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Waveguides allow for direct coupling of emitters separated by large distances, offering a path to connect re-
mote quantum systems. However, when facing the distances needed for practical applications, retardation effects
due to the finite speed of light are often overlooked. Previous works studied the non-Markovian dynamics of
emitters with retardation, but the properties of the radiated field remain mostly unexplored. By considering a toy
model of two distant two-level atoms coupled through a waveguide, we study the spectrum of the radiated field
that exhibits non-Markovian features such as linewidth broadening beyond standard superradiance, or narrow
Fano-resonance-like peaks. We also observe modifications to the energy-exchange dynamics in the presence of
retardation. We discuss a proof-of-concept implementation of our results in a superconducting circuit platform.
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I. INTRODUCTION

The interference between coherent radiation processes in
an ensemble of atoms leads to collective effects, as first il-
lustrated by Dicke super- and subradiance [1,2]. Collective
effects are responsible for a variety of phenomena, relevant
in fundamental and applied physics. They can enhance atom-
light coupling strengths [3–6], which finds applications in
quantum information processing [7–10], or can be used to
selectively decouple a system from its environment [11,12],
improving the storage and transfer of quantum informa-
tion [13–15]. Moreover, collective dipole-dipole interactions,
which are responsible for energy exchange between the emit-
ters, can lead to modifications of chemical reactions [16,17],
Förster energy transfer [18–20], and vacuum-induced energy
shifts [21,22] and forces [23,24].

The atom-atom interaction strength decreases as the fields
propagate away [25], thus collective effects were historically
explored in systems with atoms confined to small volumes
compared to the radiated wavelengths [26–29]. However,
fields propagating in only one dimension remove such a
constraint, allowing for, in principle, infinite-range interac-
tions [30–34]. Such one-dimensional systems are therefore an
ideal test bed for quantum information applications [35–40].
These studies typically employ the Markov approximation
[41]. However, when considering collective phenomena over
long distances, interference effects are modified as a result
of retardation [42–45], exhibiting non-Markovian dynamics
[46,47]. Retardation-induced non-Markovianity leads to a va-
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riety of phenomena in cavity and half-cavity systems, with
dynamics ranging from Rabi oscillations to long-lived nonex-
ponential decay and revivals [48–54]. In collective atom-field
interactions, retardation can lead to instantaneous sponta-
neous emission rates exceeding those of Dicke superradiance
[42,55,56], can result in the formation of highly delocalized
polaritonic modes, referred to as bound states in the contin-
uum (BIC) [42,55,57–63], and find applications in generating
entanglement between distant emitters [64,65].

In a recent work [42], the authors considered a sim-
ple model of two emitters coupled to a one-dimensional
waveguide which captures the essential features of collective
interactions under retardation. There, the focus was set on
the spontaneous emission dynamics of certain emitter states,
whereas the properties of the radiated field remained mostly
unexplored. In this paper, we extend the previous analyses
of such a system in several ways: (i) considering general
initial states and atomic separations; (ii) studying the time-
dependent energy exchange between the atoms, where we
define an effective dipole-dipole interaction energy that de-
cays exponentially with the atomic separation; (iii) we study
the spectrum of the radiated field and unravel the features
appearing due to non-Markovian effects; (iv) and finally, we
study the weakly driven situation to address the preparation of
entangled states, considering an implementation of the model
in circuit QED platforms, suggesting direct evidence of re-
tarded collective effects that can be experimentally observed.

The paper is organized as follows. In Sec. II, we de-
scribe the model for the system in consideration as shown
in Fig. 1(a). In Sec. III we study the undriven dynamics
of the system in the single-excitation subspace. We ana-
lyze the response of the system under a weak external drive
in Sec. IV, and present a possible superconducting circuit
implementation of the model in Sec. V as depicted in

2469-9926/2020/102(4)/043718(12) 043718-1 ©2020 American Physical Society

https://orcid.org/0000-0002-5172-8697
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.043718&domain=pdf&date_stamp=2020-10-29
https://doi.org/10.1103/PhysRevA.102.043718


KANUPRIYA SINHA et al. PHYSICAL REVIEW A 102, 043718 (2020)

FIG. 1. (a) Schematic representation of two emitters coupled to a one-dimensional waveguide. The qubits have a tunable resonance
frequency of ω0 and are separated by a distance d along the waveguide. Each qubit radiates into the waveguide with a rate γin, and the
dissipation rate outside the waveguide modes is γout, with a total emission rate γ ≡ γin + γout. The qubits are pumped by an external driving
field simultaneously. (b) Circuit QED implementation of the toy model with two transmon qubits Q1 and Q2 coupled to each other via a
Josephson junction (JJ) array that allows for low-loss propagation of microwave fields with slow group velocities [66–68]. A split pump field
drives the two qubits simultaneously via the control line. Further details of the setup are described in Sec. V and the parameter values pertaining
to the model are summarized in Table I, which we use throughout the paper to obtain results under realistic conditions. We assume the pump
to be weak and symmetrically coupled to the two qubits with a Rabi frequency �.

Fig. 1(b). We summarize our results and outlook of this work
in Sec. VI.

II. MODEL

Let us consider a system of two distant two-level atoms
coupled to a one-dimensional waveguide, as shown in
Fig. 1(a). One can understand why retardation renders such
a system non-Markovian from a simple comparison of time
scales. Considering the subsystems Q1 and Q2 to comprise
the system of interest and the electromagnetic (EM) field
as the bath, the individual relaxation rate of each subsystem
into the bath is γ , with a characteristic relaxation timescale
τR ∼ γ −1. The bath mediates the interactions between sub-
systems at a finite speed v, allowing us to define a timescale
for bath correlations τB ∼ d/v. Once the system relaxation
rate becomes comparable to the bath correlation timescale,
or τR/τB ∼ γ d/v ≡ η ∼ 1, the Markov approximation is no
longer valid [41].1 The parameter η captures at least three
different sources of non-Markovianity in the context of atom-
light interactions [46,47]: (1) in the strong-coupling regime
as γ increases [70,71], (2) for small propagation velocities
[72,73] (such as close to a band gap or edge [74–79]), and (3)
for large separations d , where the interaction between susb-
systems is delayed [42,51,54–57,80–82]. Here, we explore the
system in a regime where the interatomic separation is such
that η ∼ 1, resulting in retardation-induced non-Markovian
dynamics. In terms of achieving such a regime in an exper-
imental setup, we remark that while for atoms this is amounts
to a distance of d ∼ 5 m [34], for a superconducting circuit
system with Josephson junction (JJ) arrays as waveguides this
distance can be as small as a couple of centimeters, as we will
illustrate later.

The Hamiltonian for a system of two atoms coupled to a
waveguide and driven by an external pump field, as depicted

1The dimensionless parameter η ≡ γ d/v is also the ratio of
the interatomic separation d to the coherence length of a spon-
taneously emitted photon (v/γ ). An alternate intuition for the
non-Markovianity in this regime was discussed in Ref. [42] in terms
of a “superradiance paradox” [69].

in Fig. 1(a), is H = HA + HF + HAF + HAD, where HA =∑
m=1,2 h̄ω0σ̂

+
m σ̂−

m is the Hamiltonian of the atoms, with σ̂+
m

and σ̂−
m as the raising and lowering operators for the mth atom.

