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We study quantum population transfer via a common intermediate state initially in thermal equilibrium with
a finite temperature T , exhibiting a multilevel stimulated Raman adiabatic passage structure. We consider two
situations for the common intermediate state, namely a discrete two-level spin and a bosonic continuum. In
both cases we show that the finite temperature strongly affects the efficiency of the population transfer. We also
show in the discrete case that strong coupling with the intermediate state, or a longer duration of the controlled
pulse, would suppress the effect of finite temperature. In the continuous case, we adapt the thermofield-based
chain-mapping matrix product states algorithm to study the time evolution of the system plus the continuum
under time-dependent controlled pulses, which shows great potential to be used to solve open quantum system
problems in quantum optics.
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I. INTRODUCTION

Stimulated Raman adiabatic passage (STIRAP) is one of
the most important technologies to implement complete pop-
ulation transfer from an initial state to a target state via a
common intermediate state [1–3]. In the standard implemen-
tation of STIRAP, two controlled laser pulses in Gaussian
shapes, namely the P pulse and S pulse, are used to couple
the initial state and the target state to the intermediate state,
respectively. When the two pulses are applied in a counterintu-
itive order, that is, the S pulse occurs before (but overlapping)
the P pulse, complete population transfer could be achieved
with negligible excitation of the intermediate state. As a result,
this technique is very robust against the noise in the pulses as
well as the dissipation in the intermediate state.

Due to the robustness of STIRAP, there are many ap-
plications in different quantum systems to achieve complete
population transfer from one quantum state to another [4],
such as quantum optics [5], ion-trap systems [6], supercon-
ducting qubits [7,8], cavity systems [9], and quantum dot
systems [10]. Interestingly, the STIRAP technique can be em-
ployed not only in quantum systems but also in some specific
classical systems, since the equations of motions governing
these systems are analogous to the Schrödinger equation. For
example, we can employ STIRAP to a waveguide coupler to
achieve the complete transfer of intensity of light from an
input waveguide to an output waveguide [11]. STIRAP can
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also be used in a surface plasmon polariton (SPP) coupler
excited by light on curved graphene sheets [12], integrated
terahertz devices [13], and wireless energy transfer [14].

Since its initial proposition in a standard three-level config-
uration, the setup of STIRAP has been generalized in various
directions, for example, fractional STIRAP [15], bright-state
STIRAP [16], straddle STIRAP [17,18], two-state STIRAP
[2], and composite-pulse STIRAP [19]. These developments
mainly focus on enhancing the robustness of STIRAP, or ap-
plying STIRAP in more general scenarios of multiple energy
levels.

In this paper, we study the setup of straddle STIRAP where
population is transferred from one energy level to another via
multiple intermediate-energy levels. It has been shown that
complete population transfer could be achieved as long as the
couplings between the two energy levels and the intermediate-
energy levels satisfy certain conditions [18,20]. In Ref. [21], it
was further shown that near-perfect population transfer could
also be achieved for a finite-width continuum of intermediate
states, and it is robust under moderate dissipation. However, to
our best knowledge, most of the STIRAP-related works have
assumed that the intermediate-energy levels are initially in
unoccupied (vacuum) states. In real applications, a frequently
met situation is that the intermediate levels are initially in the
thermal equilibrium state, for example, two spins coupled via
an optical fiber, or an optical cavity [22] (or chain of cavities)
initially in thermal equilibrium. In such cases, the excitations
in the intermediate levels may participate in and intertwine
with the process, thus destroying the previous physical pic-
ture for STIRAP. Here, we fill this gap by directly studying
STIRAP-like population transfer via an intermediate thermal
state. We mainly focus on two different setups: (1) population
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FIG. 1. (a) Population transfer between two qubits q1 and q2.
The two qubits are coupled to two bosonic modes a1 and a2 via
two controlled laser pulses �P(t ) and �S (t ), respectively. The two
bosonic modes a1 and a2 are then coupled to a common intermediate
spin qm with a strength g, which is initially in a thermal state with
temperature T . (b) Population transfer between two qubits q1 and
q2 which couple to a common intermediate bosonic continuum. The
bosonic continuum is initially in a thermal distribution with temper-
ature T .

transfer via a discrete two-level system initially in a thermal
state with a temperature T and (2) population transfer via a
bosonic thermal continuum. We study the effect of a finite
temperature intermediate state on the population transfer effi-
ciency by numerically solving the quantum Liouville equation
in those setups.

