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Subradiance and superradiance-to-subradiance transition in dilute atomic clouds
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We experimentally study subradiance in a dilute cloud of ultracold rubidium (Rb) atoms where nλ3
a ≈ 10−2

(n: atomic density; λa: excitation wavelength) and the on-resonance optical depth of the cloud is of order unity.
We show that, in the strong excitation regime, the subradiant time scales depend on the excitation fraction of
the cloud; i.e., to the intensity of the excitation pulse. In this regime, the decay dynamics are highly complicated
and there is not a single decay time constant. Instead, the decay time constant varies during the dynamics.
Specifically, we were able to observe signatures of superradiant-to-subradiant transition; i.e., initially the decay
rate is faster than independent decay (superradiant emission), while at later times it transitions to slower
(subradiant emission). We also discuss a theoretical model whose numerical results are in good agreement with
the experiments.
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I. INTRODUCTION

Since the seminal paper by Dicke [1], collective decay
(superradiant or subradiant) of an ensemble of radiators has
been studied by many authors and this problem continues
to be relevant for a wide range of physical systems [2–5].
Much of the physics of collective decay can be understood
from a classical viewpoint. If the radiation from the individual
emitters interfere constructively, then the total radiated power
is coherently enhanced, resulting in a decay rate larger than
the independent decay rate of the individual emitters. For
example, if N emitters are localized to a spatial region much
smaller than the wavelength of radiation, their emissions can
all be in phase, producing a decay rate ∼N times faster than
independent decay, ∼N�a. This is the well-known Dicke limit
of superradiance and has been extensively analyzed both the-
oretically and experimentally [2]. In contrast, if the individual
radiators are antiphased appropriately, their radiation can in-
terfere destructively, producing a decay rate slower than the
independent rate (subradiance). In the Dicke limit, a simple
approach to achieve subradiance would be to group the atoms
in pairs, where atoms in each pair oscillate exactly out of
phase.

While superradiance was first experimentally observed
more than four decades ago [6,7], subradiance in an ensemble
of atoms was experimentally demonstrated only very recently
[8]. The reason for this is that, to observe subradiance, ap-
propriate out-of-phase superpositions of the emitters need to
be maintained for time scales that are long compared to the
independent decay time. As a result, the subradiant states are
fragile and are quite susceptible to dephasing. To overcome
this challenge, recent observation of subradiance utilized ul-
tracold atomic clouds at low temperatures, thereby avoiding
motional dephasing. We also note that collective effects are
most pronounced when there are a large number of emitters
within a wavelength cube of volume; i.e., in the Dicke limit

as discussed above. However, collective effects remain and
can be quite important well outside this limit, even when
the average spacing between the emitters is larger than the
wavelength. In fact, as pointed out in Ref. [8], it is easier to
observe subradiance outside the Dicke limit, since van der
Waals dephasing due to short-range interactions is avoided
[2].

Recent observation of subradiance used a large ultracold
cloud with a very high on-resonance optical depth [8]—an op-
tical depth (OD) of 40 or higher. As a result, the interpretation
of the data is complicated by the fact that radiation trapping
also plays an important role [9]. Furthermore, subradiance
was observed in the weak excitation limit, where single atom
excited subspace (which is of dimension N) is a reasonable
approximation to the dynamics of the full Hilbert space. In
this paper, we extend these pioneering results to the strong ex-
citation regime and also to much more dilute ultracold clouds
with an on-resonance OD of order unity. We show that, in this
regime, the subradiant time scales depend on the excitation
fraction of the cloud, which is determined by the intensity of
the excitation pulse. We find that in this regime the decay
dynamics are highly complicated and there is not a single
decay time constant. Instead, the decay time constant varies
during the dynamics. Specifically we were able to observe
signatures of superradiant-to-subradiant transition. At early
times of the evolution the decay rate is faster than independent
decay (superradiant emission), while at later times it transi-
tions to a slower rate (subradiant emission).

The collective decay problem from large samples in the
strong-field excitation regime is notoriously quite difficult,
since the dimension of the Hilbert space is 2N , and there
are no obvious symmetries that can be utilized to simplify
the problem. There are very limited analytical and numerical
tools that can be utilized in this regime [2]. We discuss a
theoretical formalism that produces numerical results which
are in good agreement with our experimental observations.
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FIG. 1. (a) Simplified experimental schematic. The experiment is performed inside a 14-port stainless-steel ultrahigh vacuum chamber. We
first load the 87Rb atoms into a MOT from a background vapor. After the MOT is loaded and with the atoms optically pumped into the F = 2
ground level, the atoms are excited into F ′ = 3 level using a short and intense excitation laser. The fluorescence from the cloud is detected
using a photon counter. (b) The relevant energy-level diagram of 87Rb. (c) A sample fluorescence trace (solid black line) overlapped with an
excitation pulse intensity trace (dashed red line), both plotted on logarithmic scale.

The formalism is motivated by the recently discovered full
eigenvalue spectrum of the exchange Hamiltonian, which is an
effective description of the fundamental interaction resulting
in collective decay: the exchange of a photon [10].