Here,

HF =
∫ ∞

0
dω h̄ω[â†(ω)â(ω) + b̂†(ω)b̂(ω)] (1)

corresponds to the Hamiltonian for the guided modes of
the electromagnetic field, with â(ω) and b̂(ω) referring to
the right- and left-propagating modes. HAF and HAD describe
the interaction of the atoms with the guided field and an
external driving field, respectively.

Considering the interaction picture with respect to the free
Hamiltonians H0 = HA + HF, the interaction Hamiltonians
H̃AF ≡ e−iH0t/h̄HAFeiH0t/h̄ and H̃AD ≡ e−iH0t/h̄HADeiH0t/h̄ can
be written as follows, where

H̃AF =
∑

m=1,2

∫ ∞

0
dω h̄

[
g(ω)σ̂+

m {â(ω)eikxm + b̂(ω)e−ikxm}

× e−i(ω−ω0 )t + H.c.
]

(2)

represents the interaction of the atoms with the waveguide
modes within the electric-dipole and rotating-wave approxi-
mations, wherein g(ω) corresponds to the coupling coefficient
between the atoms and the field, and xm is the position of the
mth atom [83]. Here,

H̃AD = h̄
∑

m=1,2

[
�mσ̂+

m e−i(ωD−ω0 )t + �∗
mσ̂−

m ei(ωD−ω0 )t
]

(3)

is the semiclassical interaction of the emitters with a drive,
where �m is the Rabi frequency for the mth atom, and ωD

TABLE I. Parameter values for a superconducting circuit im-
plementation of the model as depicted in Fig. 1(b). We use these
parameters throughout the paper to present our results under realistic
conditions.

Qubit resonance frequency ω0/(2π ) 5 GHz
Decay rate γ /(2π ) 10 MHz
Waveguide coupling efficiency β 0.95
Phase velocity v/c 1/300
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is the drive frequency. One can use the driven Hamiltonian
to prepare a particular collective atomic state. We explore
this by first solving the problem without the drive for a
single-excitation subspace in Sec. III and use the solution
to perturbatively calculate the weakly driven dynamics in
Sec. IV [49].

III. DYNAMICS WITHOUT DRIVE

Let us consider the system to be in the single-excitation
subspace, with the initial state

|
0〉 ≡ (cos θ |eg〉 + sin θeiφs |ge〉) ⊗ |{0}〉, (4)

with the waveguide field in the vacuum state |{0}〉. In the ab-
sence of a drive, the total Hamiltonian conserves the number
of excitations such that we can use a Wigner-Weisskopf-like
ansatz to write the state of the atom+field system at a time t as

|
(t )〉 =
[ ∑

m=1,2

cm(t )σ̂+
m +

∫ ∞

0
dω{ca(ω, t )â†(ω)

+ cb(ω, t )b̂†(ω)}
]
|gg〉 ⊗ |{0}〉, (5)

where the coefficients cm(t ) refer to the excitation amplitude
for the mth emitter and ca(b)(ω, t ) are the excitation
amplitudes for the right- (left-) propagating mode of the
waveguide at frequency ω.2

The coupled equations of motion due to the atom-field
interaction Hamiltonian H̃AF [Eq. (2)] are

ċa(ω, t ) = − i
∑

m=1,2

cm(t )g∗(ω)e−iωxm/vei(ω−ω0 )t , (6)

ċb(ω, t ) = − i
∑

m=1,2

cm(t )g∗(ω)eiωxm/vei(ω−ω0 )t , (7)

ċm(t ) = −i
∫ ∞

0
dω g(ω)e−i(ω−ω0 )t

× [ca(ω, t )eiωxm/v + cb(ω, t )e−iωxm/v], (8)

where we have assumed that the waveguide has a linear dis-
persion relation such that k = ω/v, with v as both the group
and phase velocity of the field.

Formally integrating (6) and (7), and substituting in (8)
gives the equations of motion for the excitation amplitudes
of the two atoms,

ċ1(t ) = − γ

2
[c1(t ) + βc2(t − d/v)(t − d/v)eiφp], (9)

ċ2(t ) = − γ

2
[c2(t ) + βc1(t − d/v)(t − d/v)eiφp], (10)

where we have defined φp ≡ dω0/v as the phase accumulated
by the field through its propagation between atoms. Assuming
a sufficiently slowly varying density of modes around the
atomic resonance, we define the emission into the waveg-
uide as γin ≡ 4π |g(ω0)|2. The vacuum modes also yield a
Lamb shift to each atom independently, in addition to the

2Notice that the coefficients ca,b(ω, t ) have dimensions of
s1/2 and the total excitation probability for the field modes is∫

dω(|ca(ω, t )|2 + |cb(ω, t )|2).

decay, which we assume is included in the bare frequency ω0.
γ = γin + γout is the total spontaneous emission rate of the
atom, which includes the radiation outside of the waveguide,
which we add phenomenologically. The waveguide coupling
efficiency β = γin/γ corresponds to the ratio of radiation
emitted into the guided modes compared to the total emission.
We neglect the effects of field propagation losses, a reasonable
approximation for a waveguide based on a JJ array [68].

A. Atomic dynamics

The solutions of the system of coupled delay differential
equations given by Eqs. (9) and (10) have the form

c1(t ) = K+c+(t ) + K−c−(t ), (11)

and

c2(t ) = K+c+(t ) − K−c−(t ), (12)

where K± ≡ 〈
±|
0〉 = (cos θ ± eiφs sin θ )/
√

2 is the proba-
bility amplitude for the system being initially in the symmetric
or antisymmetric atomic states |
±〉 ≡ 1√

2
(|eg〉 ± |ge〉) ⊗

|{0}〉, and the functions c±(t ) are the solutions to the delay
differential equation

dc±(t )

dt
= −γ

2
[c±(t ) ± βeiφpc±(t − η/γ )(t − η/γ )].

(13)

The effect of retardation enters in the second term on the
right-hand side and is characterized via two parameters, the
delay time η/γ (=d/v) and the waveguide coupling efficiency
times the propagation phase factor βeiφp . The symmetry of the
initial state combined with the phase accumulated by the field
through propagation determines the overall phase difference
of the interference. For example, the initial (anti)symmetric
state |
+〉 (|
−〉) with a propagation phase φp = 2pπ [φp =
(2p + 1)π ] is superradiant, while |
−〉 (|
+〉) with a prop-
agation phase φp = 2pπ [φp = (2p + 1)π ] is subradiant
(where p ∈ Z).