Our paper is organized as follows. In Sec. II, we introduce
the discrete version of the model which considers population
transfer via a two-level system initially in a thermal state,
and show the effect of finite temperature on the efficiency of
population transfer. In Sec. III, we introduce the continuous
version of the model which considers population transfer via
a thermal bosonic continuum and show the effect of finite
temperature in this case. We conclude in Sec. IV.

II. DISCRETE INTERMEDIATE STATE

First, we consider population transfer via a discrete ther-
mal state (see Fig. 1). For simplicity, we consider two spins
which are coupled to two bosonic modes which act as “flying
qubits.” The two bosonic modes are then coupled to a common
intermediate spin. The Hamiltonian of the whole system can
be written as

Ĥ (t ) = ωq,1

2
σ̂ z

1 + ωq,2

2
σ̂ z

2 + ωa,1â†
1â1 + ωa,2â†

2â2

+ �P(t )(â†
1σ̂

−
1 + â1σ̂

+
1 ) + �S (t )(â†

2σ̂
−
2 + â2σ̂

+
2 )

+ ωm

2
σ̂ z

m + g(â†
1σ̂

−
m + â1σ̂

+
m ) + g(â†

2σ̂
−
m + â2σ̂

+
m ),

(1)

where ωq,1 and ωq,2 are the energy differences of the two
qubits, ωa,1 and ωa,2 are the frequencies of the two bosonic
modes, and the time-dependent couplings �P(t ) and �S (t )

between the two qubits and the bosonic mode are induced by
two controlled pulses, which are defined as

�P(t ) = � exp

(−(t − τ/2)2

τ 2
0

)
, (2)

�S (t ) = � exp

(−(t + τ/2)2

τ 2
0

)
, (3)

with τ0 the standard deviation of Gaussian pulses, τ the time
delay between the two pulses, and � the maximum strength
of the pulses. ωm is the energy difference of the intermediate
spin, and g is the coupling strength between the intermediate
spin and the two bosonic modes. We have set h̄ = 1. The dy-
namics of this system is described by the quantum Liouville
equation

d ρ̂(t )

dt
= −i[Ĥ (t ), ρ̂]. (4)

In the rest of this work we will always use the resonant condi-
tion such that ωq,1 = ωq,2 = ωa,1 = ωa,2 = ωm. The bosonic
modes are not occupied initially while the intermediate spin
is assumed to be in a thermal state with a temperature T ,
that is,

ρ̂m = 1

1 + e−βωm
|0m〉〈0m| + e−βωm

1 + e−βωm
|1m〉〈1m|. (5)

Here, β is the inverse temperature β = 1/T and we have set
the Boltzmann constant kB = 1. Thus the initial state of the
whole system can be written as

ρ̂i = |1q1〉〈1q1 | ⊗ |0a1〉〈0a1 | ⊗ ρ̂m ⊗ |0a2〉〈0a2 | ⊗ |0q2〉〈0q2 |,
(6)

where |0qi〉 (|1qi〉) means the ground (excited) state of the
spin qi, and |0ai〉 means the vacuum state for the bosonic
mode ai, with i = 1, 2. The final state after the time evolution
is denoted as ρ̂ f , namely ρ̂ f = ρ̂(∞). Moreover, we denote
Fi(t ) as the occupation on the excited state of the spin qi, that
is,

F1(t ) = 〈1q1 |ρ̂q1 (t )|1q1〉, (7)

F2(t ) = 〈1q2 |ρ̂q2 (t )|1q2〉, (8)

where ρ̂qi (t ) means the reduced density operator of the spin
qi. In our setup, we have F1(−∞) = 1 and F2(−∞) =
0, and perfect population is achieved if F1(−∞) = 0 and
F2(−∞) = 1. In the following we will use F = F2(∞) to
denote the final fidelity.

