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Delayed transfer of entanglement to initially populated qubits

Smail Bougouffa 1,* and Zbigniew Ficek 2,†

1Department of Physics, College of Science, Imam Mohammad ibn Saud Islamic University (IMSIU),
P.O. Box 90950, Riyadh 11623, Saudi Arabia

2Quantum Optics and Engineering Division, Institute of Physics, University of Zielona Góra, Szafrana 4a, Zielona Góra 65-516, Poland

(Received 9 August 2020; accepted 12 October 2020; published 30 October 2020)

The transfer of entangled, quantum correlated, and flying photons from a squeezed field to single-mode
cavities is investigated. It is shown that while the transfer of photons begins immediately after the input
squeezed field is turned on, the time at which quantum correlations start to be transferred to the cavities is
strongly dependent on the initial population of the cavities. For the initially empty cavities, the transfer of
quantum correlations begins immediately after the squeezed field is turned on but is delayed by a certain
time interval when the cavities are initially populated. We find that the transfer of the quantum correlations
is postponed until the one-photon states of the system are almost completely depopulated. In other words,
the system “waits” for the population of the single-photon states to decay out before starting to build up the
quantum correlation between the cavities. The delay time interval is independent of the number of photons
initially present in the system but is dependent on the decay rates of the cavities and can be varied (controlled)
when the cavities decay with different rates. It is shown that the delayed transfer of the quantum correlation is
directly related to the presence of quantum jumps which transfer the population from the entangled to incoherent
mixture states.
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I. INTRODUCTION

Transfer of correlated (entangled) photons from optical
beams to stationary quantum systems such as atoms, quan-
tum dots, cavities, and superconducting circuits represents a
fundamental problem in quantum information, interferometry,
optical communication, and quantum computing [1–4]. Opti-
cal beams of entangled photons such as squeezed light appear
as quantum channels, while the stationary systems appear as
storage nodes to which quantum states of flying photons are
transferred through the mapping process [5–12].

Recent theoretical and experimental work on the transfer
and storage (mapping) of entanglement or quantum states
is focused, to a great extent, on methods and techniques of
achieving a significant improvement of the transfer and stor-
age efficiency [13–18]. Particularly efficient for transfer of
a quantum state are systems involving optomechanical cavi-
ties with modulated damping rates, in which almost prefect
transfer efficiency can be achieved [19–21]. In the transfer of
entanglement, the efficiency relies on the achievement of a
large efficiency of mapping the quantum state of the field on
states of a stationary system. With the development of quan-
tum processors and interfaces between stationary systems and
optical beams, the flying photons can be absorbed with almost
perfect efficiency. However, the transfer of a quantum state
still can be imperfect due to the behavior of the transmitted
quantum state as a loss mechanism [22,23]. This suggests that
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the manner in which the quantum correlations are transferred
is different from that in which the photons are absorbed. When
a system is illuminated by an external field which is composed
of uncorrelated photons, e.g., a laser field, the photons are
absorbed by the system immediately after the field is turned
on. A question then arises concerning the transfer of corre-
lated photons. If the external field is composed of correlated
photons, are the quantum correlations transferred with the
absorbed photons immediately after the field is turned on?

It is the purpose of this paper to address this question by
investigating the problem of the transient buildup of quantum
correlations (entanglement) between two single-mode cavi-
ties exposed to an external source of squeezed light. We are
particularly interested in determining how the transfer process
of the quantum correlations depends on the initial conditions
of the cavities. We assume that in the time period before t = 0
the cavities were independent of each other or, equivalently,
unentangled. At the time t = 0, a squeezed vacuum field is
applied to the cavities such that each of the output beams
drives only one cavity. The transfer of the quantum correla-
tions is then monitored as a function of time and the initial
conditions of the cavities. We find that the response time of the
cavities to transfer the quantum correlations is sensitive to the
presence of uncorrelated photons in the system that the time at
which the quantum correlations start to be transferred strongly
depends on the initial conditions of the cavities. If the initial
state of the cavities is the vacuum the transfer of the quantum
correlations begins immediately after the squeezed field is
turned on. However, the time can be delayed if the cavities are
initially in some excited state. In other words, the presence of
an initial population in the cavities results in a delay in the
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FIG. 1. Schematic diagram of the system to map entangled state
of the output field of an OPO on a pair of single-mode cavities A and
B. The output signal and idler beams of the OPO driven by a laser of
frequency 2ωp are separated spatially and then each of the beams is
directed onto one of the cavities. The signal beam illuminates cavity
A and the idler beam illuminates cavity B.

transfer of quantum correlations. Hence, entanglement can be
transferred to the cavities immediately after the squeezed field
is turned on if the state of the cavities is the vacuum. The
delay time interval can be varied when the cavities decay with
different rates. We restrict our considerations here to the
transfer of the quantum correlations to optical cavities, al-
though similar considerations will apply to other systems
such as trapped atoms, quantum dots, or superconducting
circuits [24–30].

