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In the current quest for efficient and experimentally feasible platforms for implementation of multimode
squeezing and entanglement in the continuous variable regime, we underpin and complement our results on
the generation of versatile multimode entanglement and cluster states in nonlinear waveguide arrays presented
by Barral et al., arXiv:1912.11154 [Phys. Rev. Appl. (to be published)]. We present detailed derivations of the
equations that describe the propagation of light through this system, and then we focus on parameter regimes
where these equations can be solved analytically. These analytical solutions build an intuition for the wide
landscape of quantum states that are accessible through the activation of pumping, coupling, and measurement
schemes. Furthermore, we showcase the acquired insights by using one of the identified analytical solutions to
exhibit the generation, optimization, and scalability of spatial linear cluster states.
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I. INTRODUCTION

The optical continuous-variable (CV) framework is a true
contender for quantum communication and quantum infor-
mation processing [1]. Demonstrations of protocols putting
the field fluctuations to good use have been achieved since
1992 [2–7], working toward large-scale entangled states for
quantum computing [8,9]. However, all these major advances
were achieved with table-top experiments and for research
purposes only. Integrated optics can fill the gap toward
the development of real-world quantum technologies [10].
Entanglement and superposition underpin the advantage of
quantum protocols. Thus, an integrated synthesizer of mul-
timode entangled states is a key component for the boost
of quantum technologies. Entanglement on chip has been
demonstrated for two parties [11], in an integrated version
of the bulk optics implementations that cascade squeezers
and beam splitters [12]. We discuss here the versatility of a
monolithic device—with no bends in the active region nor
specific functionalized regions—where nonlinearity and cou-
pling act simultaneously: the array of nonlinear waveguides
(ANW) [13].

Such arrays have been used in the discrete variable do-
main [14,15] and have been proposed to achieve specific
multimode states in the CV domain with N = 2 waveg-
uides [16,17] or scaling up the number of waveguides [18–20].
Recently, the ANW has been proposed as a versatile source
to engineer tailored cluster states for measurement-based
quantum computing [21]. Here we provide a complementary
perspective by exploring both the mathematical backbone of
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these results and the physical insight that can be obtained from
it. We showcase how entanglement and squeezing manifests in
optical modes that are produced by the ANW, and we detail
possible tuning parameters, derive analytical and semianalyt-
ical solutions, and harness them to find a good working point
for the generation of linear clusters.

Our framework is based on the choice and use of different
sets of available eigenmodes of the ANW which simplify the
dynamics of the system and open up new possibilities to en-
code quantum information. The use of eigenmodes is the key
to demonstrate tunable multipartite entanglement in the fre-
quency domain [22,23]. We establish parallels between the
ANW and such frequency combs, thus connecting spatial and
frequency encoding through a joint mathematical framework.
We further show that full engineering of multimode squeezed
states can be achieved in the spatial domain (i) by specific
design of the ANW shaping the nonlinearity and coupling and
designing a suitable phase matching (as suggested before in
Ref. [21] and further exemplified here) and externally (ii) by
adjusting the pumping profile and by adapting the measure-
ment strategies of the output fields.

The main conceptual, practical, and technological assets of
the ANW in comparison with other platforms are (i) the large
number of degrees of freedom available that enable to recon-
figure its operation, (ii) a number of analytical solutions based
on symmetries present in arrays of waveguides that are a guide
to develop specific quantum protocols, (iii) the possibility to
encode quantum information in the individual mode basis or
in any other basis based on linear combinations of individ-
ual modes, (iv) the small footprint, from few millimeters to
centimeters, and (v) the simplicity of the pumping-detection
optical setup that can be based on available telecom fiber-
optic components. Notably, quantum information encoded in
the individual spatial modes can be distributed to different
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FIG. 1. (a) Sketch of an array of nonlinear waveguides based
on a PPLN waveguide array made up of nine waveguides working
in a SPDC configuration pumping the central waveguide. Propagat-
ing pump field in blue. Evanescently coupled SPDC signal fields
in red. Quantum noise variances and correlations are measured by
multimode balanced homodyne detection. (b) Example of quadrature
correlations between two individual SPDC signal modes j and j′.

locations of a quantum network in a natural way, which is
harder to implement in the frequency domain [24].

The article is organized as follows: We first derive the
governing equations of propagation and squeezing in ANW
in Sec. II. We then detail and illustrate an inventory of the
tuning parameters for squeezing and entanglement engineer-
ing in Sec. III. Notably, we give in Sec. III various sets of
analytical solutions that provide considerable insight on the
impact of the pumping phase profile on the generation of
entanglement. We build on this formalism and intuition to
demonstrate multimode squeezing in Sec. IV and detail the
possibilities to produce linear cluster states in ANW in Sec. V.

II. THE ARRAY OF NONLINEAR WAVEGUIDES:
POSSIBLE ENCODINGS AND GENERAL SOLUTIONS

A. The array of nonlinear waveguides

The array of nonlinear waveguides consists of N identical
χ (2) waveguides in which degenerate spontaneous down-
conversion (SPDC) and nearest-neighbor evanescent coupling
between the generated fields take place. The array can be
made up of, for instance, periodically poled lithium nio-
bate (PPLN) waveguides as sketched in Fig. 1(a). In each
waveguide, an input harmonic field at frequency ωh is type-
0 down-converted into a signal field at frequency ωs. We
consider that the phase-matching condition �β ≡ β(ωh) −
2β(ωs) = 0, with β(ωh,s) as the propagation constant at fre-
quency ωh,s, is fulfilled all along the coupling zone and in the
coupling zone only. The energy of the signal modes propa-
gating in each waveguide is exchanged between the coupled
waveguides through evanescent waves, whereas the interplay
of the second harmonic waves is negligible for the consid-
ered propagation lengths due to their high confinement into
the guiding region. We set our calculation in the reasonable
regime of pump undepletion [17]. We consider a general
array of N identical waveguides and continuous-wave prop-
agating fields. The physical processes taking place in χ (2)

waveguides can be described by a dynamical operator M̂
obtained quantizing the flux of momentum of the electro-
magnetic fields [25,26]. The following Heisenberg equation
is obtained for an array of N evanescently coupled nonlinear
waveguides in the SPDC regime [16,18,27]

dÂ j

dz
= iC0( f j−1Â j−1 + f jÂ j+1) + 2iη jÂ†

j , (1)

where Â0 = 0 and ÂN+1 = 0, f0 = fN = 0 and j = 1, . . . , N
is the individual mode index. Â j ≡ Â j (z, ωs) are monochro-
matic slowly varying amplitude annihilation operators of
signal (s) photons corresponding to the jth waveguide—the
individual mode basis—fulfilling equal space commutation
relations [Â j (z, ω), Â†

j′ (z, ω
′)] = δ(ω − ω′)δ j, j′ [25]. The ef-

fective nonlinear coupling constant corresponding to the jth
waveguide is given by η j = gαh, j , where g is the nonlinear
constant—proportional to χ (2) and to the spatial overlap of
the signal and harmonic fields in each waveguide—and αh, j is
the strong coherent undepleted pump field propagating in the
jth waveguide. The parameters η j can be tuned by means of
a suitable set of pump phases and amplitudes at each waveg-
uide. Cj = C0 f j is the linear coupling constant between modes
j and j + 1, where C0 is the coupling strength and f j are the
elements of the coupling profile �f . z is the coordinate along
the direction of propagation. Both the coupling and nonlinear
constants depend on the set signal frequency, C0 ≡ C0(ωs)
and g ≡ g(ωs), and they are taken as real without loss of
generality.

