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Driving-induced resonance narrowing in a strongly coupled cavity-qubit system
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We study a system consisting of a superconducting flux qubit strongly coupled to a microwave cavity.
Externally applied qubit driving is employed in order to manipulate the spectrum of dressed states. We observe
resonance narrowing in the region where the splitting between the two dressed fundamental resonances is
tuned to zero. The narrowing in this region of overlapping resonances can be exploited for long-time storage
of quantum states. In addition, we measure the response to strong cavity mode driving, and find a qualitative
deviation between the experimental results and the predictions of a semiclassical model. On the other hand,
good agreement is obtained using theoretical predictions obtained by numerically integrating the master equation
governing the system’s dynamics. The observed response demonstrates a process of a coherent cancellation of
two metastable dressed states.
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I. INTRODUCTION

The spectral response of a variety of both classical and
quantum systems near an isolated resonance is often well
described by the Breit-Wigner model [1]. In this descrip-
tion the lifetime of an isolated resonance can be determined
from its linewidth. A variety of intriguing effects may oc-
cur in regions where resonances overlap [2]. For example,
both linewidth narrowing and broadening have been observed
with systems having overlapping resonances [3]. These ef-
fects are attributed to interference between different processes
contributing to damping [4,5]. Destructive interference gives
rise to linewidth narrowing, whereas the opposite effect of
broadening occurs due to constructive interference.

These effects have been demonstrated in a wide variety
of both classical and quantum systems. In the classical do-
main narrowing has been observed with resonators having
two overlapping resonances for which the frequency separa-
tion is smaller than the resonances’ bandwidth [7–9]. Closely
related processes occur in the quantum domain with systems
having overlapping resonances. In some cases this overlap is
obtained by static tuning of the system under study. One well-
known example is the Purcell effect [10], which is observed
when atoms interact with light confined inside a cavity. In
such cavity quantum electrodynamics (CQED) systems, both
linewidth narrowing and broadening occur when the atomic
and cavity mode resonances overlap. Other examples of static
tuning giving rise to linewidth narrowing and broadening due
to overlapping resonances have been reported in [11,12].

*Present address: Alibaba Quantum Laboratory, Alibaba Group,
Hangzhou, Zhejiang 311121, People’s Republic of China.

Closely related processes occur in atomic systems exhibit-
ing electromagnetically induced transparency (EIT) [13,14].
However, tuning into the region of EIT is commonly based
on external driving (rather than static tuning), which can be
used for manipulating the spectrum of the dressed states.
Both linewidth narrowing and broadening have been observed
in such systems in the region where the dressed spectrum
contains overlapping resonances. Commonly, a broadened
resonance is referred to as a bright state, whereas the term dark
state refers to a narrowed resonance. The slow propagation
speed associated with dark states [15] can be exploited for
long term storage of quantum information [16].

Here we report on a linewidth narrowing that is experi-
mentally observed in a superconducting circuit composed of
a microwave resonator and a Josephson flux qubit [17,18].
The qubit under study, which is strongly coupled [19–22] to
a coplanar waveguide (CPW) microwave resonator [6,20,23–
27], is shown in Figs. 1(a) and 1(b). The strong coupling gives
rise to a dispersive splitting of the cavity mode resonance. We
find that this frequency splitting can be controlled by applying
a monochromatic driving to the flux qubit [see Fig. 1(b)]. The
effect of linewidth narrowing, which is discussed below in
Sec. IV, is observed when the frequency and power of qubit
driving are tuned into the region where the frequency splitting
vanishes. In this region the measured linewidth becomes sig-
nificantly smaller than the linewidth of the decoupled cavity
resonance by a factor of up to 20.

While the linewidth narrowing effect is induced by qubit
driving, a variety of other nonlinear effects can be observed
with strong cavity mode driving [28–45]. In Sec. V we focus
on the line shape of the cavity transmission in the nonlinear
region. The experimental results are compared with predic-
tions of a semiclassical theory. We find that good agreement
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FIG. 1. The device. (a) Electron micrograph of the flux qubit.
(b) Zoom out electron micrograph showing the qubit embedded in
the CPW resonator and its local flux control line. (c) Sketch of
the experimental setup. The cavity transmission is measured using
a vector network analyzer (VNA). Monochromatic flux qubit (FQ)
driving is applied using a signal generator (SG). (d) The measured
cavity transmission (in dB units) vs ωf/2π (magnetic field detuning
from the symmetry point) and ωdf/2π (cavity driving frequency).
The power injected into the cavity is −112 dBm. For the device
under study ωc/2π = 6.6408 GHz, ω�/2π = 1.12 GHz, g/2π =
0.274 GHz, and γc/ωc = 1.1 × 10−5. The relaxation time T1 =
1.2 μs (1 + 0.45 ns ×|ωf |) is obtained from energy relaxation mea-
surements, and the rate T −1

2 = 4.5 MHz (1 + 44|ωf |/ωa ) is obtained
from Ramsey rate measurements [6]. The empirical expressions for
both T1 and T2 are obtained using approximate interpolation.

can be obtained only in the limit of relatively small driving
amplitudes. For higher driving amplitudes, better agreement
is obtained with theoretical predictions derived by numerical
integration of the master equation for the coupled system.