The paper is organized as follows. In Sec. II, we describe
the model and introduce the master equation of a pair of inde-
pendent single-mode cavities illuminated by the output field
of a nondegenerate parametric oscillator operating below the
threshold. The dynamics of the coherences and populations of
the energy states of the cavities for arbitrary initial conditions
are discussed in Sec. III. We work in the Hilbert space of the
system truncated at the energy levels corresponding to two ex-
citations present in the system. Following that discussion, we
display the logarithmic negativity, a measure of entanglement,
as a function of time for a number of initial conditions. The
physical interpretation of the results, based on the quantum
jumps picture, is given in Sec. IV. In Sec. V, we conclude
with a discussion of our results.

II. DESCRIPTION OF THE MODEL

We consider a pair of single-mode and single-sided cavities
exposed to the output field of an optical degenerate or non-
degenerate parametric oscillator (OPO), as shown in Fig. 1.
In the OPO, the laser beam of frequency 2ωp interacting
with a nonlinear medium splits in the process of spontaneous
parametric down-conversion into two lower frequency beams,
signal (s) and idler (i) beams [31]. Photons in the idler and sig-
nal beams are pretty well localized in space and time, which
implies that they are entangled. We assume that the directions
of the signal and idler wave vectors do not overlap, that the
beams were separated spatially, for example, by a prism or
polarizer. After the separation, each of the beams is directed
onto one of the cavities, such that the signal beam is injected
into cavity A, and the idler beam is injected into cavity B. Our
problem then is to trace the time evolution of the mapping
of flying photons and quantum correlations (entanglement)
on the cavities starting from t = 0 to the steady state and its
dependence on the initial state of the cavities.

Our starting point is to determine the master equation
for the density operator ρ(t ) describing the dynamics of the
cavities coupled to a broad reservoir field. Under the Born
(weak coupling) approximation, the density operator ρ obeys
the equation of motion, which in the interaction picture is of
the form

dρ̃(t )

dt
= −

∫ ∞

0
dt ′TrR[HI (t ), [HI (t − t ′), ρ̃(t ′) ⊗ ρR]], (1)

where HI (t ) is the interaction Hamiltonian of the modes of
the cavities with the reservoir field, and trace is taken over
the reservoir modes. In writing the Hamiltonian (1), we have
assumed that the effect of the cavities on the reservoir is
very small, so the state of the reservoir remains unchanged.
Therefore, the density operator of the system can be assumed
to be a tensor product of the time-dependent density oper-
ator of the cavities (ρ̃) and the stationary time-independent
density operator of the reservoir (ρR). In the rotating-wave
approximation, the interaction Hamiltonian HI can be written
as (h̄ = 1)

HI (t ) =
∑

j=A,B

∫
dk[g j (ωk )a j (b

†
k + c†

k )ei(ωk−ω j)t +H.c.], (2)

where ω j is the resonance frequency of cavity j, a j and a†
j are

the bosonic annihilation and creation operators of cavity j,
and g j (ωk ) is the coupling constant between the mode of the
jth cavity and the kth mode of the reservoir field. In Eq. (2),
the reservoir has been divided into two parts, one consisting
of modes (bk ) filled with the output field of the OPO and the
other modes (ck ) being in the ordinary vacuum state.

The evaluation of the trace over the reservoir modes re-
quires the knowledge of the state of the reservoir modes. The
state is determined by correlation functions, which describe
the number of photons in the modes and correlations between
them. For the modes ck which are in the ordinary vacuum
state, the nonzero correlation function is

〈ckc†
k′ 〉 = δ(ωk − ωk′ ), (3)

whereas for the modes bk which are filled with the output field
of the OPO, the nonzero correlation functions are [32–34]

〈bkb†
k′ 〉 = [N (ωk ) + 1]δ(ωk − ωk′ ),

〈b†
kbk′ 〉 = N (ωk )δ(ωk − ωk′ ),

〈bkbk′ 〉 = M(ωk )δ(2ωp − ωk − ωk′ ), (4)

where the frequency-dependent parameter N (ωk ) describes
the number of photons in the mode of frequency ωk and
M(ωk ) describes the degree of two-photon correlations be-
tween modes of frequencies ωk and 2ωp − ωk . The parameters
can have different forms depending on whether they result
from the output field of a degenerate or nondegenerate OPO.
In the case of a degenerate OPO, both signal and idler beams
are centered at the same frequency ωp, and we have

N (ωk ) = λ2 − μ2

4

(
1

ω̄2
k + μ2

− 1

ω̄2
k + λ2

)
,

M(ωk ) = λ2 − μ2

4

(
1

ω̄2
k + μ2

+ 1

ω̄2
k + λ2

)
, (5)
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where ω̄k = ωk − ωp, μ = 1
2κc − ε and λ = 1

2κc + ε. In the
parameters μ and λ, κc is the damping constant of the OPO
cavity and ε is its amplification parameter proportional to the
amplitude of the pumping field.