To show the effect of the temperature T and the interplay
between T and the other parameters, we simulate the dynam-
ics of Eq. (4) in a wide parameter range, and the results are
shown in Fig. 2. In Fig. 2(a), we show the dependence of
the final fidelity F on the temperature T and the coupling
strength g between the bosonic modes and the intermediate
spin. We can see that F is greatly suppressed when increas-
ing T , showing that a highly occupied excited state would
strongly affect the efficiency of population transfer. We can
also see that F slightly goes up with g, especially at higher
temperatures. This is expected since a standard requirement
for perfect STIRAP is the strong coupling between the ini-
tial (final) states with the intermediate states. This result is
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FIG. 2. Dependence of F on temperature T in the discrete case,
where T ranges from 0 to 20 in all panels. (a) F as a function of g
and T , where g ranges from 1 to 10. (b) F as a function of � and T ,
where � ranges from 1 to 4. (c) F as a function of τ and T , where
τ ranges from 0.5τ0 to 4τ0. (d) F as a function of τ0 and T , where
τ0 ranges from 1 to 5. The other parameters used in all panels, unless
otherwise specified, are g = 10, � = 2, τ = 1, and τ0 = 2.

interesting in that it shows that although STIRAP is known
to be robust against the dissipation of the intermediate state,
however, it will be strongly affected if the intermediate spin is
in a highly mixed state. In Fig. 2(b), we show the dependence
of F on T and the maximum amplitude of the laser pulse �,
with g = 10, τ = 1, τ0 = 2. We can see that the dependence of
F on � is similar to the dependence of F on g. This is because
� plays a similar role as g which determines the coupling
strength between the initial (final) state and the intermediate
spin. In Fig. 2(c), we show the dependence of F on T and the
time delay τ . We can see that there is a pick around τ = τ0,
and since the coupling strength g = 10 and � = 2 are large
enough, a relatively high population transfer efficiency could
still be achieved at high temperature. In Fig. 2(d), we show
the dependence of F on T and the period of driving τ0. We
can see that F is larger with larger τ0. This is expected since
larger τ0 means the time evolution is slower, thus more adia-
batic, which is another standard requirement of STIRAP. For
large T , population transfer efficiency is slightly suppressed
but much less significant than in the cases shown in Figs. 2(a)
and 2(b).

III. CONTINUOUS INTERMEDIATE STATE

Now we further consider the case where two qubits
are coupled via an intermediate finite temperature bosonic
continuum. The Hamiltonian of the whole system can be

written as

Ĥ (t ) = ωq,1

2
σ̂ z

1 + ωq,2

2
σ̂ z

2 +
∫

dωωb̂†
ωb̂ω

+ �P(t )
∫

dω
√
J (ω)(σ̂+

1 b̂ω + σ̂−
1 b̂†

ω )

+ �S (t )
∫

dω
√
J (ω)(σ̂+

2 b̂ω + σ̂−
2 b̂†

ω ), (9)

where J (ω) is the spectrum function. We choose a simple
subohmic spectrum as

J (ω) = √
ω, (10)

and we also choose a sharp cutoff ωc such that J (ω) = 0
for ω > ωc, as a signature of a finite-width continuum. In
comparison with the discrete case considered in Sec. II, we
have removed the two intermediate “flying qubits” a1 and
a2, which will allow an easier numeric treatment while the
resulting physics is still similar. In case the continuum is
initially in the zero temperature state, the dynamics of Eq. (9)
can be easily solved based on a discretization of the contin-
uum and an exact diagonalization approach since only the
single excitation sector needs to be considered [21]. However,
for a finite temperature T , the continuum is a mixture of
different bosonic particles and the Hilbert space size is in
general exponentially large. As a result, exact diagonalization
would be impossible in this case. Moreover, in this case a
Markovian quantum master equation, such as the Lindblad
equation [23,24], would likely be problematic since here we
consider strong system-continuum coupling.