Since we are interested in CV squeezing and entanglement,
we will also use along the paper the field quadratures x̂ j and
ŷ j , where x̂ j = (Â j + Â†

j ) and ŷ j = i(Â†
j − Â j ) are, respec-

tively, the amplitude and phase quadratures corresponding to
a signal optical mode A j [Fig. 1(b)]. The system of equations
(1) in terms of the individual-modes quadratures can be rewrit-
ten in compact form as

d ξ̂

dz
= �(z) ξ̂ , (2)

where �(z) is a 2N × 2N matrix of coefficients and ξ̂ =
(x̂1, . . . , x̂N , ŷ1, . . . , ŷN )T .

In general, either Eq. (1) or Eq. (2) can be solved numer-
ically for a specific set of parameters (Cj, η j, N ), or even
analytically if N is small. However, it is difficult to gain
physical insight from numerical or low-dimension analyti-
cal solutions due to the increasing complexity of the system
with the number of waveguides. We propose below and use
throughout the paper two modal approaches—complementary
to the individual-mode approach—that enlighten the problem
of propagation in ANWs. We thus use the following:

(i) Linear (propagation) supermodes Bk , i.e., the eigen-
modes of the corresponding linear array of waveguides
assuming η j ∝ g = 0. In the actual array of nonlinear waveg-
uides where η j ∝ g �= 0, these modes are squeezed and
coupled through the nonlinearity. This basis has analytical
solutions independently of the number N of waveguides for
specific pump-field distributions. We show these solutions in
Sec. III.

(ii) Nonlinear (squeezing) supermodes Cm, i.e., the eigen-
modes of the full nonlinear system. These modes are squeezed
and by construction fully decoupled but z dependent. We point
out that, in some cases (see Sec. III B 1), both linear and
nonlinear supermodes are degenerate up to local phases.

These two complementary approaches connect our work
and our result of spatial multimode squeezed states exhibited
in Secs. IV and V to the spectral [22,23,28], spatial [29–31],
or temporal [32,33] modes of previous works. In the next
section, Sec. II B, we introduce both linear and nonlinear
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supermode bases, work out the corresponding propagation
equations, and give the general solution to the propagation
problem. Furthermore, we use the relationship between the
two bases to draw mathematical parallels with SPDC fre-
quency modes [24,34,35].

B. Propagation equations

The general solutions to the propagation in ANWs have
been recently introduced in Ref. [21]. Below we present a
detailed calculation of those solutions in both the complex and
quadratures representation of the optical fields and compare
our spatial domain solutions with those obtained in similar
physical systems working with frequency modes.

1. Complex optical fields

Considering coupling only between nearest-neighbor
waveguides, a linear waveguide array—i.e., Eq. (1) with
η j = 0—presents linear supermodes B̂k , i.e., propagation
eigenmodes [36]. In general, any linear waveguide array
is represented by a Hermitian tridiagonal matrix—Jacobi
matrix—with non-negative entries and thus by a set of non-
degenerate eigenvalues and eigenvectors given in terms of
orthogonal polynomials [37]. These eigenvectors, that we call
the linear supermodes, form a basis and are represented by
an orthogonal matrix M ≡ M( �f ) with real elements Mk, j . The
individual modes of the waveguides and the linear supermode
basis are thus related by

B̂k =
N∑

j=1

Mk, j Â j .

These supermodes are orthonormal

N∑
j=1

Mk, jMk′, j = δk,k′ , (3)

with a spectrum of eigenvalues λk ≡ λk (C0, �f ). We focus
on the relevant case of constant coupling along propagation;
i.e., Cj does not depend on z. Equation (1) for the nonlinear
waveguide array can be written as

dB̂k

dz
= iλkB̂k + 2i

N∑
j=1

N∑
k′=1

η jMk, j Mk′, jB̂†
k′ , (4)

in the linear supermode basis, where we have used the eigen-
value condition C0( f j−1Mk′, j−1 + f jMk′, j+1) = λk′Mk′, j and
the orthogonality of the supermodes. Using slowly varying
supermode amplitudes B̂k = B̂k e−iλk z, the following propaga-
tion equation is obtained:

dB̂k

dz
= 2i

N∑
j=1

N∑
k′=1

η j Mk, j Mk′, j B̂
†
k′e−i(λk+λk′ )z. (5)

The momentum operator in the interaction picture which pro-
duces Eq. (5) by means of the Heisenberg equations dB̂k/dz =
(i/h̄)[B̂k,M̂LS] is thus

M̂LS = − ih̄

2

N∑
k,k′=1

Lk,k′ (z)B̂†
k B̂†

k′ + H.c.

The coupling matrix L(z) is the local joint-spatial supermode
distribution of the ANW and its elements are given by

Lk,k′ (z) = 2i
N∑

j=1

|η j |Mk, jMk′, j ei{φ j−(λk+λk′ )z}, (6)

where we have used η j = |η j |eıφ j . L(z) is a complex sym-
metric matrix which gathers all the information about the
spatial shape of the pump, i.e., amplitudes and phases in each
waveguide and the signal supermodes coupling.

The formal solution to Eq. (5) is given by [27]

B̂k (z) = exp←

{∫ z

0
M̃LS (z′)dz′

}
B̂k (0),

where M̃LS stands for a superoperator defined as
M̃LS (z) · · · = (i/h̄)[· · · ,M̂LS (z)] and the symbol exp←
is an exponential superoperator with increasing arguments
ordered to the left. This solution evidences that in general
the interaction momentum M̂LS defined in the slowly
varying basis B does not commute at different positions.
This makes necessary to include space-ordering corrections
with significant effects in the high-gain regime—for instance,
above 12-dB squeezing in single-pass type-II PDC [38].
However, these space-ordering effects can be neglected
here since (i) a low-gain regime—small |η j |—is crucial
for individual mode entanglement, and indeed the light
generated in each waveguide tends to remain guided without
evanescent coupling if |η j | > C0 [39], (ii) our model is
limited to small values of C0, as large values should include
next-to-nearest-neighbor evanescent coupling where linear
supermodes are not available [36], and (iii) we study SPDC
generated from vacuum where space-ordering corrections
start at the third order—roughly as O(|η j |3) [40]. We
emphasize that all the analytical solutions presented in
Sec. III B are nevertheless exact for any gain regime as they
are also obtained in the basis B from Eq. (4). Thus, in the
entanglement regime, Eq. (5) can be simply written as

dB̂k

dz
=

N∑
k′=1

Lk,k′ (z) B̂†
k′ , (7)

with the following formal solution:( �B(z)

�B†(z)

)
= exp

{(
0

∫ z
0 L(z′)dz′∫ z

0 L∗(z′)dz′ 0

)}( �B(0)

�B†(0)

)
,

(8)
where �B = (B̂1, . . . , B̂N )T . The solution (8) displays the effect
of the nonlinearity on the linear supermodes: z-dependent
amplification and coupling. A simpler solution can be ob-
tained diagonalizing the matrix argument of the exponential in
Eq. (8) through the nonlinear supermodes. In general, the lin-
ear supermode basis does not diagonalize the propagation in
the ANWs and the solution of Eq. (8) is configuration depen-
dent. However, Eqs. (7) and (4) present analytical solutions
independently of the dimension N for specific pump-field
distributions, as we show in Sec. III.

A feature of the ANWs is that the evanescent coupling
produces a phase mismatch between the pump and the gener-
ated signal waves which results in a z-dependent interaction,
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TABLE I. Comparison between SPDC in frequency combs (left) and in nonlinear waveguide arrays (right). We show for both frameworks
individual modes (â j , Â j), dynamical generators in the individual basis (Ĥ, M̂), coupling matrix (L̃, L), respectively joint spectral and spatial
distribution, nonlinear supermode basis (ĉm, Ĉm), and dynamical generator in the nonlinear supermode basis (ĤNLS , M̂NLS). Note that since
the nonlinear supermodes are only defined locally, M̂NLS is a formal generator shown here for the sake of comparison. In frequency combs,
the coupling between the individual modes is nonlinear and the diagonal basis of nonlinear supermodes is obtained directly from them. In
contrast, in arrays of nonlinear waveguides the coupling between the individual modes is linear, which produces linear supermodes B̂k . The
slowly varying linear supermodes B̂k present a dynamical generator M̂LS . The coupling between different slowly varying linear supermodes is
nonlinear and local, and the nonlinear supermodes are obtained by diagonalizing the coupling matrix of the slowly varying linear supermodes.
n.a. denotes not applicable.