In other important prior work, collective decay effects have
been studied experimentally in a wide range of physical sys-
tems such as cold molecules [11], a system of two trapped
ions [12], on multilevel transitions in hot gallium atoms [13],
in cold atoms at the vicinity of a single mode nanofiber [14],
and in planar metamaterial arrays [15]. Subradiant atomic
momentum states were recently observed in a Bose-Einstein
condensate (BEC) [16]. Studies of superradiant emission have
been carried out in cold atoms in the weak excitation limit
[8,17,18] as well as in diamond nanocrystals [19] and hy-
brid solid-state devices [20], where it is possible to study
the system in the Dicke limit. Recently, switching between
superradiant and subradiant states was demonstrated in a
10-qubit superconducting circuit [21]. With regard to recent
theoretical work, most of these studies have focused on the
weak excitation limit where a macroscopic two level atomic
ensemble absorbs a single photon [22–36]. Even though this
restricts the problem to a small subspace of the total Hilbert
space there are several interesting effects that can be explored,
for example, directional emission [22,23], photon localization

[24], and collective Lamb shift [25,26]. With subradiant states
being analogous to decoherence free subspaces, exploitation
of subradiant states and tuning between superradiant and
subradiant states can have applications in quantum memory
devices and quantum information processing [37,38]. This has
inspired a lot of work in studying subradiance in artificial
structures like atomic arrays and with modified environments
as in a cavity [39–49]. Other studies of cooperative emission
include an analysis by the “Polarium model” [50], a study of
spatial profile of subradiance [51], emission characteristics of
entangled sources [52], and a recent analysis of many atom
emission by renormalized perturbation theory [53].

II. EXPERIMENTAL SCHEMATIC

We perform our experiments inside a 14-port stainless-steel
ultrahigh vacuum chamber which is kept at a base pres-
sure 5 × 10−9 torr. A top view of our chamber is shown in
Fig. 1(a). We start the experiment by cooling and loading the
atoms into a magneto-optical trap (MOT). To construct the
87Rb MOT, we use three counterpropagating beam pairs that
are locked to the cycling F = 2 → F ′ = 3 transition in the
D2 line (transition wavelength of λa = 780 nm), each with a
beam power of about 50 mW and a beam size of 3 cm. The
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MOT lasers are obtained from a custom-built external-cavity
diode laser (ECDL) whose output is amplified by semicon-
ductor tapered amplifiers. Further details regarding our laser
system can be found in our recent publications [54–56]. The
MOT lasers are overlapped with a hyperfine repumping beam,
which is obtained from a separate ECDL locked to the F =
2 → F ′ = 2 transition, with an optical power of about 1 mW.

We load the atoms to the MOT from the background vapor
for about 400 ms. In the last 40 ms of loading, we detune the
MOT lasers to about 8�a (�a = 2π × 6.02 MHz is the decay
rate of the transition) from the cycling transition and reduce
their intensity by about an order of magnitude to achieve
efficient sub-Doppler cooling. At the end of the MOT loading
cycle, we typically trap ∼1.3 million atoms, within a 1/e2

density radius of R = 0.37 mm, giving an on-resonance OD
of OD = 3N/(κaR)2 ∼ 1 (κa = 2π/λa is the wave number at
the transition wavelength). The atomic temperature is about
44 μK, which is measured by monitoring the free expansion
of the cloud using an electron-multiplying CCD (EMCCD)
camera. During the final 10 ms of the MOT loading cycle, we
turn off the hyperfine repumper beam. As a result, the atoms
are optically pumped into the F = 2 ground level at the end
of the cycle.

The relevant energy-level diagram of 87Rb is shown in
Fig. 1(b). With the atoms optically pumped into the F = 2
hyperfine ground level, we turn off the MOT beams and turn
on a single short and intense laser that couples the atoms to
the F ′ = 3 excited level. This laser is termed the excitation
laser and its duration is about 120 ns. The excitation beam is
spatially larger than the size of the MOT, with a 1/e2 intensity
radius of 0.7 mm. The highest optical power that we use in
the excitation beam is ∼0.12 mW. With the atoms excited into
the F ′ = 3 level, we turn off the excitation beam abruptly and
record the fluorescence from the atoms using a single-photon
counting module. The fast switching of the excitation beam
is achieved using an acousto-optic modulator (AOM). The
90%–10% turn-off time of the excitation laser is 8 ns. We
accomplish such fast switching by careful adjustment of the
beam size inside the AOM.

For each photon detected, the photon counter produces an
∼10-ns-long electronic TTL pulse, which is then measured
by a fast-sampling digital oscilloscope. To avoid saturation of
the photon counter, we limit the number of detected photons
for each experimental cycle to mostly around a photon. As a
result, the experimental cycle (MOT loading-optical pumping-
excitation-fluorescence detection) needs to be repeated many
times to obtain a trace with a good signal-to-noise ratio. We
typically repeat the experimental cycle ∼20 000 times to ob-
tain a fluorescence trace. With each experimental cycle lasting
for about 1 s, a fluorescence trace takes about 6 h to record in
the laboratory. A sample fluorescence trace overlapped with
an excitation pulse intensity (both on a logarithmic scale) is
shown in Fig. 1(c).