In recent years, there is growing interest in using the
system-bath approach in combination with the matrix prod-
uct states method to study the dynamics of open quantum
systems. The system and the bath are evolved together as
a whole, and the dynamics of the system is obtained by
tracing out the bath degrees of freedoms. Here, we use a
thermofield-based chain-mapping matrix product states algo-
rithm (TCMPS) [25–31] to study the dynamics of the system
plus bath which is the continuum in our case. The main
advantage of this method is that the finite temperature bath
is mapped into another enlarged bath which is initially at
zero temperature, thus favoring a MPS simulation. TCMPS
includes three major steps: (1) For the discretization of the
bath [32], we use a simple linear discretization scheme with
a frequency step size δ, and the discretized Hamiltonian after
this step would be

Ĥdis(t ) = ωq,1

2
σ̂ z

1 + ωq,2

2
σ̂ z

2 +
N∑

j=1

ω j b̂
†
j b̂ j

+ �P(t )
N∑

j=1

Jj (â1b̂†
j + â†

1b̂ j )

+ �S (t )
N∑

j=1

Jj (â2b̂†
j + â†

2b̂ j ), (11)

where we have used N = ωc/δ, ω j = jδ, b̂ j = b̂(ω j ), b̂†
j =

b̂†(ω j ), Jj = √
J (ω j )δ. The time-dependent couplings J1, j (t )

and J2, j (t ) in Fig. 1(b) correspond to �P(t )Jj and �S (t )Jj ,
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respectively. In the limit N → ∞, Ĥdis(t ) is equivalent to
Ĥ (t ) [32,33]. (2) Thermofield transformation maps the bath
of N bosonic modes into an enlarged but equivalent bath with
2N bosonic modes, and at the same time the thermal state
corresponding to the original bath is mapped into the vacuum
state of the enlarged bath. The Hamiltonian after this step is

ĤT(t ) = ωq,1

2
σ̂ z

1 + ωq,2

2
σ̂ z

2 +
N∑

j=1

ω j (ĉ
†
1, j ĉ1, j − ĉ†

2, j ĉ2, j )

+ �P(t )
N∑

j=1

g1, j (â1ĉ†
1, j + â†

1ĉ1, j )

+ �P(t )
N∑

j=1

g2, j (â1ĉ2, j + â†
1ĉ†

2, j )

+ �S (t )
N∑

j=1

g1, j (â2ĉ†
1, j + â†

2ĉ1, j )

+ �S (t )
N∑

j=1

g2, j (â2ĉ2, j + â†
2ĉ†

2, j ), (12)

where g1, j = Jj cosh(θ j ) and g2, j = Jj sinh(θ j ), with
cosh(θ j ) = √

1 + n(ω j ), sinh(θ j ) = √
n(ω j ), and n(ω) =

1/(eβω − 1) to be the Bose-Einstein distribution. (3) The
star-to-chain mapping maps the system bath from the
star configuration into a chain configuration. The final
Hamiltonian after those three steps would be

ĤTC(t ) = ωq,1

2
σ̂ z

1 + ωq,2

2
σ̂ z

2 +
2∑

ν=1

Nchain∑
j=1

αν, j d̂
†
ν, j d̂ν, j

+ �P(t )
Nchain∑
j=1

(β1,1â1d̂†
1, j + β2,1â1d̂2, j + H.c.)

+ �S (t )
Nchain∑
j=1

(β1,1â2d̂†
1, j + β2,1â2d̂2, j + H.c.)

+
2∑

ν=1

Nchain−1∑
j=1

βν, j+1(d̂†
ν, j d̂ν, j+1 + H.c.), (13)

where α1, j and β1, j are the diagonal terms and off-
diagonal terms resulting from the Lanczos tridiagonaliza-
tion of the diagonal matrix diag([ω1, ω2, . . . , ωN]) with
the initial vector [g1,1, g1,2, . . . , g1,N ], while α2, j and β2, j

are the diagonal terms and off-diagonal terms resulting
from the Lanczos tridiagonalization of the diagonal ma-
trix diag([−ω1,−ω2, . . . ,−ωN]) with the initial vector
[g2,1, g2,2, . . . , g2,N ] [27]. The size of the vectors α2, j and β2, j ,
denoted as Nchain, is usually chosen to be less than N . So we
are applying TCMPS to study an open quantum system with
time-dependent driving.