In the case of a nondegenerate OPO, signal and idler beams
are centered at different frequencies (ωp ± α) displayed from
ωp by α, and we have

N (ωk ) = λ2 − μ2

4

[
1

(ω̄k − α)2+μ2
− 1

(ω̄k − α)2+λ2

+ 1

(ω̄k + α)2+μ2
− 1

(ω̄k + α)2+λ2

]
,

M(ωk ) = λ2 − μ2

4

[
1

(ω̄k − α)2 + μ2
+ 1

(ω̄k − α)2+λ2

+ 1

(ω̄k + α)2+μ2
+ 1

(ω̄k + α)2+λ2

]
. (6)

It is easily shown that the degree of two-photon correla-
tions M(ωk ) depends on the number of photons in the modes,
such that

M2(ωk ) = N (ωk )[N (2ωp − ωk ) + 1]. (7)

The parameters (5) and (6) are Lorentzian-type functions
with amplitudes and widths determined by μ and λ, which can
be varied by varying the OPO parameters κc and ε. The limit
λ,μ → ∞ such that λ/μ = const corresponds to an infinitely
broad (frequency-independent) squeezed vacuum field. For
finite values of μ and λ, but λ,μ � κ1, κ2, where κ1 and κ2

are the damping rates of the cavities, the OPO output field can
be treated as a broadband-squeezed vacuum reservoir to the
cavity modes [35,36].

We now use the Hamiltonian (2) and the results for the
correlation functions, Eqs. (4) and (5), to calculate the trace of
the double commutator appearing in Eq. (1). Assuming that λ

and μ are much larger than the damping rates of the cavities,
we can make the Markov approximation in which we replace
ρ̃(t ′) by ρ̃(t ), so we can extract ρ̃(t ) from the integral. The
integral then can be evaluated and we arrive at the following
master equation [37–39]:

dρ̃(t )

dt
= −

∑
i, j

1

2
κi j{ηN (ω j )([ai, a†

j ρ̃] + [ρ̃ai, a†
j ])

+[ηN (ω j ) + 1]([a†
j , aiρ̃] + [ρ̃a†

j , ai])}ei
i j t

−
∑
i 	= j

1

2
κi j{ηM(ω j )([aiρ̃, a j]+[a j, ρ̃ai])e

i
pt

+ηM∗(ω j )([a
†
i ρ̃, a†

j ] + [a†
j , ρ̃a†

i ])e−i
pt }, (8)

where 
i j = ωi − ω j , 
p = 2ωp − ωi − ω j , and η is the effi-
ciency with which the OPO field couples to the cavities. The
parameters κi j are related to damping in the cavity system
which, on the other hand, depends on the coupling constants
of the cavity modes to the reservoir modes [40–42]:

κi j = πgi(ωi )g
∗
j (ω j ). (9)

Here, κii ≡ κi describes the damping rate of cavity i, and
κi j (i 	= j) the damping of cavity i caused by the output field
of cavity j. It is easily seen that the terms describing the

incoherent damping (ηN + 1) and incoherent pumping (ηN )
processes involve both the i = j and i 	= j terms. However,
the two-photon correlation terms, proportional to M, involve
only the i 	= j terms. It is a reflection of the fact that the idler
and signal beams are in a thermal state with no correlations be-
tween photons inside each beam. The correlations are present
only between the beams, as indicated by the correlation func-
tions of the reservoir modes, Eq. (4).

The master Eq. (8) describes the dynamics of the collec-
tively decaying cavities, which results from the presence of
the cross damping rate (κ12). However, the collective decay
of the cavities may create entanglement even if the input field
is in the ordinary vacuum state. Thus, to see effects, which
are related solely to correlations present in the input field
rather than caused by the correlations inside the system, it
is better to work in the regime where the collective effects
are absent so the cavities decay independent of each other. In
this case, any correlations between cavities will correspond to
those transferred from the input field.

To achieve this situation, it is sufficient to work with cavi-
ties of significantly different frequencies where 
i j exceeds
the bandwidth of the cavity modes but remains inside the
bandwidth of the input field. In this case, we can neglect
the cross terms in the dissipative part of the master equation.
This simplification retains the two-photon correlation terms,
which in the case of ωp = ω0 (
p = 0) become independent
of time. Hence, in the absence of the input two-photon corre-
lations (M = 0), the cavities decay independently without any
dynamical influence on one another through the background
(reservoir) field.

Under the assumption that 
i j � κi j , the master Eq. (8)
reduces to

dρ̃(t )

dt
= −

∑
j=A,B

1

2
κ j{ηN (ω j )([a j, a†

j ρ̃] + [ρ̃a j, a†
j ])

+[ηN (ω j ) + 1]([a†
j , a j ρ̃] + [ρ̃a†

j , a j])}

−
∑

i 	= j=A,B

1

2
κi j{ηM(ω j )([aiρ̃, a j] + [a j, ρ̃ai])

+ηM∗(ω j )([a
†
i ρ̃, a†

j ] + [a†
j , ρ̃a†

i ])}. (10)

Before moving on to the consideration of the response time
of the cavities to the quantum correlations present in the input
squeezed field, we first estimate the values of the parameters
which are experimentally convenient and at which the output
modes of the OPO are strongly entangled. It is well known
that the output modes are entangled when M − N > 0, and
the maximal value of M is