II. EXPERIMENTAL SETUP

The investigated device [6] [see Figs. 1(a) and 1(b)] con-
tains a CPW cavity resonator weakly coupled to two ports
that are used for performing microwave transmission mea-
surements [see Fig. 1(c)]. A persistent current flux qubit
[17], consisting of a superconducting loop interrupted by four
Josephson junctions, is inductively coupled to the fundamen-
tal half-wavelength mode of the CPW resonator. We used a
CPW line terminated by a low inductance shunt for qubit
driving [see Figs. 1(b) and 1(c)]. We fabricated the device
on a high resistivity silicon substrate in a two-step process.
In the first step, the resonator and the control lines are de-
fined using optical lithography, evaporation of a 190 nm thick
aluminum layer, and liftoff. In the second step, a bilayer re-
sist is patterned by electron-beam lithography. Subsequently,

shadow evaporation of two aluminum layers, 40 and 65 nm
thick, respectively, followed by liftoff define the qubit junc-
tions. The chip is enclosed inside a copper package, which is
cooled by a dilution refrigerator to a temperature of T = 23
mK. We employed both passive and active shielding methods
to suppress magnetic field noise. While passive shielding is
performed using a three-layer high permeability metal, an
active magnetic field compensation system placed outside the
cryostat is used to actively reduce low-frequency magnetic
field noise. We used a set of superconducting coils to apply
dc magnetic flux. Qubit state control, which is employed in
order to measure the qubit longitudinal T1 and transverse T2 re-
laxation times, is performed using shaped microwave pulses.
Attenuators and filters are installed at different cooling stages
along the transmission lines for qubit control and readout. A
detailed description of sample fabrication and experimental
setup can be found in [6,24].

III. THE DISPERSIVE REGION

The circulating current states of the qubit are la-
beled as | �〉 and | �〉. The coupling between the
cavity mode and the qubit is described by the term
−g(A + A†)(| �〉〈� | − | �〉〈� |) in the system Hamilto-
nian, where A (A†) is a cavity mode annihilation (creation)
operator, and g is the coupling coefficient. In the presence
of an externally applied magnetic flux, the energy gap h̄ωa

between the qubit ground state |−〉 and first excited state |+〉
is approximately given by h̄ωa = h̄

√
ω2

f + ω2
� , where ωf =

(2Icc�0/h̄)(�e/�0 − 1/2), Icc (−Icc) is the circulating cur-
rent associated with the state | �〉 (| �〉), �0 = h/2e is the
flux quantum, �e is the externally applied magnetic flux, and
h̄ω� is the qubit energy gap for the case where �e/�0 = 1/2.

In the dispersive region, i.e., when g/|�| � 1 where � =
ωc − ωa and ωc is the cavity mode angular frequency, the
coupling between the cavity mode and the qubit gives rise to
a resonance splitting. The steady state cavity mode response
for the case where the qubit occupies the ground (first ex-
cited) states is found to be equivalent to the response of a
mode having effective complex cavity angular resonance fre-
quency ϒ− (ϒ+), where ϒ± = ϒc ± ωBS ± ϒba, ϒc = ωc −
iγc is the cavity mode intrinsic complex angular resonance
frequency, with ωc being the angular resonance frequency,
γc is the linear damping rate, and ωBS = g2

1/(ωc + ωa ) is the
Bloch-Siegert shift [21]. The term ϒba is given by [34,45–47]

ϒba = −g2
1

�

1 − i
�T2

1 + 1
�2T 2

2
+ 4g2

1T1Ec

�2T2

, (1)

where g1 = g/
√

1 + (ωf/ω�)2 is the flux dependent effective
coupling coefficient, T1 = γ −1

1 and T2 = γ −1
2 are the qubit

longitudinal and transverse relaxation times, respectively, and
Ec is the averaged number of photons occupying the cavity
mode. Note that the imaginary part of ϒ± represents the
effect of damping and the term proportional to Ec gives rise
to nonlinearity. In the dispersive approximation this term is
assumed to be small, i.e., Ec � �2T2/4g2