We then evolve ĤTC(t ) with the same initial state for the
two spins as for the discrete case, and a vacuum state for
the enlarged continuum corresponding to the set of modes
d̂ν, j . In our simulations we have chosen ωc = 2, δ = 0.01,
Nchain = 50, the truncation of the local Hilbert space size

FIG. 3. Population transfer via a thermal bosonic continuum.
(a) The solid lines from the top down correspond to T = 0, 0.2, 0.4,
respectively, which plot F1 as a function of time t . The dotted lines
from the bottom to the top correspond to T = 0, 0.2, 0.4, respec-
tively, which plot F2 as a function of time t . (b) The blue dashed line
with circles corresponds to F1(∞) as a function of temperature T ,
while the yellow dashed line with squares corresponds to F2(∞) as
a function of temperature T which ranges from 0 to 0.5.

d = 5 for each bosonic mode d̂ν, j , a time step size dt = 0.01,
and we have kept 400 auxiliary states. The largest singular
value truncation error observed during the time evolution is of
the order 10−4. We have also checked that the difference in
the numerical results is negligible when tuning the hyperpa-
rameter Nchain from 50 to 75, indicating that our results have
converged. In Fig. 3(a), we plot F1(t ) and F2(t ) as a function
of time t ; we can see that in the case of T = 0, almost perfect
population transfer can be achieved, which is also shown in
Ref. [21]. As T increases, the efficiency of population transfer
goes down significantly. In Fig. 3(b), we plot F1(∞) and
F2(∞) as a function of the temperature T , from which we can
see more clearly that the efficiently of population transfer goes
down significantly when T increases. At T = 0.5, we already
see that the final fidelity F ≈ 0.7, which is likely to further
go down as suggested by the trend in Fig. 3(b). However,
the simulation for larger T is currently beyond our capacity
since a larger truncation d is then required to ensure enough
precision. These results show that for STIRAP via an infi-
nite number of intermediate states, the nonzero temperature
strongly affects the population transfer efficiency.

IV. CONCLUSION

We propose two models to study quantum population trans-
fer between two spins via an intermediate state which is
initially in thermal equilibrium. In the first case, we consider
a discrete model where the two spins are coupled to two
bosonic modes by two controlled pulses �P(t ) and �S (t )
which act as “flying qubits,” which are then coupled to a
common intermediate spin initially in a thermal state. In the
second case, we consider a continuous model where the two
spins are directly coupled to a thermal bosonic continuum
by the two controlled pulses. In both cases, we show that
the efficiency of the population transfer is strongly dependent
on the finite temperature of the intermediate state, in contrast
with previous results where the population transfer efficiency
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is robust against the details of the intermediate states as long
as certain control parameters are well tuned.

Moreover, in this work we have adapted the TCMPS
method, which is a recently developed numeric technique
used to solve open quantum many-body systems, to study
quantum population transfer via a thermal bosonic continuum.
Our results show that TCMPS could be a perfect numerical
tool to study open quantum optics problems in the presence of
a finite temperature environment and time-dependent driving.

For possible experimental realizations, we note that similar
models have already been realized, for instance, supercon-
ducting qubits interacting with an intermediate cavity formed
by an open-ended superconducting transmission line [34] as
well as Rydberg atoms coupled via a microwave cavity [35].
In the latter case, a cavity frequency of 2π × 5 GHz in a
thermal state with an average occupation n̄ = 10 has been
considered [35]. The only difference between these models
and our continuous model is that in these models the cavities
are modeled with only a single mode. The continuous case
considered in this work naturally follows in the case where
the intermediate cavity has to be modeled by a finite range
of modes. Additionally, the continuous case could be realized
with two spins in solid state systems which are coupled to

a phonon environment. The discrete model could be realized,
for instance, with atoms coupled to two optical cavities, which
are then coupled to a common intermediate atom, immersed
in a thermal bath. One could also consider the standard case
where the intermediate atom is subjected to both decaying
and optical pumping, which is highly tunable and enforces a
mixed state (though not exactly a thermal state).
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