Function Frequency combs [24] ANWs

Individual modes â j Â j

Generator indiv. mod. Ĥ = ih̄
2

∑N
j,k=1 L̃ j, j′ â

†
j â

†
j′ + H.c. M̂ = h̄

∑N
j=1{C0( f jÂ j+1Â†

j + f j−1Â j−1Â†
j ) + η jÂ† 2

j + H.c.}
Linear supermodes n.a. B̂k = B̂k e−iλk z = ∑N

j=1 Mk, j Â j e−iλk z

Generator lin. superm. n.a. M̂LS = − ih̄
2

∑N
k,k′=1 Lk,k′ (z)B̂†

k B̂†
k′ + H.c.

Coupling matrix L̃ j, j′ = sinc[φ(ω j, ω j′ )]α(ω j + ω j′ ) Lk,k′ (z) = 2i
∑N

j=1 |η j |Mk, jMk′, j ei{φ j−(λk+λk′ )z}

Nonlinear supermodes ĉm = ∑N
j=1 V †

m, j â j Ĉm = ∑N
k, j=1(ϒ†

m,k (z) Mk, j e−iλk z )Â j

Gen. nonl. sup. basis ĤNLS = ih̄
2

∑N
m=1 m,m(ĉ†

m )2 + H.c. M̂NLS = ih̄
2

∑N
m=1 ̃m,m(z)(Ĉ†

m )2 + H.c.

in such a way that the eigenmodes of the full nonlinear
system—the nonlinear supermodes—are local. This coupling-
based phase mismatch affects the amount of squeezing and
entanglement generated in the ANWs. The local nonlinear
supermode basis displays independently squeezed modes and
helps to quantify the amount of nonclassicality generated in
the array at different propagation distances. The local nonlin-
ear supermodes basis C is such that

Ĉm =
N∑

k=1

ϒ
†
m,k (z) B̂k, (9)

where [Ĉm(z, ω), Ĉ†
m′ (z, ω′)] = δ(ω − ω′)δm,m′ , and ϒ(z) is

an unitary matrix which diagonalizes the complex symmet-
ric matrix

∫ z
0 L(z′)dz′ by a congruence transformation—the

Autonne-Takagi transformation [41]—such that

ϒ(z)

[ ∫ z

0
L(z′)dz′

]
ϒT (z) = (z), (10)

with (z) being a local diagonal matrix with non-negative real
entries. Applying Eqs. (9) and (10) on Eq. (8), we obtain a
simple solution in the diagonal local basis

Ĉm(z) = cosh[rm(z)] Ĉm(0) + sinh[rm(z)] Ĉ†
m(0). (11)

Each local nonlinear supermode is a single-mode squeezed
state. The rm(z) = m,m(z) are the down-conversion gains at a
propagation distance z and quantify the available nonlinearity
and thus squeezing. The relation between the nonlinear super-
modes and the individual modes is

Ĉm =
N∑

k=1

N∑
j=1

(ϒ†
m,k (z) Mk, j e−iλk z )Â j .

This expression encapsulates the mechanisms at play in the
ANWs: the evanescent coupling generates the linear su-
permodes (Mk, j), which get a phase due to propagation
(λkz) and the nonlinearity couples them locally [ϒ†

m,k (z)]. In
terms of the individual modes, the solution to the nonlinear

system is

Â j (z) =
N∑

k,m, j′=1

(Mk, jϒm,k (z)Mm, j′ eiλk z )

{cosh[rm(z)] Â j′ (0) + sinh[rm(z)] Â†
j′ (0)}. (12)

Equations (8), (11), and (12) are the general solutions in
the low-gain regime to the propagation problem in ANW in
the linear supermodes, nonlinear supermodes, and individ-
ual mode bases, respectively. These three solutions represent
a resource for encoding quantum information. Particularly,
Eq. (12) is a useful tool in the DV framework to explore
further, for instance, driven quantum walks [42].

Remarkably, the kind of equations that we find here for
spatial modes are formally similar to those that appear in the
context of SPDC in frequency combs [24,34,35]. We draw
parallels between the spectral approach that leads to mul-
timode entanglement and our spatial approach in ANW in
Table I. In frequency combs, the individual modes are a dis-
crete set of N frequency modes â j that are nonlinearly coupled
in a bulk crystal with a quadratic nonlinearity. The diago-
nalization of the corresponding coupling matrix L̃ produces
a set of nonlinear supermodes ĉm, whose eigenvalues m,m

are proportional to SPDC gains. Table I (left) shows the main
elements involved in frequency-comb SPDC and the related
Hamiltonian in the individual Ĥ and nonlinear supermode
ĤNLS bases. In ANWs, the evanescent coupling between the
individual modes Â j generates the linear supermodes B̂k and
the nonlinear coupling mediated by the pump fields mixes
them. Table I (right) shows the main elements involved in
spatial ANWs and the related momenta in the individual M̂,
linear supermode basis M̂LS , and nonlinear supermode M̂NLS

basis. Note that M̂NLS does not represent a real dynamical
generator. It is indeed a formal squeezing momentum with
singular values ̃m,m(z) = dzm,m(z) defined only at a set
z that we define for the sake of comparison. The coupling
matrix L(z) is defined here in the linear supermode basis and
the diagonalization of

∫ z
0 L(z′)dz′ produces a set of nonlinear
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supermodes Ĉm. The consequence of this diagonalization in
two steps to get to nonlinear coupling (see Table I) is that
the nonlinear supermodes are z dependent, i.e., local. At each
propagation plane z, a different set of nonlinear supermodes
diagonalizes Eq. (8) with SPDC gains rm(z). This feature
is the main conceptual difference between frequency combs
and spatial ANWs. It makes the ANW system very complex
but, equally, highly versatile for the generation of multimode
quantum states.

2. Quadratures of the optical fields

In terms of individual modes quadratures x̂ j and ŷ j , the full
evolution of the system is obtained by solving Eq. (2). The
formal solution of this equation is given by

ξ̂ (z) = S(z) ξ̂ (0),

with S(z) = exp{∫ z
0 �(z′) dz′}. The propagator S(z) is a sym-

plectic matrix which contains all the information about the
propagation of the quantum state of the system. We can apply
on it a Bloch-Messiah decomposition as follows [43]:

S(z) = R1(z)K (z)R2(z),

where R1(z) and R2(z) are both orthogonal and
symplectic matrices and K (z) = diag{er1(z), er2(z), . . . ,

erN (z), e−r1(z), e−r2(z), . . . , e−rN (z)} is a phase-squeezed
diagonal matrix. The nonlinear supermodes obtained in this
way are the same as those of Eq. (9) by the Autonne-Takagi
factorization, and the squeezing factors rm(z) are the same
as the down-conversion gains obtained in the previous
section [41]. The spatial profiles of the nonlinear supermodes
are obtained from the complex representation of R1.