1. Solution in terms of Lambert-W functions

Equation (13) can be solved in terms of Lambert-W func-
tions as [42,84]

c±(t ) = 1√
2

∞∑
n=−∞

α(±)
n e−γ (±)

n t/2, (14)

with

γ (±)
n = γ

[
1 − Wn

(∓ η

2 eη/2βeiφp
)

η/2

]
, (15)

α(±)
n =

[
1 + Wn

(
∓η

2
eη/2βeiφp

)]−1
, (16)

where Wn(x) is the nth branch of the Lambert-W function that
often occurs in solutions to delayed-feedback problems [85].
The coefficients α(±)

n and γ (±)
n are generally complex valued.

We notice that the largest contribution to the sum comes
from the terms n = {−1, 0, 1}, capturing the qualitative dy-
namics of the system (see Supplemental Material in Ref. [42],
for example). Particularly, for the symmetric state, γ

(+)
0 is

real valued for η < ηc, where ηc ≡ 2W0( 1
βe ) is defined as a
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critical distance between the emitters below which there are
no oscillations in the atomic dynamics. We remark that ηc only
depends on the coupling efficiency β, as is shown in Ref. [42].
Nonetheless, higher-order terms are necessary to guarantee
the convergence to the correct solution. These terms (n �= 0)
also contribute to the effective spontaneous emission rate,
which has been previously calculated only from the n = 0
term [42,56,64], an issue that requires careful treatment (see
Appendix B for more details).

2. Solution in terms of wave-packet multiple reflections

We can write an alternative solution to the dynamics as
follows [43],

c±(t ) = 1√
2

∞∑
n=0

[
(∓βeiφp )n

n!

(γ t − nη

2

)n

× e−(γ t−nη)/2

(
t − nη

γ

)]
. (17)

The above expansion can be understood in terms of a
cascade of processes as the field emitted by each of the atoms
propagates back and forth between them at signaling times
of t = nd/v. The field then coherently adds to the existing
amplitudes, offering the intuition that the decay dynamics
arises from the multiple partial reflections of a field wave
packet bouncing between the atoms.

Although the two solutions in Eqs. (14) and (17) ap-
pear different, they are equivalent, providing complementary
insights in the dynamics of systems with self-consistent time-
delayed feedback [42].

3. Effective decay rates in presence of retardation

From the full solution of the dynamics for the two atoms,
we can define an effective instantaneous atomic decay rate for
the mth atom as

γ eff
m ≡ −2 Re

[
1

cm(t )

dcm(t )

dt

]
. (18)

Substituting Eqs. (11) and (13) in Eq. (18), we find that for
t > 0,

γ eff
1,2 (t ) = γ

[
1 + Re

[
βeiφp

c2,1(t − η/γ )

c1,2(t )

]
(t − η/γ )

]
.

(19)

The first term corresponds to the individual atomic decay
rate, while the second term corresponds to the modification
due to a second atom with a delayed interaction, such that
its amplitude is evaluated at a retarded time t → t − η/γ ,
corresponding to the delay time between the two atoms.
This illustrates that collective spontaneous emission can
be understood as a mutually stimulated emission of two
dipoles [86].

Let us consider the atoms to be initially in a symmetric or
antisymmetric state, with an amplitude c±(t ) corresponding
to the states |
±〉 (K+ = 0 or K− = 0, respectively). After the
field emitted by one atom reaches the other, namely d/v <

t < 2d/v, the excitation amplitudes for the symmetric and

antisymmetric states can be written from Eqs. (11) and (17) as

c±(t ) = 1√
2

[
e−γ t/2 ∓ βeiφp

(γ t − η

2

)
e−(γ t−η)/2

]
. (20)

The corresponding instantaneous rate of spontaneous
emission for t → d

v

+
is

lim
t→ d

v

+
γ eff

± = γ (1 ± β cos φpeη/2). (21)

We attribute the second term in the above expression to the
stimulated emission of the total atomic system by the field
emitted from it at a previous time, which can be understood as
a non-Markovian effect. Further assuming that β cos φp = 1,
we note that the instantaneous emission rate for a pair of
initially symmetric dipoles γ eff

+ can exceed 2γ , a feature
referred to as superduperradiance [42]. We also observe
from Eq. (21) that γ eff

− could be negative, illustrating that an
initially asymmetric state can exhibit recoherence, exciting
the atoms after they have decayed.3

4. Effective dipole-dipole interaction

While one can obtain the modification to the atomic decay
from the dynamics of a single atom, to consider the effective
dipole-dipole interaction one needs to look at the coherences
in the system made by the two atoms. Knowing the explicit
dynamics of the atomic system allows one to write an effective
time-local master equation for the reduced density matrix of
the two atoms [41]. We consider an effective dipole-dipole
interaction Hamiltonian of the form [87,88]

Heff ≡ h̄�12(t )(σ̂+
1 σ̂−

2 + σ̂−
1 σ̂+

2 ), (22)

where �12(t ) is time dependent as a result of the non-
Markovian nature of the dynamics [41].

The energy shift corresponding to the dipole-dipole inter-
action is obtained as the expectation value of the interaction
Hamiltonian 〈Heff〉 = 2h̄�12(t )Re[c1(t )c∗

2(t )]. �12 and γ eff

are related to each other as the imaginary and real part of a
common response function. Thus in the limit of t → η

γ

+ it

can be shown that �12(t ) → γ β

2 sin φpeη/2, as a counterpart
of Eq. (21). The dipole-dipole interaction is therefore

〈Heff〉 → h̄γ β

2
sin φpe−η/2(|K+|2 − |K−|2), (23)

which decreases exponentially with the atomic separation,
with the coherence length of the spontaneously emitted pho-
ton (∼v/γ ) determining the characteristic length scale. This
suggests that dipole-dipole interactions in one dimension can-
not be truly infinite ranged because of retardation, setting
another limit to the range of collective emitter interactions
in one-dimensional systems beyond the ones discussed in
Refs. [30,89].

3It can be noted that the above instantaneous collective emission
rate differs from those quoted in Refs. [42,56,64] where the contri-
bution from the n �= 0 terms in Eq. (14) is neglected.
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B. Field dynamics and spectrum

Having written the atomic dynamics, we now consider the
dynamics of the electromagnetic field modes and the spectrum
of the field, which is defined as the probability of finding
a photon of frequency ω in the waveguide modes at any
given time. We substitute the solution for atomic dynamics in
Eq. (11) into the equations of motion for the field in Eqs. (6)
and (7) to obtain the field excitation amplitude as follows,

ca(ω, t ) = − i

√
βγ

π

[
K+ cos

(
ωd

2v

)
F+(ω, t )

−iK− sin

(
ωd

2v

)
F−(ω, t )

]
, (24)

cb(ω, t ) = − i

√
βγ

π

[
K+ cos

(
ωd

2v

)
F+(ω, t )

+iK− sin

(
ωd

2v

)
F−(ω, t )

]
, (25)

where we have defined

F±(ω, t ) =
∫ t

0
dτ c±(τ )ei(ω−ω0 )τ . (26)

In the late-time limit, t → ∞, we obtain

F∞
± (ω) = i√

2

∑
n∈Z

α(±)
n

ω − ω0 − �ω±
res,n + iγ ±

res,n/2
, (27)

which illustrates that there are multiple resonant peaks in the
outgoing field spectrum at frequencies (ω0 + �ω±

res,n) with
a corresponding width γ ±

res,n. The resonance frequency shifts
�ω±

res,n and widths γres,n are given by

�ω±
res,n = −γ

η
Im

[
Wn

(
∓ βeiφp

η

2
eη/2

)]
, (28)

γ ±
res,n = γ

[
1 − 2

η
Re

[
Wn

(
∓ βeiφp

η

2
eη/2

)]]
. (29)

Figure 2 shows the resonance frequencies for different n val-
ues. We note from Fig. 2 (a) that for small enough atomic
separations η < ηc, there is no shift in the resonance peaks for
the symmetric spectrum for n = 0,−1, the dominant orders.