III. EXPERIMENTAL DATA ANALYSIS

The excitation pulse is detected on a fast photodiode with
a bandwidth of 150 MHz after the chamber. We start the data
analysis after the excitation pulse has been turned off; t = 0 is
defined to be the point where the pulse intensity has dropped

FIG. 2. Observed fluorescence P(t ) (solid blue line) and the in-
ferred stored energy in the cloud E (t ) = E0 − ∫ t

0 P(t ′)dt ′ (solid black
line) as a function of time for a sample data set. Both quantities
are appropriately normalized and their natural logarithms are plotted
(see text for details). For comparison, the case of independent decay,
exp(−t/τa), is also plotted (dashed green line).

to less than 10% of its peak intensity. The pulse intensity de-
tected on the photodiode typically becomes indistinguishable
from background within five nanoseconds after this point.

The fluorescence signal, which is recorded using the pho-
ton counter, is proportional to the optical power emitted
from the cloud, and we denote this signal by P(t ). Most
collective-decay analysis, including Dicke’s original paper,
focuses on the total amount of excitation in the ensemble
(i.e., the population of the excited level), which is proportional
to the energy stored in the cloud. We denote this quantity
by E (t ), which is related to the emitted power through the
relation E (t ) = E0 − ∫ t

0 P(t ′)dt ′ [the inverse relationship is
P(t ) = −dE (t )/dt]. Here, E0 is the initial (at t = 0) en-
ergy stored in the atomic cloud. Below, we will be plotting
normalized versions of these quantities, redefined as P(t ) ≡
P(t )/P(t = 0) and E (t ) ≡ E (t )/E (t = 0). For independent
decay, there is no difference between the time evolution of
these two quantities since they have identical time dynamics:
E (t ) ∼ P(t ) ∼ exp(−t/τa) (τa is the lifetime of the excited
level τa = 1/�a = 26.2 ns).

Although the photon counter detects P(t ), we find instead
that working with E (t ) is more convenient for most of the data
discussed below. This is because E (t ) involves integration
over the photon counter signal, which effectively amounts
to averaging and reduces the noise. An example of this is
shown in Fig. 2, where we plot the natural logarithm of both
of these quantities as a function of time, ln[P(t )] (solid blue
line) and ln[(E (t )] (solid black line), for a sample data set. For
comparison, the case of independent decay exp(−t/τa) is also
plotted (dashed green line). The reduced noise in ln[(E (t )] can
be clearly seen in the plots. Furthermore, the two curves do not
lie on top of each other, which clearly shows that the decay is
not a simple exponential decay and cannot be described by
a single decay time constant. As we discuss below, consistent
with the theoretical model and the numerical results, the varia-
tion of the decay time constant during time evolution is better
pronounced for ln[P(t )]. The observed subradiance is quite
remarkable considering that there are less than 10−2 atoms in a
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FIG. 3. Excitation decay ladder for the formalism. Each sub-
space with M atoms excited decays to a subspace below (i.e., M − 1
atoms excited).

cubic wavelength of volume (i.e., nλ3
a ≈ 10−2) and the optical

depth of the cloud is only of order unity. As we discuss below,
the observed subradiance is consistent with the predictions of
the theoretical model.

IV. THEORETICAL MODEL AND NUMERICAL
SIMULATIONS

Superradiance and subradiance is well known to be quite
difficult to analyze in the large sample and the strong excita-
tion limit [2]. In the Dicke limit, with all the atoms starting
in the excited level, the system can be hypothesized to re-
main only in symmetric superpositions [1]. This only leads
to superradiance since symmetric superpositions are the states
where the radiation from the emitters interfere constructively.
For a large sample there are no obvious symmetries that can
be employed and it is not clear how the exponentially large
dimension of the Hilbert space can be simplified. Yet another
complication is that, for a sample which is spatially large
compared to the wavelength, the phase of the emitted radiation
varies between different emitters.

To model collective decay in the large sample and strong
excitation regime, we extend the excitation ladder approach
as discussed in Ref. [2]. The details of our formalism will
be presented in the Appendix below, but we summarize the
essential ideas here. It is well known that the excitation lad-
der approach quantitatively captures many aspects of Dicke
superradiance [2]. The key difficulty is how to extend this
model for the large sample regime. For this purpose, we use a
model that is motivated by the recently discovered eigenvalue
spectrum of the exchange Hamiltonian, which is the basic
physical interaction that causes correlated decay [10].