The quantum states generated in ANWs are Gaussian. The
most interesting observables in Gaussian CV are the second-
order moments of the quadrature operators, properly arranged
in the covariance matrix V [44]. The elements of this matrix
can be efficiently measured by means of homodyne detec-
tion. For a quantum state initially in vacuum, the covariance
matrix at any plane z is given by V (z) = S(z) ST (z), with 1
being the value of the shot noise related to each quadrature
in our notation. Evolution of variances V (ξi, ξi ) and quantum
correlations V (ξi, ξ j ) can be obtained at any length from the
elements of this matrix. The covariance matrix can also be
computed from the Bloch-Messiah decomposition as

V (z) = R1(z)K2(z)RT
1 (z). (13)

Thus, K2(z) is the covariance matrix in the nonlinear su-
permode basis and R1(z) is the symplectic transformation
matrix between the individual and nonlinear supermode basis
[equivalent to Eq. (12) for complex fields]. The mth nonlinear
supermode is squeezed and thus nonclassical if K2

N+m(z) =
e−2rm (z) < 1, and the smallest value of K2

N+m(z) is called the
generalized squeezed variance, and it is a measure of the
nonclassicality of the quantum state [45].

Note that the complex and real approaches are equiv-
alent [41]. The first method is applied to the complex
joint-spatial supermode distribution and is numerically easier
to compute. It gives the relative down-conversion gains and
therefore the amount of squeezing available in the ANW. The
second method is applied to the propagator in the symplectic

form and it enables us to work out directly the noise properties
of the quantum state. We detail how these noise properties can
be engineered in the following sections.

III. ENGINEERING TOOLBOX FOR PRODUCTION AND
DETECTION OF MULTIMODE SQUEEZING

To operate the ANW, several knobs are accessible ex-
perimentally. A reconfigurable multimode shaper at pump
frequency inputs the desired profile (�η, �φ) in the array through
a V-groove fiber array. Bent waveguides conduct the pump
modes to the periodically poled ANWs where signal modes
are generated and evanescently coupled. The coupling pro-
file, wave-vector phase-matching poling period, and coupling
phase-matching poling period ( �f ,�β,C) can be suitably
engineered for a specific operation mode. The output light is
collected by V-groove fiber arrays and directed to a multimode
balanced homodyne detector (BHD) where modes are mea-
sured using adapted local-oscillator (LO) phase and electronic
gain profiles (�θ, �G).

The class of ANWs which we introduced in Sec. II A
thus presents a number of parameters that can be engineered
for a desired operation. The evanescent coupling profile
�f = ( f1, . . . , fN ), the length of the sample L, the number

of waveguides N—and notably its parity—and the poling
periods [46] are built in and cannot be tuned once the sam-
ple is fabricated. In contrast, the power and phase pump
profile, given respectively by �η = (|η1|, . . . , |ηN |) and �φ =
[arg (η1), . . . , arg (ηN )], the coupling strength C0 and the basis
of detection can be set for a required operation or encoding of
information. C0 ≡ C0(ωs) can indeed be adjusted by tuning
the phase matching �β ≡ �β(T ) with the temperature T of
the sample and adjusting the frequency ωp of the pump laser
accordingly to recover the degeneracy point [47]. We intro-
duce below a number of engineering strategies related to the
coupling, pumping, phase matching, and detection parameters
that can be used to produce and detect a desired multimode
squeezed state:

(i) In Sec. III A, we review and extend the analytical
expressions for the linear supermodes and the propagation
constant for three specific coupling �f profiles. These coupling
profiles are put to good use in Sec. IV to exemplify different
squeezing behaviors.

(ii) In Sec. III B, we establish analytical joint spatial super-
mode distributions for specific pumping (�η, �φ) configurations,
we deduce in three limiting cases analytical expressions for
the covariance matrices that are valid for any ANWs (any
�f ), any number of waveguides N , and any propagation dis-

tance z. We display covariance matrices in these limiting
cases and in an intermediate scenario. We further use and
comment these propagation results on the modes when dis-
cussing the generation of squeezing and entangled states in
Sec. IV.

(iii) In Sec. III C, we describe engineering of the propaga-
tion solutions using dedicated phase matching in ANW (C)
to favor specific supermodes toward entanglement generation.

(iv) In Sec. III D, we recall LO shaping in multimode
BHD used to detect squeezing and entanglement in a given
basis.
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FIG. 2. Sketch of the Chebyshev, Krawtchouk, and Glauber-Fock supermodes related to arrays of linear waveguides with (a) homogeneous,
(b) parabolic, and (c) square-root coupling profiles and N = 5 waveguides. The horizontal axis stands for the individual modes. The
propagation constants corresponding to each supermode are (a) λ = {√3C0,C0, 0, −C0, −

√
3C0}, (b) λ = {2C0,C0, 0,−C0, −2C0}, and

(c) λ = {
√

5 + √
10C0,

√
5 − √

10C0, 0, −
√

5 − √
10C0, −

√
5 + √

10C0}. k ≡ l = 3 are the zero supermodes related to each array.

A. Coupling profile engineering

As introduced in Sec. II B, every set of nearest-neighbor
coupled waveguides has a family of propagation supermodes
given by a matrix M. The slowly varying amplitude corre-
sponding to the kth supermode propagates along the array
with a propagation constant λk . Each family of linear super-
modes depends on the coupling profile �f . The engineering of
this profile enables a specific operation or logic gate [48]. A
number of demonstrations with optical lattices has been ex-
hibited in recent years [49–51]. Very recently, the production
of topologically protected quantum states in a Su-Schrieffer-
Heeger lattice has been demonstrated [52].

A summary of properties of the supermodes can be found
in Ref. [53]. Particularly, every family of supermodes cor-
responding to an array of identical waveguides fulfill the
following relations:

λk = −λN+1−k, (14)

MN+1−k, j = (−1) j+1Mk, j . (15)

We label the supermodes connected two by two by Eq. (14) as
side supermodes (k, N + 1 − k). In arrays with an odd number
of waveguides, there is also a central supermode k = (N +
1)/2 ≡ l with propagation constant λl = 0. We thus refer to it
as the zero supermode.

Applying the above relations in the orthonormalization
condition Eq. (3), we find the following modified orthonor-
mality conditions:

N∑
j=1

(−1) j+1Mk, jMk′, j = δk,N+1−k′ , (16)

∑
2�2 j�N

Mk,2 jMk′,2 j =1

2
(δk,k′ − δk,N+1−k′ ), (17)

∑
1�2 j−1�N

Mk,2 j−1Mk′,2 j−1 =1

2
(δk,k′ + δk,N+1−k′ ). (18)

These relations are general and, notably, they are instru-
mental to configure the pump to obtain simple analytical
solutions through Eq. (6). We derive and give such solutions
in Sec. III B.

We exhibit below three paradigmatic examples of cou-
pling profile engineering: the homogeneous profile array, the
parabolic profile array, and the square root profile array. We
display the supermodes that each array produces and their
respective propagation constants.

1. Homogeneous profile array

The homogeneous linear array exhibits a constant coupling
between waveguides f j = 1. It is thus a symmetric lattice. The
supermodes are orthonormal Chebyshev polynomials that can
be written in terms of simple trigonometric functions as [54]

Mk, j = Mj,k ≡ sin
( jkπ

N+1

)
√∑N

j′=1 sin2
( j′kπ

N+1

) .

The Chebyshev supermodes for N = 5 waveguides are sket-
ched in Fig. 2(a). The spectrum of its eigenvalues is given by

λk = 2C0 cos

(
kπ

N + 1

)
,

which are the propagation constants related to each super-
mode.

2. Parabolic profile array

The parabolic linear array exhibits a coupling between
waveguides given by the profile f j = √

j(N − j)/2. It
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is a symmetric lattice. The supermodes are orthonormal
Krawtchouk polynomials that can be written in terms of Ja-
cobi polynomials as [37,55]

Mk, j = 2( j− N+1
2 )

√
( j − 1)!(N − j)!

(k − 1)!(N − k)!
PN−k+1− j,k− j

j−1 (0)

= Mj,k .