Figure 3 shows the spectrum of field radiated outside the
system. For a value of η < ηc, the spectrum has a single
maximum, as can be seen from the small η limit of Eq. (27).
In this limit the two atoms behave as a single entity. For
distances η > ηc, we see that there are two prominent peaks
corresponding to �ω+

res,n with n = −1, 0. This corresponds
to the limit where the two atoms make an effective cavity
and interact with the field oscillating within. In the case of
a symmetric atomic state [see Fig. 3(a)], the spectral width
of the spectrum as defined via its full width at half maximum
(FWHM) increases as a signature of the enhancement of the
spontaneous emission beyond Dicke superradiance. As we
have mentioned before, this is an indication of non-Markovian
atomic dynamics.

In the case of an antisymmetric atomic state [see Fig. 3(b)],
the spectrum is ideally zero, since a perfect subradiant state
does not radiate light for η = 0. However, for η > 0, a broad
spectrum appears from the field that leaks out of the system
before the atoms interact with each other, suddenly turning it

FIG. 2. Shift in the resonant frequency �ω±
res,n corresponding to

the different branches of the W function for the initial (a) symmetric
and (b) antisymmetric states. The prominent contributions to the
total spectrum are due to n = {−1, 0} for the symmetric case, and
n = {−1, 0, 1} for the antisymmetric case [42]. It can be seen from
(a) that for small enough atomic separations (η < ηc) there is no shift
to the prominent resonance peaks (�ω+

res,n ≈ 0) corresponding to
n = {−1, 0}. The η values are chosen such that φp = ηω0/γ = 2pπ .
All the parameter values are as detailed in Table I.

off once the atoms “see” each other and destructively inter-
fere. This turn-off process contributes with a broad range of
frequency components. In the case of antisymmetric emitters,
there is always a narrow dip at ω = ω0. This is because the
resonant radiation into the waveguide is mostly trapped in the
region between the emitters, but over time it can be scattered
out into external modes. The dip in the center is therefore
determined by the waveguide coupling efficiency β.

In the long cavity limit, meaning η > 1, the field wave
packet radiated by the atoms is reflected multiple times within
the effective cavity formed by the atoms. The resulting output
field is a train of pulses separated by a time d/v. In the
frequency domain this results in multiple resonance peaks
as seen in Fig. 3(c). Each resonant peak corresponds to a
Lorentzian in Eq. (27), that are all phase coherent with each
other. The asymmetry of each peak arises from a Fano-like
interference between the atomic resonance and the resonances
of the cavity made by the atoms [90,91].

For the case of a symmetric initial state, the splitting be-
tween the central resonant peaks is given by

�ωc = 2γ

η
Im

[
W0

(
− β

η

2
eη/2

)]
. (30)

As the two atoms are separated infinitely further apart,
limη→∞ Im[W0(−β

η

2 eη/2)] = π . Thus the spacing between
different peaks asymptotically approaches �ωc/(2π ) → v/d .
This is twice the free spectral range of a Fabry-Pérot cavity of
length d [83]. The correspondence to a cavity only applies as
an asymptotic behavior when the atoms are placed far apart,
but in a general scenario the free spectral range in Eq. (30) is
determined by the delayed-feedback effects between the two
atoms.

The late-time spectrum can be alternatively written in a
more physically intuitive form by substituting the series so-
lution for the atomic dynamics given in Eq. (17) into Eq. (26)
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FIG. 3. Steady-state excitation probability of waveguide modes as a function of frequency for different interatomic separations for initial
(a) symmetric and (b) antisymmetric states. It can be deduced numerically from (a) that the FWHM of the late-time spectrum for η ≈ 0.56 is
�FWHM ≈ 2.57γ , which exceeds that for the case of coincident emitters η = 0 (�FWHM ≈ 1.97γ , which in the limit of perfect coupling to the
waveguide with β → 1 approaches �FWHM → 2γ ), is a signature for retardation-induced modification to collective atomic decay. For η > ηc,
there are multiple peaks in the late-time spectrum for the initial symmetric state. (c) Late-time spectrum for η ≈ 20 for an initial symmetric
state is depicted as the solid blue curve. The self-phase modulation dynamics in the atomic cavity leads to a Fano-resonance-like spectrum.
The spacing between each resonant peak is roughly given as �ωc/γ ≈ 0.286 from Eq. (30). The dashed vertical lines represent the resonance
frequency peaks �ω+

res,n given in Eq. (28). The width of the two central resonant peaks is given by Eq. (29) as γ +
res,0 ≈ 0.0083γ . The red dashed

curve corresponds to the superradiant spectrum for two coincident emitters (η → 0). The η values are chosen such that φp = ηω0/γ = 2pπ .
All the parameter values are as detailed in Table I.

as (see Appendix A for the proof).

F∞
± (ω) = i√

2

1

ω − ω0 ∓ γ β

2 sin
(

ωη

γ

) + i γ

2

[
1 ± β cos

(
ωη

γ

)] .

(31)

In the limit of coincident atoms, η → 0, F∞
± (ω) ∼

1
ω−ω0+i γ

2 (1±β ) , we recover a Lorentzian spectrum for the field
[83]. This gives us the expected Dicke super- and subradiant
emission profiles for β → 1 with a spectrum peak at ω = ω0

and linewidths γ ± = 2γ , 0. Deviations from the Lorentzian
profile are yet another signature that the dynamics is non-
Markovian due to the retardation effects. It can be seen that
the usual Lorentzian spectrum of the atoms in the Markovian
limit is modified by the factor ∼ γ β

2 eiφp (φp = ωη/γ ), the
real part of which contributes to the linewidth modification
and the imaginary part to the resonant line shift. This can
be understood as coming from the propagation phase φp for
the field modes as they traverse the interatomic distance and
interfere with their time-delayed amplitudes. One can also
derive the resonant peaks (ω0 + �ω±

res,n) and corresponding
linewidths γ ±

res,n [as in Eqs. (28) and (29)] from Eq. (31) as
shown in Appendix B. The above spectrum is also similar
to that emitted from a single excited atom placed in front of
a mirror in a retarded regime [49,92,93]. The two problems
correspond to each other via image theory.