√
N (N + 1), which corresponds

to the maximum degree of squeezing (entanglement) possible
for a given N . It is easily verified that the relative difference
M − N is very small for N � 1, but is very large for N  1.
We therefore will largely concentrate on small values of N and
choose N = 0.125 (M = 0.375). This choice of parameters
corresponds to the degree of squeezing used in the exper-
iments on spectroscopy with squeezed light [30,43]. These
experimental values correspond to λ = √

2μ, i.e., a weak
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pumping with ε = 0.17κc/2, giving

λ =
√

2√
2 + 1

κc, μ = 1√
2 + 1

κc, (11)

at which the output OPO field exhibits 50% squeez-
ing [32,44,45]. Moreover, it shows that to satisfy the
requirement that the output OPO field is broadband compared
to the damping rates of the cavities, the decay rate of the OPO
cavity κc should be larger than the decay rates of cavities A
and B, κc � κ1, κ2. In the OPO systems, bandwidths up to
5.8 MHz have been achieved [43], whereas in a Josephson
parametric amplifier bandwidths up to 38 MHz [30] have
been achieved. It should be pointed out that this is the only
condition imposed on the damping rates involved in master
Eq. (10), i.e., no further adjustment of the damping rates to
experimental values is required.

Since we consider cases of a weak excitation (N  1), we
will restrict our calculations to a limited basis set by truncating
the Hilbert space of the system at two-photon states. The
system then has six energy states:

|1〉 = |0A0B〉 , |2〉 = |1A0B〉 , |3〉 = |0A1B〉 ,

|4〉 = |1A1B〉 , |5〉 = |2A0B〉 , |6〉 = |0A2B〉 . (12)

The zero photon state |1〉 is a singlet, the single-photon states
|2〉 and |3〉 form a degenerate doublet, and the two-photon
states |4〉 , |5〉, and |6〉 form a degenerate triplet, as shown in
Fig. 6.

The annihilation operators of the cavity modes can now
be expressed in terms of the projection operators between the
basis states:

âA = |1〉 〈2| +
√

2 |2〉 〈5| + |3〉 〈4| ,
âB = |1〉 〈3| +

√
2 |3〉 〈6| + |2〉 〈4| . (13)

With the help of master Eq. (8), equations of motion can be set
up for the populations of the cavities and coherences between
them, and solved to study the evolution in time of the cavity
system.

III. TRANSFER OF QUANTUM CORRELATIONS TO THE
DECAYING CAVITIES

We now consider the process of transferring the quantum
correlations (entanglement) to the cavities from the input
squeezed field. We assume that in the time before t = 0,
the cavities were independent of each other or, equivalently,
unentangled. At the time t = 0, a squeezed field is applied
to the cavities and the transfer of the quantum correlations is
then monitored as a function of time and the initial conditions
of the cavities.

Let us first check if the cavities decay to the steady state,
which is a pure entangled state, and that the correlations
induced between the cavities are only those existing in the
input squeezed field. Consider the equations of motion for the
density matrix elements, Eqs. (A3). If we introduce incoherent
mixtures of the one-photon states |2〉 and |3〉, and also the
two-photon states |5〉 and |6〉,

ρss = 1
2 (ρ22 + ρ33), ρuu = 1

2 (ρ55 + ρ66), (14)

we then find that the set of coupled Eqs. (A3) reduces to

ρ̇11 = − 2Nκρ11 + 2(N + 1)κρss + 2Mκρm,

ρ̇ss = − (4N + 1)κρss + (N + 1)κ (ρ44 + 2ρuu)

+ Nκρ11 − 2Mκρm,

ρ̇44 = − 2(N + 1)κρ44 + 2Nκρss + 2Mκρm,

ρ̇uu = − 2(N + 1)κρuu + 2Nκρss,

ρ̇m = − (2N + 1)κρm + Mκ (ρ11 + ρ44 − 2ρss), (15)

where ρm = (ρ14 + ρ41)/2.
We see that the evolution of the populations is affected

solely by the two-photon coherence ρm. The coherence creates
superposition states involving the ground state |1〉 and the
doubly excited state |4〉. In the case of a quantum squeezed
field with the correlations M = √

N (N + 1), we may intro-
duce two orthogonal superposition states,

|α〉 =
√

N + 1

2N + 1
|1〉 +

√
N

2N + 1
|4〉 ,

|β〉 =
√

N

2N + 1
|1〉 −

√
N + 1

2N + 1
|4〉 , (16)

and find that Eqs. (15) lead to the following equations of
motion:

ρ̇αα = 2κ

2N + 1
ρss,

ρ̇ββ = −2(2N + 1)κρββ + 8N (N + 1)

2N + 1
κρss,

ρ̇ss = −(4N + 1)κρss + (2N + 1)κρββ + 2(N + 1)κρuu,

ρ̇uu = −2(N + 1)κρuu + 2Nκρss. (17)