1T1. Note also that
when �T2 � 1 the term ϒba gives rise to a shift in the
mode angular frequency approximately given by ∓χ , where
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FIG. 2. The effect of qubit driving. Cavity transmission in dB
units as a function of qubit driving frequency ωp/2π and cavity
driving frequency ωdf/2π . The qubit driving amplitude 	q in (b) is
100 times larger compared with the values used in (a). For both plots
the qubit frequency is given by ωa/2π = 5 GHz. The overlaid black
dotted line in (b) is obtained by numerically calculating the transition
frequencies between the lowest-lying eigenvalues of the Hamiltonian
(A1) using the following parameters: 	q/2π = 0.5 GHz, ωc/2π =
6.6408 GHz, ω�/2π = 1.12 GHz, ωf/2π = 4.9 GHz, ωa/2π =
5.0 GHz, and g1/2π = 0.150 GHz.

χ = g2
1/�, and to a Kerr coefficient approximately given by

±(g4
1/�

3)(4T1/T2).
Network analyzer measurements of the cavity transmission

are shown in Fig. 1(d). In the region where � > 0 (i.e., the
middle section of the panel where |ωf | <

√
ω2

c − ω2
�) two

peaks are seen in the cavity transmission, the upper one corre-
sponds to the case where the qubit mainly occupies the ground
state, whereas the lower one, which is weaker, corresponds to
the case where the qubit mainly occupies the first excited state.

IV. QUBIT DRIVING

The flux qubit is driven by injecting a signal having angular
frequency ωp and amplitude 	q into the transmission line
inductively coupled to the qubit [see Figs. 1(b) and 1(c)].
Network analyzer measurements of the cavity transmission
as a function of ωp for two fixed values of qubit driving
amplitude 	q are shown in Figs. 2(a) and 2(b). For both
plots the qubit transition frequency is flux tuned to the value
ωa/2π = 5 GHz. The frequency separation between the two
resonances that are shown in Fig. 2 is consistent with what is
expected from the above-discussed dispersive shift ∓χ , where
χ = g2

1/�. As can be seen from Fig. 2, the visibility of the
resonance corresponding to the qubit occupying the excited
state at 6.637 GHz is affected by both angular frequency ωp

and amplitude 	q of qubit driving. These dependencies are
attributed to driving-induced qubit depolarization.

The comparison between Fig. 2(a) and 2(b), for which
the qubit driving amplitude 	q is 100 times higher, reveals
some nonlinear effects. One example is a nonlinear process
of frequency mixing of the externally applied driving tones,
which gives rise to pronounced features in the measured
cavity transmission when ωp is tuned close to the values

FIG. 3. Dependence on qubit driving amplitude. The driving fre-
quency is ωp/2π = 5.16 GHz in (a) and (b) and ωp/2π = 5.52 GHz
in (c) and (d). Cavity transmission in dB units as a function of
cavity driving frequency ωdf/2π and amplitude (in logarithmic scale)
P1 = 20 log10 (	q/	q,0) are shown in (a) and (c). Cross sections
taken at values of P1 indicated by colored horizontal dotted lines
in (a) and (c) are shown using the corresponding colors in (b) and
(d). The overlaid black dotted line in (a) is obtained by numeri-
cally calculating the transition frequencies between the eigenvalues
of the Hamiltonian (A1) using the following parameters: ωp/2π =
5.16 GHz, 	q,0/2π = 2.4 GHz, ω�/2π = 1.12 GHz, ωf/2π =
4.873 GHz, ωa/2π = 5.000 GHz, and g1/2π = 0.150 GHz.

(ωa + ωc)/2 = 2π × 5.8 GHz and (3ωa − ωc)/2 = 2π × 4.2
GHz [see the overlaid vertical white dotted lines in Fig. 2(b)].

The dependence of cavity transmission on qubit driving
amplitude 	q with a fixed driving frequency of ωp/2π =
5.16 GHz (ωp/2π = 5.52 GHz) is depicted in Figs. 3(a) and
3(b) [Figs. 3(c) and 3(d)]. Cross sections of the color-coded
plots shown in Figs. 3(a) and 3(c) (corresponding to different
values of the qubit driving amplitude 	q) are displayed in
Figs. 3(b) and 3(d).

As can be seen from the cross sections shown in Figs. 3(b)
and 3(d), the cavity mode resonance line shapes exhibit hard-
ening and softening effects (corresponding to positive and
negative Kerr coefficient, respectively) in some region of the
qubit driving amplitude 	q. Similar behavior is presented in
Fig. 3 of Ref. [46], which exhibits cavity mode resonance line
shapes of the same device in the absence of qubit driving.
However, while the nonlinearity observed in Ref. [46] is in-
duced by cavity driving, the one shown in Fig. 3(b) is induced
by qubit driving.