The Krawtchouk supermodes for N = 5 waveguides are
sketched in Fig. 2(b). Note that for a small number of waveg-
uides the Krawtchouk and Chebyshev supermodes are very
similar. The eigenvalues are in this case equally spaced as
given by

λk = N − 2k + 1

2
C0.

The continuous limit (N → ∞) of these discrete eigenfunc-
tions are the Hermite-Gaussian functions [51]. Remarkably, a
parametric generalization of this set of supermodes, so-called
para-Krawtchouk supermodes, allows fractional revivals, and
thus generalizes beam splitters—or directional couplers—to
N dimensions [37].

3. Square-root profile array

The square-root or Glauber-Fock linear array exhibits a
coupling between waveguides given by the profile f j = √

j.
It is an asymmetric lattice that can be symmetrized. The
eigenvalues λk are obtained as the roots of the N th Hermite
polynomial given by [56,57]

HN [λk′/(
√

2C0)] = 0,

with k′ ≡ k − 1 = 0, . . . , N − 1. The Glauber-Fock super-
modes can be written in terms of normalized Hermite
polynomials evaluated at these roots

Mk, j =
Hj−1

(
λk′√
2C0

)
√

2 j−1 ( j − 1)! Ñk′
,

where Ñk′ = ∑N−1
j′=0 Hj′ [λk′/(

√
2C0)]2/(2 j′ ( j′)!). The

Glauber-Fock supermodes for N = 5 waveguides are
sketched in Fig. 2(c). Emulation of a driven quantum
harmonic oscillator has been demonstrated in this lattice [58].

B. Pump profile engineering

Suitable manipulation of individual power and phase pump
fields by means of off-the-shelf elements as fiber attenuators
and phase shifters, followed by input into the ANWs through
V-groove arrays, enables an on-demand pump distribution
engineering.

The pump profile couples the propagation supermodes gen-
erating the joint-spatial supermode distribution Eq. (6). In
general, this generates complicated connections between the
linear supermodes. However, the orthogonality and symmetry
properties of the linear supermodes [Eqs. (3) and (14) to (18)]
lead to simple analytical solutions in some cases. An outstand-
ing simplification of the system is obtained when pumping all
the waveguides with the same power |η j | = constant. From
now on, we refer to this as a flat pump profile. Another
simplified solution is obtained when pumping only the even or

odd waveguides, or when pumping only the central waveguide
in an odd ANWs. Below we give the joint-spatial supermode
distributions obtained with these input configurations and
the exact analytical solutions to the Heisenberg Eq. (7)—or
equally Eq. (4)—in the simplest cases.

1. Flat pump profile: Uniform phase

When all waveguides are equally pumped such that |η j | =
|η| = η̃ and φ j = φ, the local joint-spatial supermode distri-
bution, Eq. (6), is notably simplified to

Lk,k′ (z) = 2i δk,k′ei{φ−(λk+λk′ )z},

where we have used the orthonormality of the linear super-
modes, Eq. (3). This pump configuration diagonalizes the
momentum in the slowly varying linear supermode basis and
the following Heisenberg equations are obtained:

dB̂k

dz
= 2i|η| ei{φ−2λkz}B̂†

k,

or equally in terms of linear supermodes

dB̂k

dz
= iλkB̂k + 2i|η| eiφB̂†

k .

The solution in this basis is exact and given by

B̂k = cos(Fkz)B̂k (0) + i
sin(Fkz)

Fk
[λkB̂k (0) + 2η B̂†

k (0)],

(19)

with Fk =
√

λ2
k − 4|η|2. For typical evanescent coupling, non-

linearities and pump powers found in quadratic ANWs |λk| >

2|η| and thus Fk ∈ R. We consider cases only in this power
regime in the remainder of the article. Equation (19) simplifies
into Eqs. (6) and (7) of Ref. [17] for the nonlinear directional
coupler (N = 2). The supermode’s evolution is similar to the
one found there for the individual modes: The power of the
SPDC supermode periodically oscillates between a maximum
and zero with oscillation periods Lk = π/(2Fk ).

It is interesting to note that waveguide arrays with odd
number of waveguides N exhibit a zero supermode l = (N +
1)/2. As introduced in Sec. III A, this is a propagation eigen-
mode with zero eigenvalue λl = 0 in the slowly varying
amplitude approximation [53]. The oscillation period of the
zero supermode is imaginary Ll = π/(4i|η|), thus leading to
the following hyperbolic solution:

B̂l (z) = cosh(2|η|z)B̂(0) + ieiφ sinh(2|η|z)B̂†
l (0). (20)

Note that Eqs. (19) and (20) are respectively the solutions of a
non-phase-matched and perfectly phase-matched degenerate
parametric amplifiers [59]. The supermode solution, Eq. (19),
can be written in the individual mode basis as the following
Bogolyubov transformations:

Â j (z) =
N∑

j′=1

[Ũj, j′ (z)Â j′ (0) + Ṽj, j′ (z)Â†
j′ (0)], (21)
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FIG. 3. Fibered multimode balanced homodyne detector. The
SPDC signal modes are collected into optical fibers by a V-groove
array and directed to a multimode balanced homodyne detector
(BHD) where modes are measured using adapted LO phase profile �θ ,
electronic gain profile �G, and suitable postprocessing—addition and
subtraction—of electronic signals. Att and f-bs stand respectively for
attenuator and 3-dB fiber beam splitter.

where

Ũj, j′ (z) =
N∑

k=1

Mk, jMk, j′
[
cos(Fkz) + i

λk

Fk
sin(Fkz)

]
,

Ṽj, j′ (z) =
N∑

k=1

Mk, jMk, j′

[
2i|η|eiφ

Fk
sin(Fkz)

]
,

with
∑N

j=1[|Ũj, j′ (z)|2 − |Ṽj, j′ (z)|2] = 1. Note that for |η| =
0, Ũj, j′ (z) = Uj, j′ (z), and Ṽj, j′ (z) = 0, with Uj, j′ (z) ≡∑N

k=1 Mk, jMk, j′eiλk z, we recover the solution corresponding to
the linear array.

From these equations, it is straightforward to obtain the
elements of the covariance matrix V (z), which read

V (xi, x j ) =
N∑

k=1

Mk,iMk, j

F 2
k

{
λ2

k − 4|η|2 cos(2Fkz)

− 4|η| sin(Fkz)[Fk sin(φ) cos(Fkz)

+ λk cos(φ) sin(Fkz)]
}
,

V (yi, y j ) =
N∑

k=1

Mk,iMk, j

F 2
k

{
λ2

k − 4|η|2 cos(2Fkz)

+ 4|η| sin(Fkz)[Fk sin(φ) cos(Fkz)

+ λk cos(φ) sin(Fkz)]
}
,

V (xi, y j ) =
N∑

k=1

Mk,iMk, j

F 2
k

4|η| sin(Fkz)[Fk cos(φ) cos(Fkz)

− λk sin(φ) sin(Fkz)]. (22)

This configuration generates quantum correlations between
the individual modes—off-diagonal components of the co-
variance matrix [as shown in Fig. 4(a)—and hence entangle-
ment is possible in that basis. Likewise, the mean number of
signal photons generated in the jth waveguide at any prop-
agation length can be directly calculated from Eqs. (22) as
N̄j = V (x j, x j ) + V (y j, y j ) − 2.

Remarkably, the results displayed in this section are
general for any ANWs—any evanescent coupling profile
�f —since they are based only on the orthonormality of the

supermodes. Equations (22) remain valid for any number of
waveguides N or propagation distance z. Thus, they are a valu-
able tool which we use in Sec. V to engineer linear clusters.

2. Flat pump profile: Alternating π phase

When all waveguides are equally pumped such that |η j | =
|η| = η̃ with an alternating phase φ j = ( j + 1)π + φ, the
joint-spatial supermode matrix Eq. (6) is notably simplified
to

Lk,k′ (z) = 2i δk,N+1−k′ei{φ−(λk+λk′ )}z

via Eq. (16). This pump configuration antidiagonalizes the
momentum in the slowly varying linear supermode basis and
the following Heisenberg equations are obtained,

dB̂k

dz
= 2i|η|eiφB̂†

N+1−k,

with down-conversion gains proportional to 2|η|. The above
equation can be rewritten in terms of linear supermodes as

dB̂k

dz
= iλkB̂k + 2i|η|eiφB̂†

N+1−k,

with the following exact solution,

B̂k (z) = [cosh(2|η|z)B̂k (0) + ieiφ sinh(2|η|z)B̂†
N+1−k (0)]eiλkz.