It is easy to see that in the steady state, ρss = 0. As a
consequence, ρuu = ρββ = 0 and then ραα = 1. Thus, in the
quantum squeezed field, the system decays to the pure state
|α〉. It is also obvious that the state |α〉 is an entangled state
with the degree of entanglement:

2
√

N (N + 1)

2N + 1
. (18)

It is well known that the signal and idler beams of the OPO
output field always behave as mutually incoherent that the
first-order coherence measured by the cross-correlation 〈a†

i as〉
of the idler and signal fields ai and as is zero [46–52]. More-
over, the anomalous correlations measured by the correlations
〈a2

i 〉 and 〈a2
s 〉 are also zero, that the idler and signal beams are

each in a thermal state. However, the mutual anomalous cor-
relation measured by the cross-correlation 〈aias〉 is nonzero.
Before proceeding further, we will check if the cavities also
exhibit the same correlation properties. To check this, we
introduce the normalized correlation functions (degrees of
coherence), the first-order coherence function

|γ12| = |〈â†
1â2〉|√

〈â†
1â1〉〈â†

2â2〉
, (19)
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FIG. 2. The transient behavior of the anomalous coherence
|η12(t )| for the initial conditions ρ11(0) = 1 (black solid line),
ρ22(0) = 1 (black dashed line), ρ44(0) = 1 (green long dashed line),
and ρ55(0) = 1 (blue dashed-dotted line), with N = 0.125, |M| =√

N (N + 1), η = 1 and κ1 = κ2 = κ12 = κ .

and the anomalous coherence functions

|ηii| =|〈aiai〉|
〈 a†

i ai〉
, i = 1, 2, (20)

|ηi j | = |〈aia j〉|√
〈a†

i ai〉〈a†
j a j〉

, i 	= j = 1, 2. (21)

In terms of the density matrix elements, the coherence func-
tions are given by

|γ12| = |ρ23 + √
2ρ54 + √

2ρ46|√
(ρ22 + 2ρ55 + ρ44)(ρ33 + 2ρ66 + ρ44)

, (22)

|η11| =
√

2|ρ51|
ρ22 + 2ρ55 + ρ44

, (23)

|η22| =
√

2|ρ61|
ρ33 + 2ρ66 + ρ44

, (24)

|η12| = |ρ41|√
(ρ22 + 2ρ55 + ρ44)(ρ33 + 2ρ66 + ρ44)

. (25)

Assume that in the time before t = 0, the cavities were
prepared in a separable (unentangled) state and then exposed
at t = 0 to the squeezed field. Then, according to the equa-
tions of motion (17), the coherences ρ23, ρ54, ρ46, ρ51, and
ρ61 are not coupled to the populations, they are zero in the
system of two cavities initially prepared in an unentangled
state. Therefore, the first-order coherence function |γ12| and
the anomalous coherence functions |η11| and |η22| are zero.
The two-photon coherence ρ14 is coupled to the populations.
Therefore, it can be different from zero. This is illustrated
in Fig. 2, which shows the anomalous coherence |η12| as a
function of time for different initial conditions. It is evident
that the coherence builds up during the evolution of the sys-
tem and reaches a nonzero steady-state value. Thus, we may
conclude that the correlations present between cavities are
those transferred from the input squeezed field and that the

)b()a(

(c) (d)

FIG. 3. The transient behavior of the populations ρ22 (black
dashed line), ρ33 (blue dashed-dotted line), ρ44 (green long dashed
line), ρ55 (black solid line), and ρ66 (red dashed line) when the
cavities are initially prepared in the state (a) |1〉, (b) |2〉, (c) |4〉, and
(d) |5〉, with N = 0.125, |M| = √

N (N + 1), η = 1, and κ1 = κ2 =
κ12 = κ .

cavities decay to the steady state, which is the pure entangled
state [53–55].

One can notice from Fig. 2 that the transient buildup of
the anomalous coherence depends on the initial population of
the cavity modes. In other words, the response of the cavities
to the input squeezed field at t = 0 depends on whether the
cavities were initially populated or not. When the cavities
are exposed to the squeezed field, one could expect that the
correlation should build up in the cavities immediately after
the field is turned on at t = 0. However, it happens only when
the cavities are empty, i.e., they are in their ground states.
When a population is initially present in the cavities, the
buildup of the coherence is delayed by a certain time interval.
The time interval is practically independent of which of the
cavity excited states is initially populated.

For comparison, we plot in Fig 3 the time evolution of
the populations of the excited energy states of the cavity
system for the same parameters and the initial conditions as
in Fig. 2. It is seen that independent of the initial conditions,
the populations of the initially unpopulated states start to build
up immediately after the squeezed field is turned on at t = 0.