The cavity driving-induced nonlinearity reported in
Ref. [46] is well described by the above-discussed Kerr coef-
ficients that can be calculated using Eq. (1) (see also Eqs. (4)
and (A94) of Ref. [46]). As is argued below, similar nonlin-
earity can be obtained due to qubit driving. In the rotating
wave approximation (RWA) the Hamiltonian H0 of the closed
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system (consisting of a driven qubit and a coupled cavity
mode) in a frame rotated at the qubit driving angular fre-
quency ωp is found to be given by [see Eqs. (A7)–(A9) of
Appendix A] [48–54]

h̄−1H0 = (ωR/2)
′
z − �pcA†A + (g′/2)(A
′

− + 
′
+A†),

(2)
where ωR =

√
	2

q + 4�2
pa is the Rabi frequency, �pa = ωp −

ωa, and �pc = ωp − ωc. The operators 
′
± and 
′

z, which are
defined by Eq. (A5), represent qubit operators in the basis of
dressed states. This Hamiltonian (2) has the same structure as
the Hamiltonian in the RWA of the same system in the absence
of qubit driving (see Eq. (A13) of Ref. [46]). However, while
for the case of no qubit driving the crossing point occurs when
the qubit angular frequency ωa coincides with the cavity mode
angular frequency ωc, the condition �pc = ±ωR is satisfied at
the crossing point of the driven system.

The transformed Hamiltonian [34] HT = UH0U † [see
Eq. (2)], where the unitary operator U is given by U =
exp [(N−1/2S/2) tan−1 (g′N 1/2/�R)] and where �R = ωR +
�pc, N = A†A + (1 + 
′

z )/2, and S = A
′
− − A†
′

+ is given
by (constant terms are disregarded)

h̄−1HT =
(

− �pc + ξ
′
z − g′4(1 + A†A
′

z

)
12�3

R

)
A†A

+ (ωR + ξ )
′
z

2
+ O

[(
g′

�R

)5]
, (3)

where ξ = [g′2/(4�R)][1 − g′2/(3�2
R)]. Both hardening and

softening effects are attributed to the term proportional to
A†AA†A
′

z in Eq. (3).
The term proportional to A†A in the Hamiltonian (3) can

be used to determine the shift in resonances that is induced by
qubit driving. However, the calculated shift does not exhibit
a good agreement with the measured shift shown in Figs. 2
and 3. The inaccuracy is attributed to throwing away counter-
rotating terms of the form A
′

+ and A†
′
− in the derivation

of the Hamiltonian (2). Much better agreement is obtained
by numerically calculating the eigenvalues of the Hamiltonian
(A1). The results of this calculation are displayed in Figs. 2(b)
and 3(a) by the overlaid black dotted lines. The parameters
that have been assumed for the calculation are listed in the
captions of Figs. 2 and 3.

As can be seen from both Fig. 2(b) and the green-colored
cross sections shown in Figs. 3(b) and 3(d), in some regions
of qubit driving parameters the two dressed fundamental reso-
nances overlap. In the overlap region, a pronounced linewidth
narrowing is observed [see Figs. 3(b) and 3(d)].

In Appendix A we show that the observed changes in
linewidth of resonances can be qualitatively attributed to the
Purcell effect for dressed states. In particular, both narrowing
and broadening are demonstrated by Eqs. (A14) and (A15) be-
low. However, the analytical expressions given by Eqs. (A14)
and (A15), which have been obtained by assuming the limit of
weak coupling and by employing the RWA, are not applicable
in the region where the linewidth narrowing is experimentally
observed. Consequently, direct comparison between theoreti-
cal predictions based on Eqs. (A14) and (A15) and data yields
poor agreement. Moreover, the relatively intense driving in
the region where the linewidth narrowing is experimentally

FIG. 4. Nonlinear response to cavity driving. The cavity trans-
mission TNA is measured as a function of cavity driving frequency
ωdf/2π for different values of the cavity driving power Pda. These
data are compared with a numerical calculation of the steady state of
the Lindblad master equation (dashed red line), which is detailed in
Appendix C. In (a)–(c) the frequency ωf/2π is flux tuned to 5.5 GHz,
and in (d)–(f) to 7.8 GHz. Different values of γc are used at each
drive power to account for the increase in the quality factor of the
cavity with occupation. We use γc = (a) 0.314, (b) 0.251, (c) 0.126,
(d) 0.314, (e) 0.251, and (f) 0.126 MHz.

observed gives rise to stochastic transitions between qubit
states [55]. These stochastic transitions, which may give rise
to the effect of motional narrowing [56–60], cannot be ade-
quately accounted for using the semiclassical approximation.
Note that these phenomena are closely related to the effect of
driving-induced spin decoupling (e.g., Fig. 7.27 of Ref. [61]).