IV. DRIVEN DYNAMICS

We now add a weak drive to the atomic system as given
by the interaction Hamiltonian H̃AD in Eq. (3) to address
the collective state preparation. Notice that the drive Hamil-
tonian does not conserve the total number of excitations in
the atom+field system. Since solving the equations of motion
for multiple excitations in the presence of non-Markovian

feedback is analytically hard, we solve the driven dynamics
perturbatively within the linear regime [49], assuming that the
Rabi frequency for both atoms is the same (�1 = �2 ≡ �)
and sufficiently small such that � � γ . One can also use
different phases of the atom-drive coupling (�1,2) in order
to create an antisymmetric state, however, for the sake of
simplicity, we assume symmetric coupling.

Let us assume that the atoms are initially in the ground state
and the field in the waveguide is in vacuum, as

|
0〉 ≡ |gg〉 ⊗ |{0}〉. (32)

Considering that the interaction with the drive is switched on
at t = 0, we can write the amplitudes of excitation for the
symmetric and antisymmetric states |
±〉 as cD

±(t ) at a time
t from first-order perturbation theory, obtaining

cD
±(t ) = − i

h̄

∫ t

0
dτ 〈
±|eiH̃AFτ/h̄H̃ADe−iH̃AFτ/h̄|
0〉

= −i
√

2�

∫ t

0
dτ ei(ω0−ωD )τ 〈
±|eiH̃AFτ/h̄|
+〉. (33)

This implies that the drive perturbatively excites the atoms
into a single-excitation symmetric state |
+〉 by the virtue of
a weak symmetric coupling, which then evolves in the linear
regime via the atom-field interaction Hamiltonian H̃AF.4 We
note, however, that while the atomic state is symmetric, for
a propagation phase φp = (2p + 1)π , the two atoms behave
subradiantly [94,95]. In the presence of retardation effects
such subradiant states can evolve into highly delocalized en-
tangled states such as the BIC states [42,57,60].

4It can be seen from Eq. (11) that 〈
−|eiH̃AFτ |
+〉 = 0, meaning
that the probability of exciting the antisymmetric state with a sym-
metric coupling to the drive is zero.
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FIG. 4. Late-time excitation probability for the symmetric state
as a function of the drive detuning and atomic separation. The η

values are chosen such that for (a) φp = ηω0/γ = 2pπ , which cor-
responds to the superradiant state and (b) φp = ηω0/γ = (2p + 1)π
corresponding to the subradiant state. The steady-state atomic excita-
tion probability as a function of the drive detuning has multiple peaks
at ωD = ω0 − �ω+

res,n as determined by Eq. (28), as depicted by
the dashed-dotted white curves. As the atomic separation increases
the number of peaks increases similar to the Fano-resonance-like
structure of the late-time spectrum in Fig. 3(c). The red dashed line
in (a) represents the critical distance η = ηc after which there is a
bifurcation of the central peak. The Rabi frequency for the weak
driving field is � = 0.1γ . All the parameter values are as detailed
in Table I.

The steady-state excitation amplitude for the symmetric
state can be thus obtained from Eq. (33),

cD
+(t → ∞) = �

∑
n

α(+)
n

∗

ωD − ω0 + �ω+
res,n + iγ +

res,n

, (34)

where �ω+
res,n and γ +

res,n are as defined in Eqs. (28) and (29),
respectively. Thus we note that there are multiple peaks in
the steady-state atomic amplitude for a drive frequency such
that ωD = ω0 − �ω+

res,n, with a corresponding width of γ +
res,n.

Similar to Eq. (31), this can be alternatively written as

cD
+(t → ∞)

= �

�D + β
γ

2 sin
(

ωDη

γ

) + i γ

2

[
1 + β cos

(
ωDη

γ

)] , (35)

where �D = ω0 − ωD is the drive detuning. In the limit of
the two emitters being coincident, we find that the excitation
amplitude cD

+(t → ∞) → �
�D+i γ

2 (1+β ) is described by the fa-
miliar Lorentzian profile as a function of the detuning �D with
a width γ (1 + β )/2 [83].

Figure 4 shows the symmetric state excitation probability
in the late-time limit as a function of the drive detuning
and atomic separation, for the specific propagation phases of
φp = 2pπ, (2p + 1)π which correspond to a superradiant and
a subradiant pair of emitters, respectively. We observe multi-
ple peaks in the excitation probability corresponding to drive
frequencies ωD = ω0 − �ω+

res,n as determined by Eq. (34).
This scheme can be used to prepare two distant atoms in

an entangled state, depending upon the drive detuning and the
atomic separation. We remark, however, that these results are

limited by the applicability of perturbation theory and require
the drive strength to be sufficiently weak. The dynamics of the
scattered field is discussed in Appendix D. While for weak
driving one only sees the elastic scattering process, in the
general case of a strong drive, this would correspond to the
resonance fluorescence spectrum of two emitters with retarded
interaction [96].

V. SUPERCONDUCTING CIRCUIT IMPLEMENTATION

The model and results described here can be implemented
in a circuit QED (cQED) setup. Specifically, we consider a
setup with two transmon qubits with resonance frequency
ω0/(2π ) ≈ 5 GHz coupled to a Josephson junction (JJ) array
as shown in Fig. 1(b). We further assume that the two qubits
are driven simultaneously by an external pump that couples
symmetrically to both. We describe the details of the JJ ar-
ray in Appendix C, and summarize the parameters value in
Table I. For such values, as detailed in Appendix C, a distance
of d ≈ 1.6 cm between the qubits corresponds to an η ≈ 1,
where the system would exhibit significant retardation effects.
The critical separation after which one starts to observe os-
cillations in the atomic dynamics corresponds to ηc ≈ 0.58
or dc ≈ 0.92 cm. These parameters are within the fabrication
capabilities of ongoing experiments [97,98].

Collective effects in cQED have been already observed in
a system of two artificial atoms coupled to a microwave cav-
ity [99,100], and recent implementations have extended their
study to multiqubit systems [95,101]. Moreover, waveguides
made of JJ arrays with low dissipation losses can signifi-
cantly decrease the field velocity [68,97]. It is within the
reach of current experiments to put both elements together
and demonstrate collective atomic dynamics with retardation
effects.

Additionally, we remark that such an implementation al-
lows several favorable features such as slow field velocities,
and low-loss propagation, while being in a regime with linear
dispersion. Further, one can have precise control over the
propagation phase φp because of having fixed emitter posi-
tions and frequency tunability.

VI. SUMMARY AND DISCUSSION

To summarize, we study a system of two driven distant
emitters coupled to a one-dimensional waveguide considering
retardation effects. We analytically solve the dynamics of the
system for a general initial atomic state in the single-excitation
subspace. We illustrate the collective atomic decay as a mutu-
ally induced stimulated emission process [see Eq. (21)]. The
non-Markovian dynamics of the energy exchange between
the atoms can be characterized by a time-dependent effective
dipole-dipole interaction. We find that the energy shift due
to the dipole-dipole interaction decreases exponentially with
atomic separation [Eq. (23)]. We find that the spectrum of
the radiated field can exhibit a linewidth broadening beyond
that of standard Dicke superradiance [Fig. 3(a)]. Addition-
ally, if the atoms are widely separated, the spectrum of the
field exhibits Fano-resonance-like peaks, shown in Fig. 3(b).
We finally consider a weak drive in the system, to prepare
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entangled atomic steady states, and determine the parameters
of the drive that allow the preparation of a particular collective
state. We further illustrate that one can realize the model in a
cQED implementation, with parameter values within reach of
the state-of-the-art setups.