We consider N initially excited atoms uniformly dis-
tributed in a spherical cloud with a radius of R. The number
of initially excited atoms is obtained by multiplying the to-
tal number of atoms with the excitation fraction. We split
the Hilbert space into subspaces that are indexed by M =
0, 1, . . . , N , which is the number of atoms in the excited state
(while the remaining N − M atoms are in the ground state).
We denote the probability that the system is in M atom excited
subspace as ρM (t ). As shown in Fig. 3, each subspace M
decays to a subspace below (i.e., M − 1 atoms excited). At

t = 0, the system starts in the M = N subspace (i.e., at the
top of the ladder), and then as time evolves decays down the
ladder. We then have a coupled system of N + 1 differential
equations that describes the evolution of the system:

dρM

dt
= −�MρM + �M+1ρM+1, (1)

where the quantity �M is the decay rate of subspace M to
subspace M − 1. For independent (i.e., uncorrelated) decay,
�M = M�a, since for independent decay the system wave
function is a product of single-atom wave functions. The key
idea of our formalism is that we modify this decay rate by a
quantity which is proportional to the eigenvalue distribution of
the exchange Hamiltonian for each subspace, with stimulated
emission heuristically incorporated. Specifically, we take

�M = M�a + ξ

√
π + 29/12

kaR

√
N − MMũ�a, (2)

where ũ is a random variable whose value is uniformly dis-
tributed between [−1, 1]. As shown in the Appendix, Eq. (2)
can be derived from our physical model with ξ = 1. We use
the dimensionless quantity ξ as a free fitting parameter in the
model, which can be viewed as the shape factor. This fitting
parameter can be thought to account for (i) the deviation of the
shape of the cloud from spherical, (ii) the uncertainty in the
optical depth and, therefore, the atom number measurement of
the cloud, and (iii) the uncertainty in the excitation fraction.
As we discuss below, with this fitting parameter, this model
successfully produces many aspects of our experimental re-
sults. In all the below fits, ξ is of order unity and varies
between 0.7 and 1.

Because the sign of the random variable ũ can be positive
or negative, each rate �M can be faster or slower than the
independent decay case. For each simulation, we pick values
for �M as given by Eq. (2). With these values, we then numer-
ically solve the N + 1 coupled differential equations as given
by Eq. (1) using the fourth-order Runge-Kutta method, with
the system starting at the top of the ladder [i.e., with the initial
condition ρN (t = 0) = 1 and ρM (t = 0) = 0 for all M �= N].
For each simulation, we calculate the total energy stored in
the cloud using E (t ) = h̄ωa

∑
M MρM (t ). The radiated power

is calculated using P(t ) = −dE (t )/dt . To get an accurate de-
scription of the dynamics, we repeat the numerical simulation
∼1000 times, picking different values for �M using Eq. (2).
We obtain the final result by averaging over these simulations.

Figure 4 shows numerical results for our nominal exper-
imental conditions: N = 0.65 million initially excited atoms
(1.3 million atoms with an excitation fraction of 0.5) and a
cloud radius of R = 0.37 mm. Here we plot the stored energy
E (t ) (solid black) and radiated power P(t ) (solid red), both
in logarithmic scale, as a function of time. Comparing Fig. 4
to the experimental traces of Fig. 2, the model reasonably
captures the overall subradiance, as well as the variation in
the decay time scales. However, the model overestimates the
change in the decay time scales as the system evolves. One
reason for this could be various dephasing mechanisms in the
experiment, which is not accounted for in the model.
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FIG. 4. Stored energy E (t ) = h̄ωa
∑

M MρM (t ) (solid black line)
and the radiated power P(t ) = −dE (t )/dt (solid red line) for a
numerical simulation for the nominal conditions of our experiment:
N = 0.65 million initially excited atoms (1.3 million atoms with
an excitation fraction of 0.5) and a cloud radius of R = 0.26 mm.
For comparison, the case of independent decay, exp(−t/τa ), is also
plotted (dashed green line).

V. EXPERIMENTAL RESULTS

A. On-resonance versus detuned excitation

Figure 5 shows ln[(E (t )] for two different optical depths,
OD = 1 (black line) and OD = 0.35 (blue line), contrasting on-
resonance (
 = 0) versus detuned (
 = 4.2�a) excitation.
For both cases, the results are qualitatively similar with strong
overall subradiance for OD = 1. This is consistent with the
measurements of the Kaiser group (Refs. [8] and [9]), who
also did not find much difference in the subradiance time
scales between on-resonant versus detuned excitation and ar-
gued this to be a key indication of subradiance, rather than
radiation trapping. Radiation trapping is critically important
for atomic clouds with a very large on-resonant OD. It is less
relevant in our experiment since the OD of the atomic cloud
is of order unity or less. We will discuss the issue of radiation
trapping in detail in Sec. VI below.

All of the data shown in the rest of the paper are taken at a
detuning of 
 = 4.2�a.

B. Optical depth scan

Figure 6 shows ln[(E (t )] for an on-resonant optical depth
of OD = 1, 0.83, 0.68, 0.52, and 0.35, respectively. The
optical depth is varied by turning off the MOT beams and
letting the cloud free expand for a certain duration of time
before the excitation beam is applied. The five optical depths
are obtained after an expansion time of 0, 1, 2, 3, and
4 ms, respectively. The optical depth after each expansion
is calculated by measuring the size of the cloud using the
EMCCD. As expected, as the optical depth is reduced, the
subradiance is less pronounced and the decay rate approaches
that of independent (i.e., uncorrelated) decay.