It is interesting to note that at early times the population
of the single-photon states builds up more rapidly than the
population of the two-photon states. Further, we observe that
the population of the two-photon state |4〉, which is coupled
to the ground state through the two-photon coherence ρ14,
is suppressed at times the one-photon states are significantly
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FIG. 4. Logarithmic negativity as a function of the dimensionless
time κt illustrating the transient buildup of entanglement between
independently decaying cavities for N = 0.125, |M| = √

N (N + 1),
η = 1, κ1 = κ2 = κ12 = κ , and different initial conditions: ρ11(0) =
1 (black solid line), ρ22(0) = 1 (blue dashed line), ρ44(0) = 1 (red
solid line), and ρ55(0) = 1 (green long dashed line).

populated. Comparing with Fig. 2, we see that not only the
population of state |4〉 but also the anomalous coherence is
significantly reduced at times when the single-photon states
are populated. Thus, the buildup of the anomalous coherence
is strongly affected by the presence of the population in the
single-photon states.

The behavior of the anomalous coherence should be re-
flected in the behavior of entanglement between the cavities.
To quantify entanglement, we adopt the logarithmic negativ-
ity, which for a bipartite system is defined as [56,57]

N = log2

(
1 + 2

∣∣∣∣
∑

l

μl

∣∣∣∣
)

, (26)

where μl are the negative eigenvalues of ρTB , the partial trans-
pose of a state ρ in the n ⊗ n′ (n � n′) quantum system. For an
unentangled state, N = 0, whereas N = 1 for the maximally
entangled state.

Figure 4 shows the time evolution of the logarithmic neg-
ativity of the cavity system for the same parameters and the
initial conditions as in Fig. 2. It is evident that the transient
buildup of entanglements exhibits the same behavior as the
anomalous coherence function. For the initial vacuum state,
ρ11(0) = 1, the buildup of the entanglement, i.e., transfer of
the quantum correlations to the cavities, starts immediately
after the input OPO field is turned on. The time behavior of
the entanglement appears qualitatively different when cavities
are initially prepared in one of their excited states. In this case,
the transfer of the quantum correlations is delayed by a finite
time interval. We may conclude that the presence of unen-
tangled photons in the cavities prevents (blocks) the transfer
of the quantum correlations from the incident squeezed field.
Thus, at early times the transfer of the entanglement from the
external field is suppressed. The transfer of the entanglement
is delayed to the time t ≈ 2κ−1, as seen from Fig. 4. This

(a) (b)

FIG. 5. Time buildup of the logarithmic negativity for two dif-
ferent initial conditions and different damping rates with N = 0.125,
|M| = √

N (N + 1), and κ12 = √
κ1κ2. In frame (a), the initial con-

dition is ρ55(0) = 1, and ρ44(0) = 1 in frame (b). Black solid line:
κ1 = κ2 = κ , red dashed line: κ1 = κ, κ2 = 1

2 κ , and blue dash dotted
line: κ1 = κ, κ2 = 2κ.

means that the delay is in the order of the decoherence time of
the cavities.

When comparing the time evolution of the logarithmic
negativity, Fig 4, with the time evolution of the populations
of the cavity states, Fig 3, one finds that the transfer of the
entanglement and also the buildup of the population of state
|4〉 are postponed till the one-photon states are almost com-
pletely depopulated. In other words, the system waits for the
population of the single photon states to decay out before
starting the transfer of the entanglement from the incident
squeezed field.

One may notice from Fig. 4 that the delay time of the
transfer of the entanglement on cavities is not very sensitive
to the number of photons initially present in the cavities.
However, the delay time is sensitive to the damping rates of
the cavities and the transfer could be further delayed when the
cavities decay with different rates, κ1 	= κ2. This is illustrated
in Fig. 5 which shows the logarithmic negativity as a function
of time for initial states |5〉 ≡ |2A, 0B〉 and |4〉 ≡ |1A, 1B〉, and
for two different values of the ratio κ2/κ1. For the initial state
|5〉, the delay time is not increased further when κ2 	= κ1. On
the other hand, for the initial state |4〉 and κ1 	= κ2, the delay
time can be shortened or prolonged, depending on whether
κ1 > κ2 or κ1 < κ2.

The variation of the delayed time of the transfer of the
entanglement with the ration κ2/κ1 can be readily understood
if one refers to the energy-level diagram of the system, Fig. 6,
which shows the allowed transitions between the energy levels
and rates at which the excited states decay. There is a single
pathway, with rate 2κ1. state |5〉 decays to state |2〉, but there
are two pathways—state |4〉 decays to states |2〉 and |3〉—with
rates κ2 and κ1, respectively.

Explanation of the variation of the delay time with the ratio
κ2/κ1 for the initial state |4〉 follows from the observation that
increasing or decreasing the damping rate κ2 relative to κ1

leads to an increase of the population of either |2〉 or |3〉 state
and, consequently, a longer decay time of the population of
the single excitation states.

Finally, we address some practical limitations to the results
presented in the above figures. In plotting Figs. 2–5, we have
assumed that the input squeezed field is perfectly coupled to
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FIG. 6. Energy-level diagram of the system of nondegenerate
cavities with ω1 � ω2 and transition rates between the energy states.

the cavity modes, i.e., η = 1. However, in practice, the perfect
coupling between the cavities and the input squeezed field
could be difficult to achieve. Therefore, in Fig. 7, we plot
the logarithmic negativity for several values of the coupling
efficiency η and two different initial conditions ρ22(0) = 1,
and ρ44(0) = 1. It is seen that the delay time is insensitive to
the coupling efficiency. An imperfect coupling only affects the
amount of the transferred entanglement.