Numerical analysis based on the stochastic Schrödinger
equation is described below in Appendix B. We find that the
effect of narrowing can be numerically reproduced provided
that both qubit and cavity driving amplitudes are sufficiently
large. The analysis in this region is challenging, since rela-
tively long integration times are needed to achieve conversion.
As can be seen from Figs. 6 and 7, in the region where
narrowing is numerically reproduced, the system becomes
multistable.

V. CAVITY DRIVING

The nonlinear response of a microwave cavity coupled to
a transmon superconducting qubit has recently been studied
in Ref. [62]. The experimental results, together with theo-
retical analysis [45,63], indicate that the response to strong
cavity driving is affected by the significant coherent driving
of the qubit as well as by the stochastic transitions between
qubit states. The effect of cavity driving can be characterized
by a dephasing rate and by a measurement rate. Both rates
have been numerically calculated and analytically estimated
in Ref. [55].

Measurements of the cavity transmission TNA of our de-
vice as a function of cavity driving frequency ωdf/2π and
power Pda are shown in Fig. 4. No qubit driving is applied
during these measurements. We demonstrate nonlinearity of
the softening type in Figs. 4(a)–4(c), whereas hardening is
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demonstrated in Figs. 4(d)–4(f). We obtained the data shown
in Fig. 4 by sweeping the cavity driving frequency ωdf/2π

upwards. Almost no hysteresis is observed when the sweeping
direction is flipped.

The measured cavity transmission TNA can be compared
with theoretical predictions based on the semiclassical ap-
proximation. Such a comparison has been performed in
Ref. [46] based on data that has been obtained from the same
device. Good quantitative agreement was found in the region
of relatively small cavity driving amplitudes [46].

However, when the cavity is strongly driven, the non-
linearity introduced to the system by the qubit causes the
onset of bistability and the semiclassical approximation alone
is unable to reproduce the cavity transmission. This is be-
cause, despite accurately modeling the fixed points, which
henceforth are referred to as the bright and dim metastable
states (see Fig. 5), the semiclassical equations of motion give
no information regarding the occupation probabilities of the
two metastable states in the overall state of the system, which
can be written as

ρ = pbρb + pdρd, (4)

where ρb (ρd ) and pb (pd ) represent the bright (dim) state and
its probability respectively.

The experimental results shown in Fig. 4 exhibit a sharp dip
in cavity transmission TNA at drive powers above −109 dBm.
A very similar feature has been experimentally observed be-
fore in [62] and theoretically discussed in Refs. [45,63], for
which the full quantum theory of the single nonlinear oscil-
lator has been developed in [64]. The origin of this dip is
the destructive interference between the two metastable states.
Since the system is coupled to an external reservoir, fluctua-
tions in the quantum state ensue and occasionally cause major
switching events between the bright and dim states. When
the complex amplitude of the cavity state is averaged over an
ensemble of many such switching events, there is typically a
narrow region in the frequency-power space where the two
complex amplitudes partially cancel each other. By using the
Lindblad master equation to model the system, we are able to
take account of these fluctuations which cause these switching
events and we produce the numerical fits seen in Fig. 4. Com-
parison between the predictions derived from the numerical
integration of the master equation and the ones analytically
derived from the semiclassical equations of motion is shown
in Fig. 5.

VI. SUMMARY

Our main finding is the linewidth narrowing that is
obtained by applying intense qubit driving. The effect is
experimentally robust, however, its theoretical modeling is
quite challenging. Further study is needed to explore the
possibility of exploiting this effect for long-time storage of
quantum information. We also find that bistability, which
is predicted by the semiclassical model for monochromatic
cavity driving, is experimentally inaccessible. This effect and
related observations can be satisfactorily explained using nu-
merical integration of the master equation for the coupled
system.