In each plot, the dashed red line is the result of the theo-
retical model with the free parameter adjusted to be ξ = 0.77.
This parameter is adjusted once to get a good overall fit for
0 < t < 9τa for the top plot (i.e., for OD = 1). There is no
further adjustment for the consequent plots. With this single
fitting parameter, there is good agreement between the exper-
imental data and the numerical results. For comparison, the
case of independent decay, exp(−t/τa), is also plotted (dashed
green line).

For the data of Fig. 6, the decay is not a simple exponential
decay and as a result there is not a single time constant. In
Fig. 7, we plot the mean decay time constant for each experi-
mental curve shown in Fig. 6 during 0 < t < 2.3τa. The error
bar in each data point is the standard variation of the decay
time during this time window and is therefore a measure
of how much the decay time changes during the same time
window. The black curve is the result of numerical simulations
where the free parameter is adjusted to get a good agreement
for OD = 1 and ξ = 0.94. Again, with this single fitting pa-
rameter, there is good agreement between the experimental
data and the numerical results. Consistent with the numerical
results, there is some indication of a nonlinear dependence to
the optical depth, since the data points do not lie on a single
line and instead curve upwards as the OD is increased.

C. Excitation fraction scan

In Ref. [8], subradiance was studied in the weak excitation
regime where the single-atom excited subspace is a good

FIG. 5. Stored energy in the cloud (i.e., excited-state population) ln[(E (t )] for two different on-resonant optical depths, OD=1 (black line)
and OD=0.35 (blue line). The plot on the left is obtained for an excitation laser which is on-resonant( 
 = 0), while for the plot on the right
the excitation laser is detuned by an amount 
 = 4.2�a. For comparison, the case of independent decay, exp(−t/τa ), is also plotted (dashed
green line). Because the results are qualitatively similar, the observed subradiance cannot be due to radiation trapping.
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FIG. 6. ln[(E (t )] as the optical depth is varied from OD = 1
(top plot) to OD = 0.35 (bottom plot). In each plot, the dashed
red line is the result of the theoretical model discussed in the text.
For comparison, the case of independent decay, exp(−t/τa ), is also
plotted (dashed green line). As expected, as the optical depth is re-
duced, the observed subradiance is reduced and the decay approaches
independent (i.e., uncorrelated) decay. Only one value of ξ is used
for all plots, demonstrating that the physical model can predict the
dependence of collective effects on atomic density.

FIG. 7. Mean decay time for each experimental curve shown in
Fig. 6 during 0 < t < 60 ns. The error bar in each data point is the
standard variation of the decay time during this time window and is
therefore a measure of how much the decay time changes during the
same time window.

approximation to the full dynamics. In this regime, the ob-
served subradiant time scales are independent of the intensity
of the excitation laser. In this section, we discuss that, in the
dilute clouds and in the strong excitation regime, this is no
longer the case. Figure 8 shows ln[(E (t )] for a high excitation
fraction of 0.3 (solid black curve) and a relatively low excita-
tion fraction of 0.08 (blue curve). For low excitation fraction,
the decay approaches that of independent decay (dashed green
line) and the observed subradiance is greatly reduced.

Figure 9 shows the mean decay time during 0 < t < 2.3τa

for 12 experimental curves similar to the ones shown in Fig. 8.
While there is a large spread in the data, there is also a clear
trend that, as the excitation fraction is increased, the decay
time scales increase (i.e., the system becomes more subradi-
ant). The solid black curve is the result of numerical results
where the free parameter is adjusted to get a good agreement
for the high excitation fraction of 0.3, ξ = 0.90. Again with
this single fitting parameter, there is good agreement between
the model and the experimental results.

FIG. 8. ln[(E (t )] for high excitation fraction of 0.3 (solid black
curve) and 0.08 (blue curve). For comparison, the case of inde-
pendent decay, exp(−t/τa), is also plotted (dashed green line). The
amount of observed subradiance is significantly reduced as the exci-
tation fraction is reduced.
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FIG. 9. Mean decay time during 0 < t < 2.3τa as a function of
the excitation fraction of the atomic cloud. The error bar in each data
point is the standard variation of the decay time and is therefore a
measure of how much the decay time changes during the same time
window. The solid black curve is the result of numerical results with
a single adjustable parameter. While there are large fluctuations in the
data, the trend is clear; subradiant time scales increase with excitation
fraction.

D. Signatures of superradiance-to-subradiance transition

In this section, we focus on the variation of the decay
time as the system evolves—specifically on the superradiant-
to-subradiant transition. For this purpose, we focus on the
dynamics in the early times of the system evolution, 0 <

t < 3τa. As shown in Fig. 2, while both curves, in principle,
contain the same amount of information, the variation of the

decay time constant during time evolution (i.e., how much
each curve deviates from a linear line in the logarithmic plot)
is more pronounced for the fluorescence curve. For this pur-
pose, in this section we focus directly on the fluorescence as
observed on the photon counter, ln[P(t )].