As an outlook, this work represents a step forward towards
the study of strongly driven dynamics in the retarded regime.
While we have explored the dynamics in a single-excitation
regime, its extension to multiple excitations in the system
can exhibit nonlinear and distinctly quantum features. As an
example of such a regime, one can consider the modifications
to the resonance fluorescence spectrum of two atoms due
to retardation [96]. Given the present analysis of two emit-
ters coupled to a waveguide, the study of multiple emitters
seems a natural extension, as recently explored in Ref. [56]
by studying the atomic dynamics. It would be interesting to
explore the linewidth and coherence properties of the narrow
frequency peaks in the radiation spectrum in the many-atom
scenario [102]. Additionally, circuit QED setups with tun-
able qubit frequencies and engineerable JJ arrays allow for
implementing a determined spectral density of modes that
can help with efficient steady-state entanglement generation
between the qubits [103,104].
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APPENDIX A: LATE-TIME FIELD DYNAMICS

Substituting the series solution for the atomic dynamics
Eq. (17) in Eq. (26),

F±(t → ∞) = lim
t→∞

1√
2

∫ t

0
dτei(ω−ω0 )τ

∞∑
n=0

(∓βeiφp )n

n!

(γ τ − nη

2

)n

e−(γ τ−nη)/2(γ τ − nη). (A1)

Let us define τ̃ ≡ γ τ−nη

2 , to rewrite the above as

F±(t → ∞) = 1√
2

∞∑
n=0

(∓βeiφp )n

n!

(
2

γ
ei(ω−ω0 )nη/γ

)[∫ ∞

0
d τ̃ τ̃ ne−τ̃ e2i(ω−ω0 )τ̃ /γ

]
. (A2)

Now we can simplify the integral in the square brackets above
to obtain

F±(t → ∞) = 1√
2
[

γ

2 − i(ω − ω0)
]

×
∞∑

n=0

[
∓ βeiωη/γ

1 − 2i(ω − ω0)/γ

]n

, (A3)

which yields Eq. (31), for |x| < 1, which is ensured from the
coupling efficiency β being less than 1.

APPENDIX B: RESONANT PEAKS IN LATE-TIME
SPECTRUM

Let us consider the characteristic equation for resonant
peaks from the denominator in Eq. (31),

ω̄± − ω0 + i
γ

2
± i

γ β

2
eiω̄η/γ = 0. (B1)

Defining ω̃± = (ω̄± − ω0 + i γ

2 ),

ω̃± ± i
γ β

2
eiη/γ [ω̃+ω0−iγ /2] = 0 (B2)

⇒
(

−i
ω̃η

γ

)
e−iω̃η/γ = ∓βeiφp

η

2
eη/2 (B3)

⇒ − i
ω̃nη

γ
= Wn

(
∓ βeiφp

η

2
eη/2

)
, (B4)

where we have used the definition of the Lambert-W func-
tion that W (x) = f −1(x), with f (x) = xex, recalling that
the index n refers to the branch of the W function.
This yields the complex eigenvalue of the characteristic
equation as

ω̄±
n = ω0 − i

γ

2
+ i

γ

η
Wn

(
∓ βeiφp

η

2
eη/2

)
(B5)

= ω0 − i
γ (±)

n

2
, (B6)

where we have used Eq. (15). The real and imaginary part of
the above yields the resonant peak frequencies ω0 + �ω±

res,n
and the corresponding linewidths γ ±

res,n of the late-time spec-
trum as in Eqs. (28) and (29).

We further remark that Eq. (B1) is the characteristic equa-
tion used in solving the atomic dynamics in Refs. [56,64],
though in these works only the zeroth eigenvalue is con-
sidered. This gives an effective decay rate that corresponds
to only γ ±

res,n=0. However, the full solution to the dynamics
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FIG. 5. (a) Schematic representation of a JJ array circuit. Each JJ,
represented in blue, is considered to be a linear LC oscillator with an
inductance LJ ≈ 1 nH and capacitance CJ ≈ 1 fF, and is connected
to the ground with a capacitance Cg ≈ 100 fF. Each unit cell is of
length a ≈ 10 μm. (b) Dispersion relation for the JJ array. It can
be seen that the chosen qubit frequency lies in a regime where the
dispersion relation is linear, consistent with the approximations made
in our model.

includes other eigenvalues as well, and yields an effective
decay rate that differs from Refs. [42,56,64].

APPENDIX C: JOSEPHSON JUNCTION ARRAY AS
WAVEGUIDE

We consider two transmon qubits with a resonance fre-
quency ω0 coupled to a JJ array made of N ≈ 2000 identical
JJs in series, as shown in Fig. 1(b). The schematic for a JJ
array is depicted in Fig. 5(a). Assuming that the JJs are linear
such that each JJ can be treated as an LC oscillator, one can
derive the dispersion relation for such a waveguide, following
the approach in Ref. [68] such that

ω(k) = 1√
LJCJ

√
1 − cos (ka)

Cg

2CJ
+ 1 − cos (ka)

, (C1)

where ka = nπ/N . With the chosen parameter values for LJ ,
CJ , and Cg as indicated in Fig. 5, the phase velocity of the field
around ω0 ≈ 5 GHz is v = ω/k ≈ 1 × 106 m/s. We note that
the dispersion relation is linear around the chosen emitter
frequency, as we can see from Fig. 5(b).

FIG. 6. Scattering spectrum from a pair of driven emitters at
different separations. The propagation phase is assumed to be φp =
2pπ . The solid line at ω = ω0 denotes that the resonant frequency is
being filtered.

APPENDIX D: DRIVEN FIELD SPECTRUM
WITH RETARDATION

The driven symmetric state amplitude can be obtained from
Eq. (33) as

cD
+(t ) = − �

∑
n∈Z

α(+)
n

∗ e[i�D−γ (+)
n

∗
/2]t − 1

�D + iγ (+)
n

∗
/2

, (D1)

where �D ≡ ω0 − ωD is the detuning of the laser with respect
to the atomic resonance. We note that the above expression for
the atomic excitation amplitude is similar to that for the field
amplitude in Eq. (26) with ω → ωD, and thus exhibits similar
features as those in Sec. III B.

We consider the dynamics of the waveguide modes as
sourced by the two atoms. The excitation amplitudes of the
field modes are obtained by substituting Eq. (D1) in Eqs. (6)
and (7), and subsequently integrating those to yield

cD
a,b(ω, t ) = −�

√
βγ

π
cos

(
ωd

2v

)∑
n

α(+)
n

∗

i�D − γ
(+)

n
∗
/2

×
[

e{i(ω−ωD )−γ (+)
n

∗
/2}t − 1

i(ω − ωD) − γ
(+)

n
∗
/2

− ei(ω−ω0 )t − 1

i(ω − ω0)

]
.