FIG. 5. The bistable regime. The cavity drive power is given by
Pda = 20 log10 (	c/ω2,0) where ω2,0/2π = 340 GHz. In (a) we plot
the Wigner function of the cavity state in the bistable regime, which
is obtained by solving for the steady state of the master equation at a
drive power of Pda = −109 dBm and a drive frequency of ωdf/2π =
6.6445 GHz. These parameters are marked by the red crosses in
(b) and in Fig. 4(b). Two metastable states can be seen: a bright
state at Cb = 4.64 − 3.73i and a dim state at Cd = −1.88 − 0.39i.
These two states correspond to the fixed points produced using the
semiclassical equations of motion, marked by blue crosses. Next in
(b) we examine the boundaries of the bistable regime. By examining
the cavity Wigner function over a range of drive powers and frequen-
cies we map the region in which we find two peaks corresponding
to the bright and dim states. When two peaks can be identified we
calculate the metric B = 1 − |pb − pd | as a measure of bistability.
This is plotted in the color map above. Meanwhile the dashed black
lines mark the boundaries of the region in which the semiclassical
equations of motion have two fixed points. These methods produce
significant overlap and both predict the onset of bistability around
Pda = −117 dB. We also see that the region of maximum bistability
predicted by the master equation (yellow strip) lies either close to or
within the semiclassical bistable region at all powers. However, there
are significant differences in the limits of the bistable region, par-
ticularly at the upper frequency limit. The master equation predicts
this limit should increase with drive power, whereas the semiclassical
equations predict the opposite.
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APPENDIX A: DRESSED STATES

In this Appendix the semiclassical dynamics of a driven
qubit coupled to a cavity mode is discussed [48–54]. In the
RWA the Hamiltonian H0 of the closed system in a frame
rotated at the qubit driving angular frequency ωp is given by
(see Eq. (A13) of Ref. [46])

h̄−1H0 = −�pa
z + 	q(
+ + 
−)

4

− �pcA†A + g1(A
− + 
+A†)

2
, (A1)

where �pa = ωp − ωa, h̄ωa is the qubit energy, 
z is the
qubit longitudinal operator, 	q is the driving amplitude,

+ and 
− = 


†
+ are qubit rotated transverse operators,

�pc = ωp − ωc, ωc is the cavity mode angular frequency, A†A
is the cavity mode number operator, and g1 is the coupling
coefficient.

The Bloch equations of motion for the expectation values
a = 〈A〉, p+ = 〈
+〉, and pz = 〈
z〉 are obtained from the
Heisenberg equations of motion and the commutation rela-
tions [A, A†] = 1, [
z, 
±] = ±
±, and [
+, 
−] = 2
z by
adding fluctuation and dissipation terms and by averaging

ȧ = −(γc − i�pc)a − ig1 p+
2

, (A2)

ṗ+ = −(γ2 + i�pa )p+ − i	q pz

2
− ig1apz, (A3)

ṗz = −γ1(pz − p0) + iω1(p∗
+ − p+)

4
+ ig1(ap∗

+ − p+a∗)

2
,

(A4)

where the overdot denotes time derivative, γc is the cavity
mode damping rate, γ1 and γ2 are the qubit longitudinal and
transverse damping rates, respectively, the coefficient p0 =
− tanh [(h̄ωa )/(2kBT )] is the value of pz in thermal equilib-
rium (when 	q = g1 = 0), kB is the Boltzmann’s constant,
and T is the temperature. In the absence of coupling, i.e.,
when g1 = 0, the steady state solution of Eqs. (A3) and (A4)
is given by p+,ss = −(i	q pz,ss )/(2γ2 + 2i�pa ) and pz,ss =
p0[1 + (γ2	

2
q )/(4γ1γ

2
2 + 4γ1�

2
pa )]−1.

Consider the transformation⎛
⎝ 
′

+

′

−

′

z

⎞
⎠ = Ma

(

+

−

z

)
, (A5)

where

Ma =

⎛
⎜⎝

sin α+1
2

sin α−1
2 − cos α

sin α−1
2

sin α+1
2 − cos α

cos α
2

cos α
2 sin α

⎞
⎟⎠, (A6)

and where tan α = (−2�pa/	q ). Note that the transformed
operators 
′

± and 
′
z satisfy the commutation relations

[
′
z, 


′
±] = ±
′

± and [
′
+, 
′

−] = 2
′
z provided that the

original operators 
± and 
z satisfy [
z, 
±] = ±
± and
[
+, 
−] = 2
z.

Under this transformation the first two terms of the
Hamiltonian H0 (A1) become −�pa
z + 	q(
+ + 
−)/4 =
(ωR/2)
′

z, where ωR =
√

	2
q + 4�2

pa is the Rabi frequency.
In the RWA, in which counter-rotating terms are disre-
garded, the equations of motion (A2), (A3), and (A4) are
transformed into

ȧ = −(γc − i�pc)a − ig′
1 p′

+
2

, (A7)

ṗ′
+ = −

(
γ ′

2 − iωR

2

)
p′

+ − ig′
1ap′

z, (A8)

ṗ′
z = −γ ′

1(p′
z − p′

0) + ig′
1(ap′∗

+ − p′
+a∗)

2
, (A9)

where the effective coupling coefficient g′
1 is given by

g′
1 = (1/2)(sin α + 1)g1, the transformed damping rates γ ′

1
and γ ′

2 are given by γ ′
1 = γ2 + (γ1 − γ2) sin2 α and γ ′

2 =
(1/2)(γ1 + γ2) + (1/2)(γ2 − γ1) sin2 α, respectively, and the
polarization coefficient p′