(23)

Note that this is the solution of a perfectly phase-matched non-
degenerate parametric amplifier [59]. The supermode solution
Eq. (23) can be written in the individual mode basis as the
following transformation,

Â j (z) =
N∑

j′=1

Uj, j′ (z)[cosh(2|η|z)Â j′ (0)

+ (−1) j′+1ieiφ sinh(2|η|z)Â†
j′ (0)], (24)

where we have used Eqs. (15) and (16) and the propagator
related to the linear array Uj, j′ (z) introduced above. The solu-
tion is thus decoupled in this configuration: Input single-mode
squeezed states of light squeezed along the axis ( j′ + 1)π + φ

propagate in the corresponding linear array with propagation
matrix Uj, j′ (z). From this equation, after a long but straight-
forward calculation, we obtain the elements of the covariance
matrix V (z), which read as follows:

V (xi, x j ) = [cosh(4|η|z) + (−1) j sin(φ) sinh(4|η|z)] δi, j,

V (yi, y j ) = [cosh(4|η|z) − (−1) j sin(φ) sinh(4|η|z)] δi, j,

V (xi, y j ) = (−1) j cos(φ) sinh(4|η|z) δi, j . (25)

Then, in this case quantum correlations are efficiently gen-
erated in the supermode basis but they disappear in the
individual mode basis—no off-diagonal elements of the
covariance matrix [Fig. 4(b). The device thus produces inde-
pendent squeezed fields. The results obtained in this section
are general for any coupling profile �f since they rely on
Eqs. (14)–(16) only. Equations (25) remain valid for any

043706-8



QUANTUM STATE ENGINEERING IN ARRAYS OF … PHYSICAL REVIEW A 102, 043706 (2020)

FIG. 4. Covariance matrices in the individual mode basis V (z) [(a)–(c)], Bloch-Messiah’s transformation matrices R1(z) [(d)–(f)], and
diagonal covariance matrices in the nonlinear supermode mode basis K2(z) [(g)–(i)] for a five-waveguide homogeneous coupling-profile
ANWs. The upper row displays the results obtained for a flat pump profile with a uniform phase (�φ− = 0): Eq. (22) with φ = −π/2. The
central row displays the results obtained for a flat pump profile with an alternative π phase (�φ− = π ): Eq. (25) with φ = −π/2. The lower
row displays the results obtained pumping only the central waveguide. We applied Eq. (28) into Eq. (7) and solved numerically for φl = −π/2.
We set typical parameters in PPLN waveguides: C0 = 0.24 mm−1, η = 0.015 mm−1, and z = 20 mm. Absolute values lower than 10−2 are
shown in white for the sake of exposition.

number of waveguides N or propagation distance z. No-
tably, this is an interesting regime for discrete variables
since N-dimensional two-photon NOON states can be post-
selected [46].

3. Flat pump profile: Any alternating phase

Both cases analyzed in Secs. III B 1 and III B 2 are en-
compassed through the use of Eqs. (17) and (18). In the
case of an array composed of N waveguides equally pumped
such that |η j | = |η| = η̃ and alternating phases φ2 j and
φ2 j−1, the joint-spatial supermode matrix Eq. (6) is notably
simplified to

Lk,k′ (z) = 2iei�φ+
[cos (�φ−)e−2iλk zδk,k′

− i sin (�φ−)δk,N+1−k′ ], (26)

with �φ± = (φ2 j ± φ2 j−1)/2. Thus, the solution of the sys-
tem oscillates between Eqs. (19) and (23) for a general phase
difference �φ−. In particular, for φ2 j = φ + π/2 and φ2 j−1 =
φ, both the diagonal and antidiagonal terms have the same
weight such as

Lk,k′ (z) =
√

2 iei(φ+π/4) [e−2iλk zδk,k′ − i δk,N+1−k′ ].

The solution will present then both oscillatory and hyperbolic
terms. More light is shed on the features that this configuration
produces in Sec. IV.

4. Pumping only the even or odd waveguides

Another simplified joint-spatial supermode matrix is ob-
tained if either even waveguides only (|η2 j | = η̃, |η2 j−1| = 0,
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and φ2 j = φ) or odd waveguides only (|η2 j−1| = η̃, |η2 j | = 0,
and φ2 j−1 = φ) are pumped, such that

Lk,k′ (z) = ieiφ [e−2iλk zδk,k′ ± δk,N+1−k′ ],

with plus for odd and minus for an even pump profile through
Eqs. (17) and (18). The solutions are here more complex that
those of cases Secs. III B 1 and III B 2. For instance, pumping
only the odd waveguides, we have the following Heisenberg
equation for the slowly varying linear supermodes

dB̂k

dz
= i|η|eiφ (e−2iλk zB̂†

k + B̂†
N+1−k ).

Equally, for the linear supermodes, we get

dB̂k

dz
= iλkB̂k + i|η|eiφ (B̂†

k + B̂†
N+1−k ),

with the following exact solution:

B̂k (z) =
{

cosh(|η|z)

[
cos(F̃kz) + i

λk

F̃k
sin(F̃kz)

]
B̂k (0)

+ i
|η|
F̃k

sin(F̃kz)[cosh(|η|z)B̂†
k (0)

− i sinh(|η|z)B̂N+1−k (0)] + i sinh(|η|z)

×
[

cos(F̃kz) + i
λk

F̃k
sin(F̃kz)

]
B̂†

N+1−k (0)

}
, (27)

with F̃k =
√

λ2
k − |η|2 and where we have set φ = 0 for the

sake of simplicity. This solution shows that the side linear
supermodes are symmetrically coupled two by two—k with
N + 1 − k—where the zero supermode is the only one inde-
pendently squeezed. The solution in the individual mode basis
can be written as Eq. (21) with

Ũj, j′ (z)

=
N∑

k=1

Mk, jMk, j′

[
cosh(|η|z) cos(F̃kz)

+ i
λk cosh(|η|z) + (−1) j′+1|η| sinh(|η|z)

F̃k
sin(F̃kz)

]
,

Ṽj, j′ (z)

=
N∑

k=1

Mk, jMk, j′ (−1) j′+1

[
i sinh(|η|z) cos(F̃kz)

+ i
iλk sinh(|η|z) + (−1) j′+1|η| cosh(|η|z)

F̃k
sin(F̃kz)

]
,

where we have used the property of the supermodes, Eq. (15).
The elements of the covariance matrix V (z) are in this case
the following:

V (xi, x j ) =
N∑

k=1

Mk,iMk, j

[
cosh(2|η|z)

(
λk + |η| cos(2F̃kz)

λk + |η|
)

+ (−1) j

√
λk − |η|
λk + |η| sinh(2|η|z) sin(2F̃kz)

]
,

V (yi, y j ) =
N∑

k=1

Mk,iMk, j

[
cosh(2|η|z)

(
λk − |η| cos(2F̃kz)

λk − |η|
)

− (−1) j

√
λk + |η|
λk − |η| sinh(2|η|z) sin(2F̃kz)

]
,

V (xi, y j ) =
N∑

k=1

Mk,iMk, j

[
(−1) j+1 sinh(2|η|z) cos(2F̃kz)

+ |η|
F̃k

cosh(2|η|z) sin(2F̃kz)

]
.

Thus, quantum correlations between the individual modes are
generated. These solutions generalize to N dimensions, the
paradigmatic example of pumping one waveguide in a non-
linear directional coupler [60]. Similar solutions are obtained
when pumping only the even waveguides.

