M{X,Y } = RC = RC j = 1 − (x · y)2, (17b)

where h(ν) = −ν ln ν − (1 − ν) ln (1 − ν) is the binary
Shannon entropy and r, x, y ∈ R3. Some remarks are in order.
First, IC is the only quantity that depends on the state ρ

(via r), this being the key aspect characterizing it as a con-
text incompatibility. In particular, this ensures that IC → 0
as |r| → 0 (decoherence-induced classical limit). The “large
mass” classical limit, on the other hand, effectively comes
via x · y ∼= 1, which implements the nondisturbance scenario
and implies, via �Y X (ρ) ∼= �X (ρ), that IC

∼= 0 (see the
Supplemental Material [35] for details). This regime is, of
course, equivalent to the free context Cfree

1 , where x = y
(implying parallel operators, that is, [X,Y ] = 0). The con-
text incompatibility vanishes also when x · r = 0—the case
in which the first measurement X is incompatible with the
input state—and monotonically increases with the quantifiers
given by Eq. (17b). Second, by taking 1

4 ||[X,Y ]||2 = |x × y|2
as an estimate for the notion of noncommutativity, we see
that the ratios RC and RC j , with C j = {Xj, X,Y }, and the
measurement incompatibility M{X,Y } are all indistinguishable
concepts for qubit contexts. To a certain extent, this can be
related to the bidirectional implication reported in Ref. [38]
between the notions of nondisturbance and commutativity.

Conclusion. In this Rapid Communication, we have de-
rived a notion of incompatibility from the fact that no
information can be extracted from a premeasured state �X (ρ)
if a compatible observable Y is measured in sequence. A
distinctive feature of our approach is that it makes reference to
a physical context, C = {ρ, X,Y }, composed not only of ob-
servables (measurements) but also of quantum states. Besides
allowing one to describe the disappearance of incompatibil-
ity in classical regime, our results associate incompatibility
with an information-based task in space-time, rather than an
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algebraic construction in the Hilbert space. The proposed
measure of context incompatibility is easily computable and
yet admits a norm-based estimate. Remarkably, the context
incompatibility is shown to be a resource, with particular
application to a protocol devised to test information leakage,
makes contact with the notion of measurement incompatibil-
ity, and admits a geometrical interpretation in a vector space of
arbitrary dimension. Our results give rise to some noteworthy
research lines. The first one concerns the extension of our
approach to contexts involving more than two (eventually

continuous) observables. The second refers to the use of our
easily computable quantifier of measurement incompatibility
for MUB searching, a long-lasting intricate problem in quan-
tum physics.
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