(D2)

The first term in the above expression is due to the field
emitted from the symmetric state transient dynamics, while
the second term corresponds to the field emitted in the steady
state. Given the weak driving assumption, this corresponds to
only the elastic scattering process in the resonance fluores-
cence spectrum [96].

We consider the two terms in the above separately in the
steady state. It can be shown that in the late-time limit, the
second term corresponds to an infinitely sharp resonant peak,
as limt→∞ ei(ω−ω0 )t −1

ω−ω0
∼ δ(ω − ω0). Assuming that the resonant

peak can be filtered, the first term in the steady-state limit
becomes
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cD
a,b(ω, t ) = −�

√
βγ

π
cos

(
ωd

2v

)

×
∑

n

[
1

�D + iγ (+)
n

∗
/2

]
α(+)

n
∗

ω − ωD + iγ (+)
n

∗
/2

.

(D3)

Thus we note from the above that the scattered
field has resonant peaks at ω = ωD + �ω+

res,n, with
corresponding widths γ +

res,n. The scattered field spec-
trum is plotted in Fig. 6. The multiple peaks for a
pair of distant emitters are a signature of retardation
effects.

[1] R. H. Dicke, Coherence in spontaneous radiation processes,
Phys. Rev. 93, 99 (1954).

[2] M. Gross and S. Haroche, Superradiance: An essay on the
theory of collective spontaneous emission, Phys. Rep. 93, 301
(1982).

[3] D. S. Dovzhenko, S. V. Ryabchuk, Yu. P. Rakovich, and
I. R. Nabiev, Light-matter interaction in the strong cou-
pling regime: Configurations, conditions, and applications,
Nanoscale 10, 3589 (2018).

[4] Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C.
Ciuti, P. Klang, G. Strasser, and C. Sirtori, Ultrastrong Light-
Matter Coupling Regime with Polariton Dots, Phys. Rev. Lett.
105, 196402 (2010).

[5] Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson,
M. J. Manfra, and J. Kono, Collective non-perturbative cou-
pling of 2D electrons with high-quality-factor terahertz cavity
photons, Nat. Phys. 12, 1005 (2016).

[6] J. Flick, N. Rivera, and P. Narang, Strong light-matter coupling
in quantum chemistry and quantum photonics, Nanophotonics
7, 1479 (2018).

[7] K. Hammerer, A. S. Sørensen, and E. S. Polzik, Quantum in-
terface between light and atomic ensembles, Rev. Mod. Phys.
82, 1041 (2010).

[8] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch,
J. I. Cirac, and P. Zoller, Dipole Blockade and Quantum Infor-
mation Processing in Mesoscopic Atomic Ensembles, Phys.
Rev. Lett. 87, 037901 (2001).

[9] M. Saffman, T. G. Walker, and K. Mølmer, Quantum informa-
tion with Rydberg atoms, Rev. Mod. Phys. 82, 2313 (2010).

[10] A. E. B. Nielsen and K. Mølmer, Deterministic multimode
photonic device for quantum-information processing, Phys.
Rev. A 81, 043822 (2010).

[11] P. Zanardi and M. Rasetti, Noiseless Quantum Codes, Phys.
Rev. Lett. 79, 3306 (1997).

[12] D. A. Lidar and K. B. Whaley, Decoherence-free subspaces
and subsystems, in Irreversible Quantum Dynamics, edited by
F. Benatti and R. Floreanini, Lecture Notes in Physics Vol. 622
(Springer, Berlin, 2003), pp. 83–120.

[13] G. Facchinetti, S. D. Jenkins, and J. Ruostekoski, Storing Light
with Subradiant Correlations in Arrays of Atoms, Phys. Rev.
Lett. 117, 243601 (2016).

[14] A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H. J.
Kimble, and D. E. Chang, Exponential Improvement in Photon
Storage Fidelities Using Subradiance and “Selective Radi-
ance” in Atomic Arrays, Phys. Rev. X 7, 031024 (2017).

[15] J. A. Needham, I. Lesanovsky, and B. Olmos, Subradiance-
protected excitation transport, New J. Phys. 21, 073061
(2019).

[16] J. Galego, F. Garcia-Vidal, and J. Feist, Suppressing photo-
chemical reactions with quantized light fields, Nat. Commun.
7, 13841 (2016).

[17] M. Hertzog, M. Wang, J. Mony, and K. Börjesson, Strong
light-matter interactions: A new direction within chemistry,
Chem. Soc. Rev. 48, 937 (2019).

[18] A. N. Poddubny, Collective Förster energy transfer modified
by a planar metallic mirror, Phys. Rev. B 92, 155418 (2015).

[19] X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C.
Genet, J. A. Hutchison, and T. W. Ebbesen, Energy trans-
fer between spatially separated entangled molecules, Angew.
Chem., Int. Ed. 56, 9034 (2017).

[20] M. Gómez-Castaño, A. Redondo-Cubero, L. Buisson, J. L.
Pau, A. Mihi, S. Ravaine, R. A. L. Vallée, A. Nitzan, and
M. Sukharev, Energy transfer and interference by collective
electromagnetic coupling, Nano Lett. 19, 5790 (2019).

[21] R. Röhlsberger, K. Schlage1, B. Sahoo, S. Couet, and R.
Rüffer, Collective Lamb shift in single-photon superradiance,
Science 328, 1248 (2010).

[22] P. Y. Wen, K.-T. Lin, A. F. Kockum, B. Suri, H. Ian, J. C.
Chen, S. Y. Mao, C. C. Chiu, P. Delsing, F. Nori, G.-D. Lin,
and I.-C. Hoi, Large Collective Lamb Shift of Two Distant Su-
perconducting Artificial Atoms, Phys. Rev. Lett. 123, 233602
(2019).

[23] K. Sinha, B. P. Venkatesh, and P. Meystre, Collective Effects in
Casimir-Polder Forces, Phys. Rev. Lett. 121, 183605 (2018).

[24] S. Fuchs and S. Y. Buhmann, Purcell-Dicke enhancement
of the Casimir-Polder potential, Europhys. Lett. 124, 34003
(2018).

[25] W. Guerin, M. T. Rouabah, and R. Kaiser, Light interacting
with atomic ensembles: Collective, cooperative and meso-
scopic effects, J. Mod. Opt. 64, 895 (2017).

[26] N. Skribanowitz, I. P. Herman, J. C. MacGillivray, and
M. S. Feld, Observation of Dicke Superradiance in Optically
Pumped HF Gas, Phys. Rev. Lett. 30, 309 (1973).

[27] M. Gross, C. Fabre, P. Pillet, and S. Haroche, Observation of
Near-Infrared Dicke Superradiance on Cascading Transitions
in Atomic Sodium, Phys. Rev. Lett. 36, 1035 (1976).

[28] D. Pavolini, A. Crubellier, P. Pillet, L. Cabaret, and S.
Liberman, Experimental Evidence for Subradiance, Phys. Rev.
Lett. 54, 1917 (1985).