IV. ORIGIN OF THE DELAYED MAPPING OF
ENTANGLEMENT

Here we present a qualitative understanding of the physical
origin of the delayed mapping of entanglement. We will show
that the delayed transfer of entanglement can be attributed to
the presence of quantum jumps [58–61]. To do this, we rewrite
master Eq. (10) in terms of a coherent evolution governed
by a non-Hermitian Hamiltonian and an incoherent evolution
which is solely due to spontaneous emission events as

dρ

dt
= 1

ih̄
[Heff , ρ] + Lspρ, (27)

(a) (b)

FIG. 7. Time buildup of the logarithmic negativity for two differ-
ent initial conditions and imperfect coupling η < 1 with N = 0.125,
|M| = √

N (N + 1), and κ1 = κ2 = κ . In frame (a), the initial con-
dition is ρ22(0) = 1, and in frame (b) ρ44(0) = 1. In both frames,
η = 1 (black solid line), η = 0.9 (black dashed line), and η = 0.8
(blue dashed-dotted line).

where

Heff = h̄
∑

j=A,B

ω ja
†
j a j − 1

2
ih̄

×
∑

j=A,B

κ j{[N (ω j ) + 1]a†
j a j + N (ω j )a ja

†
j}

+ 1

2
ih̄

∑
i 	= j=A,B

κi j[M(ω j )a
†
i a†

j + M∗(ω j )aia j] (28)

represents a coherent nonunitary evolution of the system and

Lspρ =
∑

j=A,B

κ j{[N (ω j ) + 1]a jρa†
j + N (ω j )a

†
jρa j}

−
∑

i 	= j=A,B

κi j (Ma†
i ρa†

j + M∗aiρa j ) (29)

represents incoherent processes due to quantum jumps which
contribute to the dynamics of the system resulting from a
continuous measurement performed by the environment on
the system.

Quantum jumps cause instantaneous switching between
energy levels of the system, which changes the distribution
of the population of the levels and coherences between them.
For example, the quantum jumps change the two-photon co-
herence ρ14 at a rate

(Lspρ)14 = −κ12M∗(ρ22 + ρ33), (30)

and the population of state |4〉 at a rate

(Lspρ)44 = N (κ2ρ22 + κ1ρ33). (31)

Clearly, in the presence of quantum jumps the two-photon co-
herence and the population of state |4〉 are leaking out through
the one-photon states |2〉 and |3〉. Therefore, a significant
reduction of the transfer of entanglement or no entanglement
transfer are expected to be found at times the states |2〉 and
|3〉 are significantly populated. From Eqs. (28) and (29), it is
worth noting that the populations in the |2〉 and |3〉 states is a
consequence of single-photon incoherent processes.

Now we can ask ourselves what would happen with the
transfer of entanglement if we ignore quantum jumps. Without
quantum jumps, the equations of motion (A3) for the density
matrix elements become

ρ̇11 = − 2Nκρ11 + 2Mκρm,

ρ̇44 = − 2(N + 1)κρ44 + 2Mκρm,

ρ̇ss = − (4N + 1)κρss + (N + 1)κ (ρ44 + 2ρuu)

+ Nκρ11 − 2Mκρm,

ρ̇uu = − 2(N + 1)κρuu + 2Nκρss,

ρ̇m = − (2N + 1)κρm + Mκ (ρ11 + ρ44), (32)

where

ρss = 1
2 (ρ22 + ρ33), ρuu = 1

2 (ρ55 + ρ66) (33)

are incoherent mixtures of the one-photon states |2〉 and |3〉
and the two-photon states |5〉 and |6〉, respectively.

It is seen that the evolution of the populations of the ground
|1〉 and the upper |4〉 states is decoupled from the incoherent
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mixtures of the states |2〉 and |3〉. They are coupled to each
other by a coherent two-photon excitation channel of the
squeezed field. The strength of this coupling is proportional to
the magnitude of two-photon correlation (M) of the squeezed
field. Clearly, the effect of quantum jumps is to introduce cou-
pling between the superposition (entangled) and incoherent
mixture states.

In terms of the superposition states (16), Eqs. (32) take the
form

ρ̇αα =0, ρ̇ββ = −2(2N + 1)κρββ,

ρ̇ss = − (4N + 1)κρss + 2(N + 1)κρuu

+ 2(2N + 1)κρββ,

ρ̇uu = − 2(N + 1)κρuu + 2Nκρss. (34)

The result ρ̇αα = 0 indicates that the state does not evolve
in time, i.e., the state |α〉 is a dark state. This suggests that
this state, if not initially populated, would never be popu-
lated. Thus, in the absence of quantum jumps, the quantum
correlations (entanglement) would never be transferred to the
cavities.