5. Pumping the central waveguide in an odd ANW

A common and simple way of pumping an odd ANWs
is to inject the pump only in the central waveguide j = l ≡
(N + 1)/2 [see Fig. 1(a)] [15]. The following joint-spatial
supermode distribution is then obtained:

Lk,k′ (z) = 2ieiφl Mk,l Mk′,l e−i(λk+λk′ )z. (28)

Notably, in the case of symmetric coupling profile arrays
like the homogeneous or the parabolic profiles shown above,
the elements of the zero supermode have zeros in the even
elements, i.e., Mk,l = 0 for k even. Thus, only odd super-
modes are produced in the ANWs under this configuration.
For instance, for N = 5 and a homogeneous coupling pro-
file we obtain as approximated solutions: Eq. (20) for the
zero supermode (l = 3) and Eq. (23) for the k = 1, 5 side
supermodes after rescaling |η| to |η|/l . Figure 4(c) shows
the covariance matrix in the individual mode basis related to
this pump configuration in an ANWs with a homogeneous
coupling profile.

The above five cases exhibit the versatility of the ANWs
through pump engineering and shed light on propagation
in these devices. We further discuss the relationship be-
tween linear and nonlinear supermodes, and the generated
squeezing along propagation in Sec. IV. The generation of
multipartite entanglement in ANW has been recently tackled
in Refs. [20,21] and we further present in Sec. V an efficient
protocol for the generation of linear cluster states based on the
analytical solution obtained in Sec. III B 1.

C. Phase-matching engineering

A common phase-matching technique for efficient fre-
quency conversion in χ (2) nonlinear waveguides is obtained
through wave-vector quasiphase matching (�β-QPM). A
standard implementation of �β-QPM is periodical inversion
of the second-order susceptibility χ (2) with period �β =
2π/�β, like, for instance, in PPLN waveguides [61]. How-
ever, in the case of waveguide arrays, a second cause of phase
mismatch—the coupling—is present, as shown in Eq. (6).
In this case, a similar strategy can be used to phase match
specific supermodes through a second periodical inversion
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C (k′)—coupling quasiphase matching (C-QPM) [46]. This
slow modulation will match the propagation constant λk′

of the k′th slowly varying supermode amplitude. We con-
sider, for instance, a homogeneous coupling profile where
λk′ = −λN+1−k′ ≡ 2C0 cos [k′π/(N + 1)]. In this case, the pe-
riodical inversion—coupling period—can be set as C (k′) =
|π/λk′ |, thus phase matching the k′th and (N + 1 − k′)th side
supermodes. Equation (6) is then written as

Lk,k′ (z) ≈ 8i

π

N∑
j=1

|η j |
η̃

Mk, jMk′, j cos (2λk′z)ei{φ j−(λk+λk′ )z},

(29)

where we have used the first-order Fourier series of square-
wave C-QPM domains with duty cycles of 50%. Thus, using
a flat pump profile, Eq. (29) is simplified to

Lk,k′ (z) ≈ 8i

π
cos (2λk′z)δk,k′ ei{φ−(λk+λk′ )z},

and the Heisenberg equations read

dB̂k

dz
≈ 4iη̃

π
eiφB̂†

k, k = k′, N + 1 − k′,

dB̂k

dz
≈ 4iη̃

π
ei{φ−2λk z}B̂†

k, k �= k′, N + 1 − k′.

Hyperbolic solutions such as Eq. (20) are obtained for the k′th
and (N + 1 − k′)th supermodes and oscillatory solutions like
Eq. (19) for the other supermodes. Note that the gains are
reduced by a factor 2/π in comparison with the no C-QPM
case which can be compensated with a propagation distance
π/2 longer.

This powerful technique allows us to control the super-
modes efficiently building up. In terms of individual modes’
entanglement, it would be interesting to build up supermodes
but with light in all the individual modes. Remarkably, in the
case of parabolic arrays with an even number of waveguides,
all the supermodes can efficiently build up. This interesting
case will be presented elsewhere.

D. Balanced homodyne detection

The measurement of quantum noise variances and cor-
relations is carried out by multimode balanced homodyne
detection (BHD) [35]. In a fully fibered approach, the mul-
timode squeezed state generated in the array can be collected
in optical fibers through a V-groove array. A laser at signal
frequency is demultiplexed into a number of individual optical
fibers with fiber attenuators and phase shifters and individu-
ally mixed with the output SPDC through 3-dB fibered beam
splitters as sketched in Fig. 3. Each pair of mixed signals
is sent to a BHD where the current of each photodiode is
subtracted and suitably amplified.

We point out that the spatial profile of the LO in the
multimode BHD has to be adapted to the strategy of entan-
glement generation and the entangled state basis. Access to
the quantum information encoded in the individual or any
of the supermode bases will indeed depend on a suitable
BHD [62]. Figure 3 displays the possible knobs at the mea-
surement stage. The local oscillator can be tuned to detect
correlations between the individual output signals of the array

in the individual mode basis Â or shaped to match any super-
mode in the linear supermode basis B̂, nonlinear supermode
basis Ĉ, or any other basis. This LO shaping can be accom-
plished using attenuator and phase shifters or can be emulated
with electronic gains. Remarkably, LO shaping enables the
measurement of entangled states encoded in bases based on
nonlinear supermodes. We have discussed these issues else-
where [21] and mentioned the existing implementations in
other domains [23,30].

IV. MULTIMODE SQUEEZING

The ANW is a natural platform for generating multimode
squeezing due to the distributed coupling and nonlinear-
ity. Such a distributed configuration combines the necessary
squeezing and coupling instrumental to produce multimode
entanglement in a new way, accessible only to guided-
wave nonlinear components. As shown above, the different
methods of detection available enable the encoding of quan-
tum information in three ways: individual modes and linear
and nonlinear supermodes. We now investigate multimode
squeezing focusing on the nonlinear supermodes, which max-
imize the resources available at every propagation length in
terms of squeezing and can generate entanglement through
LO shaping or emulation [21]. We thus display in this section
the outcomes in terms of squeezing obtained from numerical
solutions of Eq. (13) using the general method of Bloch-
Messiah. The large parameter space of the ANW enables an
infinite number of configurations. We focus on the config-
urations displayed in Sec. III in terms of pumping profile
(in amplitude and phase), propagation length, and coupling
profile. This allows us to discuss the relationship of these
numerical results in terms of nonlinear supermodes with the
analytical solutions obtained in Sec. III in terms of individual
modes and linear supermodes.

For the purpose of assessing multimode squeezing, (i) we
start displaying the connection between the individual and
nonlinear supermode bases through the covariance matrices in
both bases at a fixed propagation length. We then move to the
evolution of squeezing in the nonlinear supermode basis. (ii)
We first focus on the case of flat pumping to (a) analyze the
evolution of squeezing along propagation with any alternat-
ing pumping phase and (b) display the influence of different
coupling profiles and strengths on the squeezing. Finally, we
discuss (c) the connection between the nonlinear supermodes
and the linear supermodes for an uniform phase. (iii) We
finish exhibiting the squeezing obtained for other pumping
profiles: (a) pumping only the odd waveguides and (b) the
simplest configuration, pumping only the central waveguide
in an ANW with an odd number of waveguides.