Figure 10 shows the observed fluorescence (solid blue
lines) in logarithmic scale, ln[P(t )], for an on-resonant cloud
optical depth of (a) OD = 1, (b) 0.83, (c) 0.68, and (d) 0.52.
This data is obtained from the same data sets as the first four
plots of Fig. 6. In these plots we focus on a shorter time
window of 0 < t < 3τa to focus on early stages of the decay.
For comparison, the case of independent decay, exp(−t/τa),
is also plotted (dashed green line). For all the sets, there
are signatures of faster than independent decay (superradiant)
dynamics for t < τa. For each set, the ±σ statistical error
bars on the data points are also plotted (dotted blue lines) to
demonstrate that the observed superradiance is well beyond
the statistical error bars of the data. The error bars increase
as the system evolves due to the reduced number of detected
photons at later times of the decay. As the system evolves, su-
perradiance either evolves to subradiance [high optical depth:
(a) and (b)] or approaches independent decay [low optical
depth: (c) and (d)].

Figure 11 shows the observed fluorescence for two optical
depths OD = 1 (high) and OD = 0.52 (low) over a longer
time window 0 < t < 7τa, and also overlapped with the nu-
merical results (dashed red curves). Here, the free parameter
is adjusted only once to be ξ = 0.9, in order to get good
agreement with the experimental results for the high optical
depth (left plot). For this case, the numerical results capture

FIG. 10. Observed fluorescence (solid blue lines) in logarithmic scale for a cloud optical depth of (a) OD = 1, (b) 0.83, (c) 0.68, and
(d) 0.52. For comparison, the case of independent decay, exp(−t/τa), is also plotted (dashed green line). For each set, the ±σ statistical error
bars on the data points are also plotted (dotted blue lines) to demonstrate that the observed superradiance is well beyond the error bars of the
data. The error bars increase as the system evolves due to the reduced number of detected photons at later times of the decay.
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FIG. 11. Observed fluorescence in logarithmic scale for a cloud optical depth of OD = 1 (left) and 0.52 (right). For comparison, the
numerical results are also plotted (dashed red curves).

the variation of the decay time constant during time evolu-
tion, as well as superradiance-to-subradiance transition very
well. For the lower optical depth (right plot), the agreement
between the experimental data and the numerical results is
worse. Specifically, the experimental curve continues to show
signatures of superradiance at early times, while the numerical
results do not. The reason for this discrepancy is currently
an open question. We speculate that one reason for the dis-
crepancy could be the assumption of a uniform cloud in the
numerical simulations. In the experiment, the density of the
MOT is unlikely to be uniform, due to the complicated three-
dimensional interference pattern produced by the six MOT
laser beams. Due to this interference, there are likely localized
regions with a higher density, which may be responsible for
the persistent superradiant feature at early times, even at low
optical depths.

VI. DISCUSSION: RADIATION TRAPPING
VS SUBRADIANCE

It is well known that on-resonant radiation trapping, which
is critically important for atomic clouds with a large optical
depth, can mimic subradiance. Radiation trapping is a result
of incoherent absorption and reemission of resonant photons
in the atomic cloud, while subradiance is due to coherent an-
tiphasing of the atomic dipoles. These two different physical
effects can be distinguished even in atomic clouds with a very
large optical depth [9]. In this section, we discuss a few im-
portant aspects of our experiment that indicate that radiation
trapping does not play an important role. The first important
point is that the on-resonant OD of the atomic cloud in our
experiments is of order unity. We measure the optical depth
using two different methods. In the first one, we measure the
absorption of a weak resonant beam through the cloud. In the
second approach, we monitor continuous fluorescence of the
MOT atoms with the EMCCD under full saturation. Using
the detected photon counts at the EMCCD and known solid
angle of the collection optics, optical losses, and quantum
efficiency of detection, we can then infer the number of atoms
in the MOT. Together with the measurement of the size of
the MOT cloud, this then allows us to infer the optical depth.
We have found these two different measurements of the OD
to be reasonably consistent, agreeing to within a factor of 2.
We note that this estimation of the optical depth using the

second approach is complicated by a number of issues, such
as (i) the uncertainty in the number of atom measurement,
(ii) the unknown distribution of the atoms among specific mF

sublevels in the F = 2 ground level, and (iii) the deviation
of the shape of the atomic cloud from spherical. Because of
these issues, the direct measurement of the optical depth using
absorption of a weak probe laser beam is more reliable. As a
result, in the above, we report the OD measurements using the
absorption of a weak resonant beam.

For atomic clouds with near-uniform illumination, radia-
tion trapping is predicted to be negligible at such low optical
depths. For example, as discussed in Ref. [9], exact Monte
Carlo simulations suggest that optical depths far larger than
unity are needed for multiple scattering events (which result
in radiation trapping) to become appreciable.