0 is related to p0 by

p′
0 = sin α

γ2

γ1

(
1 + γ1−γ2

γ2
sin2 α

) p0. (A10)

Note that the equations of motion (A7)–(A9) become unstable
when [65–69]

g′2
1 � −2γcγ

′
2

p′
0

(
1 + �2

L

(γc + γ ′
2)2

)
, (A11)

where �L = �pc − ωR/2.
In the limit where the coupling coefficient g′

1 is sufficiently
small, at and near steady state the term p′

z in Eq. (A8) can
be approximately treated as a constant, and consequently
Eqs. (A7) and (A8) can be expressed in a matrix form as

d

dt

( a
p′

+

)
+ MP

( a
p′

+

)
= 0, (A12)

where the matrix MP is given by

MP =
(

γc − i�pc
ig′
2

ig′ p′
z γ ′

2 − iωR
2

)
. (A13)

To lowest nonvanishing order in g′ the eigenvalues of the
matrix MP are given by

�c = γc − i�pc +
p′

zg′2

2

γ ′
2 − γc + i�L

+ O(g′4), (A14)

�2 = γ ′
2 − iωR

2
−

p′
zg′2

2

γ ′
2 − γc + i�L

+ O(g′4). (A15)

The real parts of �c (�2) represents the effective damping
rates γc,eff (γ ′

2,eff ) of the cavitylike (qubitlike) mode. As can
be seen from Eqs. (A14) and (A15), in this limit the coupling
gives rise to repulsionlike behavior of the damping rates, i.e.,
|γc,eff − γ ′

2,eff | > |γc − γ ′
2| (it is assumed that p′

z < 0). This
behavior can be considered as a generalization of the Purcell
effect [10] for the case of dressed states.
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APPENDIX B: SIMULATING LINE NARROWING

Experimentally we have observed narrowing in the cavity
spectrum which occurs when a drive is applied to the qubit. In
an attempt to model this narrowing we perform simulations
of the cavity response by unraveling the Lindblad master
equation using a quantum jump (Monte Carlo) stochastic
Schroödinger equation. In a frame rotating with the qubit drive
at angular frequency ωp we use the rotating wave approxima-
tion (RWA) to write down the Hamiltonian as

h̄−1H(t ) = h̄−1H0 + 	c[A exp(i�dpt ) + A† exp(−i�dpt )],

(B1)

where the time independent part of the Hamiltonian H0 is
given in Eq. (A1) and the time dependent cavity drive oscil-
lates at the frequency �dp = ωdf − ωp. In order to describe
dissipation due to loss of photons from the cavity we use
the Lindblad operator

√
γc A, while to describe dissipation in

the qubit we use
√

γ 
−. After combining these elements the
evolution of the state of the system is described by

∂tρ = − i

h̄
[H(t ), ρ] + γcD[A]ρ + γ1D[
+]ρ. (B2)

We use this equation to numerically evolve the state ρ(t )
over time and study the cavity amplitude 〈A〉 = Tr[ρ(t )A]. We
find that the time dependence of 〈A〉 contains two main fre-
quencies: �dp and �cp, due to the drive and cavity frequency,
respectively. The experimental data presented in Fig. 3 were
measured by mixing the signal transmitted through the cavity
with a reference at the cavity drive frequency. Therefore, in
order to model the transmitted power TNA we must examine
the cavity amplitude 〈A〉 in a frame rotating with the drive.
This is given by

α(�dp, t ) = Tr[ρ(t )A] exp(−i�dpt ). (B3)

Input-output relations can then be used to calculate TNA from
this amplitude.

We now attempt to reproduce the spectrum seen in
Fig. 3(b). In order to observe narrowing we must drive
the cavity in the nonlinear regime. We take a cavity
drive amplitude of 	c/2π = 1.00 MHz. The remaining
parameters are set to 	q/2π = 1.726 MHz, ωp/2π =
5.50 GHz, g1/2π = 0.150 GHz, ωa/2π = 5 GHz,
ωc/2π = 6.6408 GHz, γc/2π = 377 kHz, and γ1/2π =
40.7 kHz. Using these parameters we produce the spectrum
in Fig. 6 by evolving the state of our system over 9.6 ms for
a range of cavity drive frequencies. The long time average
α(�dp) displays a full width at half maximum of 125 kHz,
significantly less than the natural linewidth of 377 kHz.