V. CONCLUSIONS

The transient response of single-mode cavities to the in-
put squeezed vacuum field has been described. The response
to the quantum correlations (entanglement) present in the
squeezed field has been found to be a sensitive function of
the initial conditions of the cavities. We have found that,
depending on the initial excitation of the cavities, the transfer
of the quantum correlations can be delayed even though the
absorption of photons from the field is not sensitive to the

initial population. In the case of empty cavities, with no initial
excitation present, the transfer of the quantum correlations
begins immediately after the squeezed field is turned on. In
contrast, if the cavities are initially prepared in some of the
excited states, the transfer is delayed by a finite time interval.
The delayed time interval depends on the damping rates of
the cavities and can be varied by varying the ratio of the
damping rates. A detailed analysis has shown that the process
of the delayed transfer of the quantum correlations is related
to the presence of the population in the one-photon states of
the cavity system. The transfer of the quantum correlations is
postponed till the one-photon states of the system are almost
completely depopulated. In other words, the system waits for
the population of the single-photon states to decay out before
the quantum correlations start to build up between the cavities.

We have pointed out that the delay of the entanglement
transfer can be understood as resulting from the presence of
quantum jumps. We have shown that quantum jumps cause
instantaneous switching between entangled and incoherent
mixture states of the system, which changes the distribution
of the population of the levels and coherences between them.
Although the quantum jumps delay transfer of entanglement
from the input field to the cavities, they are in fact needed for
the transfer to occur.

The results of our work can potentially be used in quantum
communication schemes to control the transfer, or transmis-
sion time of entanglement or quantum states through a noisy
channel, as well as to schemes involving qubits subjected to
decoherence due to the coupling to the environment [62–67].
In such schemes, it is crucial that the transfer occurs in a
short time to avoid decoherence. Our results show that the
presence of population in the transmission qubits can impose
restrictions on the transfer time of entanglement.

APPENDIX: EQUATIONS OF MOTION FOR THE DENSITY MATRIX ELEMENTS

In this Appendix, we present explicitly the complete set of the equations of motion for the density matrix elements in the
basis spanned by the product states (12). The products of operators appearing in master Eq. (5) can be written as

â†
AâA = |2〉 〈2| + |4〉 〈4| + 2 |5〉 〈5| , âAâ†

A = |1〉 〈1| + |3〉 〈3| + 2 |2〉 〈2| ,
â†

BâB = |3〉 〈3| + |4〉 〈4| + 2 |6〉 〈6| , âBâ†
B = |1〉 〈1| + |2〉 〈2| + 2 |3〉 〈3| ,

â†
AâB = |2〉 〈3| +

√
2 |5〉 〈4| +

√
2 |4〉 〈6| , âAâB = |1〉 〈4| , â†

Aâ†
B = |4〉 〈1| . (A1)

Using the state basis (12) and the representation (A1) in master Eq. (10), we find the following equations of motion for the
populations and coherences:

ρ̇11 = − N (κ1 + κ2)ρ11 + (N + 1)κ1ρ22 + (N + 1)κ2ρ33 + Mκ12(ρ14 + ρ41),

ρ̇22 = − [(3N + 1)κ1 + Nκ2]ρ22 + (N + 1)κ2ρ44 + Nκ1ρ11 + 2(N + 1)κ1ρ55 − Mκ12(ρ14 + ρ41),

ρ̇33 = − [(3N + 1)κ2 + Nκ1]ρ33 + (N + 1)κ1ρ44 + Nκ2ρ11 + 2(N + 1)κ2ρ66 − Mκ12(ρ14 + ρ41),

ρ̇44 = − (N + 1)(κ1 + κ2)ρ44 + Nκ2ρ22 + Nκ1ρ33 + Mκ12(ρ14 + ρ41),

ρ̇55 = − 2(N + 1)κ1ρ55 + 2Nκ1ρ22, ρ̇66 = −2(N + 1)κ2ρ66 + 2Nκ2ρ33,

ρ̇14 = − 1
2 (2N + 1)(κ1 + κ2)ρ14 + Mκ12(ρ11 + ρ44 − ρ22 − ρ33). (A2)
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In the case of equal damping rates of the cavities, κ1 = κ2 = κ12 = κ , Eq. (A2) simplifies to

ρ̇11 = − 2Nκρ11 + (N + 1)κ (ρ22 + ρ33) + Mκ (ρ14 + ρ41),

ρ̇22 = − (4N + 1)κρ22 + (N + 1)κ (ρ44 + 2ρ55) + Nκρ11 − Mκ (ρ14 + ρ41),

ρ̇33 = − (4N + 1)κρ33 + (N + 1)κ (ρ44 + 2ρ66) + Nκρ11 − Mκ (ρ14 + ρ41),

ρ̇44 = − 2(N + 1)κρ44 + Nκ (ρ22 + ρ33) + Mκ (ρ14 + ρ41), ρ̇55 = −2(N + 1)κρ55 + 2Nκρ22,

ρ̇66 = − 2(N + 1)κρ66 + 2Nκρ33, ρ̇14 = −(2N + 1)κρ14 + Mκ (ρ11 + ρ44 − ρ22 − ρ33). (A3)
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