We also note that our experimental data of Fig. 9 largely
rules out radiation trapping playing a dominant role. In this
plot, we show that the subradiant time scales increase as the
excitation fraction of the cloud (i.e., the initial number of
atoms in the excited state) increases. If radiation trapping
was playing a dominant role, one would expect exactly the
opposite behavior: i.e., the subradiant time scales should have
decreased as the excitation fraction is increased. This is be-
cause, for larger excitation fractions, there are fewer atoms in
the cloud initially in the ground state and the probability of a
photon being absorbed by the cloud decreases (i.e., the “ef-
fective” optical depth of the cloud is reduced as the excitation
fraction is increased).

VII. CONCLUSIONS AND FUTURE WORK

In conclusion, we experimentally studied subradiance in
a dilute cloud of ultracold 87Rb atoms with densities very
far away from the Dicke limit (nλ3

a ∼ 10−2) and where the
on-resonance optical depth of the cloud is of order unity.
Although collective decay is an old and well-studied prob-
lem, our results are unique in a number of ways. Perhaps
most importantly, we were able to observe signatures of
superradiant-to-subradiant transition; i.e., initially the decay
rate is faster than independent decay (superradiant emission),
while at later times it transitions to a slower rate (subra-
diant emission). Such a transition has long been predicted
to be an important feature of collective decay, but has not
been observed before. We also showed that, in the regime
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that we study (dilute cloud in the strong excitation regime),
the subradiant time scales depend on the excitation frac-
tion of the cloud (i.e., on the intensity of the excitation
pulse).

We also discussed a theoretical model whose results are
in good agreement with the experiments. The model relies
on extension of the well-known decay ladder of the excita-
tion, where the decay rate of each subspace is modified in
accordance with the eigenvalue distribution of the exchange
Hamiltonian. The model captures the observed (i) variation
of the decay time constant with optical depth, (ii) variation
of the decay time constant with the excitation fraction, and
(iii) the subradiant-to-superradiant transition. However, the
model overestimates the variation of the decay time as the
system evolves: the curves shown in Fig. 4 deviate more
from linear compared to experimental curves. The model
also does not capture the persistent superradiance at early
times that we observe in the experiment, even at low optical
depths.

Extension of our results to mesoscopic ultracold clouds,
with atom numbers in the range of 100–1000, would be very
interesting. Such a mesoscopic system can be studied by load-
ing the atoms to a far-off-resonant dipole trap, which is formed
by focusing a detuned laser overlapping with the MOT. By
moving one of the mirrors of the focusing optics, the beam
size at the focus, and therefore the size of the trap, can be
precisely controlled. This would allow independent control of
the number (N) and density (n) of atoms in the trap. Such
highly controlled mesoscopic systems will likely allow for
better probing of many of the physics that we have explored
in this paper, including the superradiance-to-subradiance
transition.

Our results have important implications for a number of
research areas. Perhaps the most important immediate ap-
plication is to quantum information science. As mentioned
above, subradiant states have gained renewed attention over
the past decade since they are less susceptible to decoher-
ence. Our work experimentally shows that such states can, in
principle, be prepared even in the large-sample, very dilute
limit.

On a more fundamental note, Ref. [10] discussed the im-
plications of cooperative effects for scalability of quantum
computers. Specifically, it was shown that noise due to col-
lective decay produced errors in a quantum computer beyond
the applicability of the threshold theorem and therefore out-
side the current models of quantum error correction. The key
reason for this is that cooperative effects cannot be ignored,
even when the average distance between the qubits is larger
than the emission wavelength. Our experiment indeed shows
that this is the case: even when on average there is only 0.01
atoms in a cubic wavelength of volume, cooperative effects
can be quite important.
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APPENDIX: DETAILS OF THE THEORETICAL MODEL
AND NUMERICAL SIMULATIONS

1. Formalism and the exchange interaction

Consider N two-level atoms, each with levels |0〉 and |1〉,
in a three-dimensional geometry. We denote each individual
atom with the index j and consider a continuum of elec-
tromagnetic modes with annihilation and creation operators
âκε and â†

κε , respectively. These operators act on the mode
of the field with wave vector κ and polarization ε. The total
Hamiltonian for the system when only the energy-conserving
terms are retained (under the rotating wave approximation) is
[10]

Ĥtotal =
∑

j

1

2
h̄ωaσ̂

j
z +

∑
κε

h̄νκε

(
â†

κε âκε + 1

2

)

−
∑

j

∑
κε

h̄gκε

[
âkε exp (i
κ · 
r j )σ̂

j
+

+ â†
κε exp (−i
κ · 
r j )σ̂

j
−
]
, (A1)

where

σ̂ j
z = |1〉 j j〈1| − |0〉 j j〈0|,

σ̂
j

+ = |1〉 j j〈0|,
σ̂

j
− = |0〉 j j〈1|. (A2)

In Eq. (A1), the first two terms describe the atoms and
the electromagnetic modes in the absence of any interaction,
whereas the third term describes the coupling between the two
systems. 
r j is the position of the jth atom and the energies
of the atom states |0〉 and |1〉 are taken to be − 1

2 h̄ωa and
1
2 h̄ωa, respectively. The Dicke limit of the above equations
is obtained when the total size of the sample is assumed to
be small compared to the κ vector of the relevant modes, i.e.,

κ · 
r j → 0.