This narrowing can be explained when we realize that in
the presence of a strong cavity drive the system displays mul-
tistability and the line narrowing is due to a bright cavity state
(b) which is most stable over a narrow range of frequencies
close to the bare cavity resonance. Close to the cavity reso-
nance the system occupies the bright state and the transmitted
power is high. However, away from this point the system may
also occupy two other dim states (d↓ and d↑), which causes a
sharp drop in the transmitted power and a narrow linewidth.

In Fig. 7 we examine these metastable states more closely.
We plot the cavity amplitude and qubit polarization over

FIG. 6. Simulation of the cavity spectrum in the nonlinear
regime. We use a cavity drive amplitude of 	c/2π = 1 MHz, a qubit
drive frequency of ωp = 5.5 GHz, and a qubit drive amplitude of
	q = 0.863 GHz. The system displays multistability and three dis-
tinct metastable states can be identified, which are labeled by d↓, d↑,
and b and assigned the colors orange, green, and red, respectively.
We plot the square cavity amplitude (a), qubit polarization (b), and
occupation probability (c) of each of these three states against the
cavity drive frequency ωdf/2π . In (a) we see that the cavity amplitude
of state b is significantly larger than the amplitudes of states d↓ and
d↑. Hence we refer to b as bright and d↓ and d↑ as dim. The black
line is produced by averaging the cavity amplitude over 9.6 ms of
evolution before taking the square of the absolute value. It displays a
narrow resonance at the bare cavity frequency. The full width at half
maximum is only 125 kHz, which is 33% of the natural linewidth of
377 kHz. In (b) we see that states d↓ and d↑ occur when the qubit is
polarized up and down, respectively, whereas the qubit polarization
associated with state b varies with the drive frequency. Finally in
(c) we see the occupation probabilities of the three states. Away
from the cavity resonance the stability of state b falls. This causes
the narrowing observed in (a).

170 μs of evolution at ωd/2π = 6.6409 GHz. The two dim
states, labeled d↑ and d↓, occur when the qubit is polarized
in the up and down directions, respectively. Meanwhile the
bright state occurs when the qubit is depolarized and varies
widely over the range −1 < 〈σ z〉 < 1.

APPENDIX C: SPECTRA CALCULATIONS

In order to calculate the response of our system to cavity
driving (without qubit driving) we use the following master
equation:

∂tρ = − i[H/h̄, ρ] + γcD[A]ρ + γ1D[
+]ρ, (C1)

which consists of nonunitary components calculated ac-
cording to D(L)ρ = L†ρL − 1

2 (L†Lρ + ρL†L) and a unitary
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FIG. 7. Here we examine a quantum state trajectory produced at ωdf/2π = 6.6409 GHz. In (a) we plot the real and imaginary parts of the
cavity amplitude while in (b) we plot the polarization of the qubit. The cavity is observed to jump between three metastable states, examples
of which are highlighted between the vertical dashed lines. At the top of (a) we label these states as d↑, d↓, and b. We note that states d↑ and
d↓ have a significantly smaller cavity amplitude than state b, hence we say the first two states are dim and the third is bright. By referring to
(b) we see that state d↑ occurs when the qubit has positive polarization, state d↓ occurs when it has negative polarization, and state b occurs
when the qubit freely varies over the range −1 < 〈σ z〉 < 1. In (c) we plot a histogram of the cavity amplitude throughout 9.6 ms of evolution.
The three metastable states are clearly identified as three clusters in the plane. Switching pathways leading between these clusters can also
be observed.

component which obeys the Hamiltonian given by

h̄−1H = −�da
z + 	c(A† + A)

−�dcA†A + g1

2
(
−A + 
+A†). (C2)

In the above the detuning between the cavity drive and the cav-
ity resonance is given by �dc = ωdf − ωc, while the detuning
between the cavity drive and the qubit frequency is given by
�da = ωdf − ωa. Since the relaxation rate of the qubit depends
on the magnetic field detuning from the symmetry point we
must take account of this in our calculations. For Figs. 4(a)–
4(c) we have ωf/2π = 5.5 GHz and γ1/2π = 6.29 kHz,

whereas for Figs. 4(d)–4(f) we have ωf/2π = 7.8 GHz and
γ1/2π = 4.02 kHz.

The master equation above does not include a Lindblad
operator to describe pure dephasing of the flux qubit. Since
we are operating the qubit far from its symmetry point, pure
dephasing will be dominated by flux noise, and in [6] the
power spectral density (PSD) of this noise was found to have
a 1/ f 0.9 form. Unfortunately we cannot account for this noise
in the master equation, because the Markovian approxima-
tion requires that the PSD is well behaved at zero frequency.
However, even without the inclusion of pure dephasing, the
master equation is still able to explain the major features of
the spectra measured in Fig. 4.
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