[29] R. G. DeVoe and R. G. Brewer, Observation of Superradiant
and Subradiant Spontaneous Emission of Two Trapped Ions,
Phys. Rev. Lett. 76, 2049 (1996).

[30] P. Solano, P. Barberis-Blostein, F. K. Fatemi, L. A. Orozco,
and S. L. Rolston, Super-radiance reveals infinite-range dipole
interactions through a nanofiber, Nat. Commun. 8, 1857
(2017).

[31] P. Solano, J. A. Grover, J. E. Hoffman, S. Ravets, F. K. Fatemi,
L. A. Orozco, and S. L. Rolston, Optical nanofibers: A new
platform for quantum optics, Adv. At., Mol. Opt. Phys. 66,
439 (2017).

[32] P. Solano, Quantum optics in optical nanofibers, Doctoral the-
sis, University of Maryland, College Park, 2017.

043718-10

https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1016/0370-1573(82)90102-8
https://doi.org/10.1039/C7NR06917K
https://doi.org/10.1103/PhysRevLett.105.196402
https://doi.org/10.1038/nphys3850
https://doi.org/10.1515/nanoph-2018-0067
https://doi.org/10.1103/RevModPhys.82.1041
https://doi.org/10.1103/PhysRevLett.87.037901
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/PhysRevA.81.043822
https://doi.org/10.1103/PhysRevLett.79.3306
https://doi.org/10.1103/PhysRevLett.117.243601
https://doi.org/10.1103/PhysRevX.7.031024
https://doi.org/10.1088/1367-2630/ab31e8
https://doi.org/10.1038/ncomms13841
https://doi.org/10.1039/C8CS00193F
https://doi.org/10.1103/PhysRevB.92.155418
https://doi.org/10.1002/anie.201703539
https://doi.org/10.1021/acs.nanolett.9b02521
https://doi.org/10.1126/science.1187770
https://doi.org/10.1103/PhysRevLett.123.233602
https://doi.org/10.1103/PhysRevLett.121.183605
https://doi.org/10.1209/0295-5075/124/34003
https://doi.org/10.1080/09500340.2016.1215564
https://doi.org/10.1103/PhysRevLett.30.309
https://doi.org/10.1103/PhysRevLett.36.1035
https://doi.org/10.1103/PhysRevLett.54.1917
https://doi.org/10.1103/PhysRevLett.76.2049
https://doi.org/10.1038/s41467-017-01994-3
https://doi.org/10.1016/bs.aamop.2017.02.003


COLLECTIVE RADIATION FROM DISTANT EMITTERS PHYSICAL REVIEW A 102, 043718 (2020)

[33] C. A. Ebongue, D. Holzmann, S. Ostermann, and H. Ritsch,
Generating a stationary infinite range tractor force via a multi-
mode optical fibre, J. Opt. 19, 065401 (2017).

[34] S. Kato, N. Német, K. Senga, S. Mizukami, X. Huang, S.
Parkins, and T. Aoki, Observation of dressed states of distant
atoms with delocalized photons in coupled-cavities quantum
electrodynamics, Nat. Commum. 10, 1160 (2019).

[35] R. J. Schoelkopf and S. M. Girvin, Wiring up quantum sys-
tems, Nature (London) 451, 664 (2008).

[36] A. González-Tudela, V. Paulisch, D. E. Chang, H. J. Kimble,
and J. I. Cirac, Deterministic Generation of Arbitrary Photonic
States Assisted by Dissipation, Phys. Rev. Lett. 115, 163603
(2015).

[37] J. Ruostekoski and J. Javanainen, Emergence of Correlated
Optics in One-Dimensional Waveguides for Classical and
Quantum Atomic Gases, Phys. Rev. Lett. 117, 143602 (2016).

[38] E. Shahmoon and G. Kurizki, Nonradiative interaction and
entanglement between distant atoms, Phys. Rev. A 87, 033831
(2013).

[39] A. González-Tudela, V. Paulisch, H. J. Kimble, and J. I.
Cirac, Efficient Multiphoton Generation in Waveguide Quan-
tum Electrodynamics, Phys. Rev. Lett. 118, 213601 (2017).

[40] W. Ge, K. Jacobs, Z. Eldredge, A. V. Gorshkov, and M. Foss-
Feig, Distributed Quantum Metrology with Linear Networks
and Separable Inputs, Phys. Rev. Lett. 121, 043604 (2018).

[41] H.-P. Breuer and F. Petruccione, Theory of Open Quantum
Systems (Oxford University Press, New York, 2002).

[42] K. Sinha, P. Meystre, E. Goldschmidt, F. K. Fatemi, S. L.
Rolson, and P. Solano, Non-Markovian Collective Emission
from Macroscopically Separated Emitters, Phys. Rev. Lett.
124, 043603 (2020).

[43] P. W. Milonni and P. L. Knight, Retardation in the resonant
interaction of two identical atoms, Phys. Rev. A 10, 1096
(1974).

[44] P. W. Milonni and P. L. Knight, Retardation in coupled dipole-
oscillator systems, Am. J. Phys. 44, 741 (1976).

[45] P. R. Berman, Theory of two atoms in a chiral waveguide,
Phys. Rev. A 101, 013830 (2020).

[46] H. P. Breuer, E. M. Laine, J. Piilo, and B. Vacchini, Collo-
quium: Non-Markovian dynamics in open quantum systems,
Rev. Mod. Phys. 88, 021002 (2016).

[47] I. de Vega and D. Alonso, Dynamics of non-Markovian open
quantum systems, Rev. Mod. Phys. 89, 015001 (2017).

[48] H. Gießen, J. D. Berger, G. Mohs, P. Meystre, and S. F. Yelin,
Cavity-modified spontaneous emission: From Rabi oscilla-
tions to exponential decay, Phys. Rev. A 53, 2816 (1996).

[49] U. Dorner and P. Zoller, Laser-driven atoms in half-cavities,
Phys. Rev. A 66, 023816 (2002).

[50] T. Tufarelli, F. Ciccarello, and M. S. Kim, Dynamics of spon-
taneous emission in a single-end photonic waveguide, Phys.
Rev. A 87, 013820 (2013).

[51] T. Tufarelli, M. S. Kim, and F. Ciccarello, Non-Markovianity
of a quantum emitter in front of a mirror, Phys. Rev. A 90,
012113 (2014).

[52] A. Carmele, J. Kabuss, F. Schulze, S. Reitzenstein, and A.
Knorr, Single Photon Delayed Feedback: A Way to Stabilize
Intrinsic Quantum Cavity Electrodynamics, Phys. Rev. Lett.
110, 013601 (2013).

[53] R. J. Cook and P. W. Milonni, Quantum theory of an atom near
partially reflecting walls, Phys. Rev. A 35, 5081 (1987).

[54] P.-O. Guimond, A. Roulet, H. N. Le, and V. Scarani, Rabi os-
cillation in a quantum cavity: Markovian and non-Markovian
dynamics, Phys. Rev. A 93, 023808 (2016).
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