It is now well understood that the key physical effect that
describes many different aspects of collective decay, including
superradiance and subradiance, is the exchange interaction.
Starting with the Hamiltonian of Eq. (A1), this interaction
has been derived using a variety of approaches by a number
of authors [5,57–59]. One such derivation of the exchange
interaction Hamiltonian is given in our earlier paper, Ref. [10],
which we summarize here. The derivation uses assumptions
that are similar to the traditional Wigner-Weisskopf theory
of spontaneous decay [60]. Briefly, we take the initial atomic
system to be an arbitrary superposition (in general entangled
state) and assume initially zero excitation in each electromag-
netic mode κε. We then study the problem in the interaction
picture and integrate out the probability amplitudes of the con-
tinuum states using the usual Born-Markov approximation.
Using this approach, the end result is the following effective
interaction Hamiltonian:

Ĥeff =
∑

j

∑
k

Ĥ jk . (A3)

Here, the sum is over all pairs of qubits and operators Ĥ jk

act nontrivially only on the qubits with indices j and k,

Ĥ jk = Fjk σ̂
j

+σ̂ k
− + Fk j σ̂

i
−σ̂

j
+, (A4)
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which is essentially a “spin” exchange interaction (mediated
by photon modes) with coupling constants of Fjk:

Fjk = Fk j = −
(

i
�a

2
+ δωa

)3

2

[
(1 − cos2 θ jk )

sin κar jk

κar jk

+ (1 − 3 cos2 θ jk )

(
cos κar jk

(κar jk )2
− sin κar jk

(κar jk )3

)]
.

(A5)

Here, �a is the single-atom decay rate and δωa is the
single-atom Lamb shift of the qubit transition. r jk is the dis-
tance between the two atoms and θ jk is the angle between the
atomic dipole moment vector and the separation vector 
r jk .
The quantity κa is the wave vector for the electromagnetic
modes energy resonant with the qubit transition: κa = ωa/c.

2. Width of the eigenvalue distribution for M subspace

In this section, we discuss the width of the eigenvalue
spectrum of the exchange Hamiltonian Ĥeff = ∑

jk Ĥ jk =∑
k Fjk σ̂

j
+σ̂ k

− + Fk j σ̂
j

−σ̂ k
+ in the N → ∞ limit, for the M-atom

excited subspace. In this limit, the eigenvalues λ of Ĥeff can
be viewed as having a continuous distribution with proba-
bility density function f�(λ) ≡ P{� = λ}. The width of the
probability density function can be evaluated by explicitly
calculating the second moment (variance) of the distribution
σ (2) ≡ E [�2] = ∫

f�(λ)λ2dλ, where E [. . .] stands for the
expected value. By definition, this second moment is

σ (2) = E [�2] =
(N

M

)−1

Trace[(Ĥeff )2]

=
(N

M

)−1 ∑
q

〈q|
(∑

jk

Fjk σ̂
j

+σ̂ k
− + Fk j σ̂

j
−σ̂ k

+

)2

|q〉. (A6)

Here, the summation q is over all the states in
the M atom excited subspace. By inspection, each term

〈q|(∑ jk Fjk σ̂
j

+σ̂ k
− + Fk j σ̂

j
−σ̂ k

+)
2|q〉 produces (N − M )M con-

tributions, each appropriately scaled with the square of the

relevant coupling constant, F 2
jk . In the N → ∞ limit, the result

is therefore

σ (2) = (N − M )ME
[
F 2

jk

]
= π + 29/12

k2
aR2

(N − M )M�2
a . (A7)

Here, in the last step, we have used the expected value of
the squares of the coupling constants in a three-dimensional
geometry, E [F 2

jk], as discussed in Ref. [10]. The standard
deviation (width) of the distribution is the square root of the
variance given in Eq. (A7):

σ =
√

σ (2) =
√

π + 29/12

kaR

√
N − M

√
M�a. (A8)

The distribution is symmetric around λ = 0, which means
that there are an equal number of superradiant and subradi-
ant states. We have numerically checked that the results are
insensitive to the precise shape of the distribution; rather,
as expected, the width is critical. As a result, we choose a
simple uniform distribution centered around λ = 0, with a
width given by Eq. (A8).

3. Heuristic incorporation of stimulated emission

The formalism described above assumes each photon mode
to be unoccupied initially and, as a result, it does not incor-
porate stimulated emission in the decay process. In the small
sample regime, an M-atom subspace has “M” photons stored
and the spontaneous rates would at most be enhanced by “M,”
as the system decays through the ladder. This is because the
stimulated emission rate for an M-photon state is a factor of M
larger than the spontaneous rate [60]. For a large sample, all
emitted photons would not interfere constructively, but instead
interfere with random phases. As a result, we hypothesize
that one would expect

√
M enhancement compared to the

spontaneous rate for the large sample. We, therefore, multiply
the width given by Eq. (A8) by a factor of

√
M to heuristically

incorporate for stimulated emission.
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