A. Covariance matrices in the individual and nonlinear
supermode bases

We begin with the analysis of Fig. 4 where we compare
the covariance matrices in the individual and nonlinear su-
permode bases at a propagation distance of z = 20 mm. We
exhibit the covariance matrices in the individual mode basis
V (z) in Figs. 4(a)–4(c), the Bloch-Messiah’s transformation
matrices R1(z) in Figs. 4(d)–4(f), and the diagonal covariance
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matrices in the nonlinear supermode mode basis K2(z) in
Figs. 4(g)–4(i). The Bloch-Messiah decomposition of Eq. (13)
has been computed numerically. We display three of the
pumping cases analyzed in Sec. III in a five-waveguide homo-
geneous coupling-profile ANW. Figures 4(a) and 4(b) display
respectively the results for a flat pump profile and uniform
phase [�φ− = 0, Eq. (22)], where strong quantum correla-
tions between specific quadratures of the fields are generated,
and for a flat pump profile and alternating π phase [�φ− = π ,
Eq. (25)], where single-mode squeezing is generated but no
correlation in achieved in the individual basis. Figures 4(g)
and 4(h) display the respective diagonal covariance matrix
in the supermode basis, and Figs. 4(d) and 4(e) the corre-
sponding transformations between individual and supermode
bases. Likewise, Fig. 4(c) displays the covariance matrix in
the individual mode basis obtained when pumping only the
central waveguide. This case resembles the one shown in
Fig. 4(a), with a similar topology of quantum correlations,
but different strength and sign. Figures 4(i) and 4(f) display
the diagonal covariance matrix K2(z) and the transformation
between bases R1(z), making more obvious the difference
with the flat pump case of Figs. 4(d) and 4(g). Overall, these
figures show the versatility of our approach, yielding different
multimode squeezing features for different input pump pro-
files. We analyze in more depth the obtained squeezing K2

N+m
by exploring further the parameter space along propagation z,
coupling Cj , and pumping η j .

B. Evolution of multimode squeezing for a flat pump profile

Alternating pumping phase �φ− and nonlinear super-
modes’ squeezing behavior. Figure 5 shows the evolution
of noise squeezing (K2

N+m(z) < 1) of the five nonlinear su-
permodes for a flat pump profile in a N = 5 ANW. We
show the effect of the coupling profile �f , the value of the
coupling constant C0, and the relative pump phase �φ−
[Eq. (26)] on K2(z). Figures 5(a), 5(b), and 5(c) show the
results for homogeneous, parabolic, and square-root coupling
profiles, respectively. Figure 5(c) shows the result for a cou-
pling strength three times lower than that used in Figs. 5(a)
and 5(b). The squeezed eigenvalues are degenerate two by
two for the mth and (N + 1 − m)-th nonlinear supermodes.
We refer to them as side nonlinear supermodes. Likewise, the
zero nonlinear supermode [m = l ≡ (N + 1)/2] is the only
nondegenerate supermode and it is always efficiently built
up and squeezed, independently of the value of �φ− (solid,
green). The oscillatory and hyperbolic limit cases we pointed
out for propagation in Eqs. (19) and (20) explain and match
the squeezing behaviors displayed in each case. Full degen-
eracy and efficient squeezing—hyperbolic—is obtained for
all the supermodes for �φ− = π/2 (solid, green). �φ− = 0
produces oscillatory squeezing (solid blue and orange) in the
side nonlinear supermodes, which decreases as the coupling
strength C0 increases [Figs. 5(a)–5(c)]. Notably, for interme-
diate cases �φ− = π/8 (dotted), π/4 (dashed), 3π/8 (dot-
dashed), squeezing builds up smoothly for the side nonlinear
supermodes and it approaches degeneracy for long propaga-
tion distances, whereas at short distances it is disturbed by
the oscillatory part of Eq. (26). However, this disturbance
is important since it mixes the individual downconverted

(b)

FIG. 5. Evolution of nonlinear supermode squeezing K2
N+m(z)

in five-waveguide (a) homogeneous, (b) parabolic, and (c) square-
root coupling-profile nonlinear arrays. The zero supermode ( m =
l = 3) is always efficiently squeezed independently of �φ− (lower
solid curve, green). �φ− = 0 (upper solid curves, blue and orange),
�φ− = π/2 (solid, green), and intermediate cases �φ− = π/8 (dot-
ted), �φ− = π/4 (dashed), and �φ− = 3π/8 (dot-dashed). The
3-dB squeezing level in dotted gray. C0 = 0.24 mm−1 for panels
(a) and (b). C0 = 0.08 mm−1 for panel (c). η = 0.015 mm−1.

modes and thus triggers quantum correlations and entangle-
ment in the individual basis, as we show in Sec. V.

Influence of the coupling strength and coupling profile on
multimode squeezing. In addition to the effect of increased
homogeneous coupling on oscillatory behavior exemplified by
the comparison of Figs. 5(a) and 5(c), we display the different
features obtained for homogeneous and parabolic coupling
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profiles [Figs. 5(a) and 5(b)]. For �φ− = 0, there are cer-
tain lengths for the parabolic coupling profile where only the
zero nonlinear supermode survives due to the equal spacing
between the supermode propagation constants. Remarkably,
for an even number of waveguides and a parabolic coupling
profile (not shown), there are propagation distances where
destructive interference destroys all the SPDC generated light
due to a evolving phase mismatch that periodically switches
the system from down conversion to up conversion. Recently,
bipartite entanglement between noncoupled pump fields has
been demonstrated through this effect for two waveguides
in the optical parametric amplification and second harmonic
generation regimes [17,63]. Thus, this effect can also pro-
duce multipartite entanglement between noninteracting fields.
We outline that the parabolic-coupling profile excited with
a flat pump profile represents the spatial analogous case
to the case of a frequency comb pumped with a Gaussian
spectral shape since the Krawtchouk supermodes are Hermite-
Gaussian functions in the continuous limit [34].

Linear versus nonlinear supermodes for a flat pump profile
with uniform phase. We would like to end this section with
a small discussion on the connection between solutions in
terms of linear and nonlinear supermodes. To that end, we
use the flat pump configuration with uniform phase �φ− = 0.
The nonlinear supermodes diagonalize the covariance matrix
as shown in Figs. 4(a) and 4(g). However, in that case the
linear supermodes also diagonalize the covariance matrix as
shown in Sec. III B 1. Both bases exhibit the same levels of
squeezing, but different spatial profile evolution [64]. The spa-
tial profile related to the zero nonlinear supermode [m = l ≡
(N + 1)/2)] obtained from R1(z) coincides with that calcu-
lated with Eq. (20), but the side nonlinear supermodes (m �= l )
are slightly different from the side linear supermodes (k �= l )
obtained through Eq. (19) and change with propagation. The
cause of this disagreement is that the flat pump configura-
tion diagonalizes the system up to a local phase rotation; the
covariance matrix in the linear supermode basis is block diag-
onal, i.e., the quadratures of the linear supermodes are not at
the maximum and minimum of the squeezing ellipse, whereas
the Bloch-Messiah decomposition yields a fully diagonal co-
variance matrix. From the point of view of the experiment,
this phase does not make any difference since the local oscil-
lator of the balanced homodyne detector will sweep the entire
squeezing ellipse. However, the linear supermode approach is
here far more insightful and practical than Bloch-Messiah’s
one since the spatial profile is invariant along propagation
and thus the kth supermode squeezing can be measured with
a fixed LO profile �θk = {Mk,1, Mk,2, . . . , Mk,N }, whereas the
LO profile used to measure the mth nonlinear supermode
squeezing would depend indeed on the length of the sample,
the pump power, and the coupling strength. More details on
this are found in the Appendix.

C. Evolution of multimode squeezing with nonflat
pumping profile

Pumping every other waveguide. Figure 6(a) shows the
evolution of noise squeezing when pumping only the odd
waveguides (|η2 j−1| = |η|, |η2 j | = 0) of a N = 5 waveguides
homogeneous coupling-profile nonlinear array. This pump

FIG. 6. Evolution of nonlinear supermode squeezing K2
N+m(z)

in a five-waveguide homogeneous coupling-profile nonlinear array
pumping only (a) the odd waveguides and (b) the central waveguide.
(a) The zero supermode m = 3 is in solid green, and the side su-
permodes m = 1, 2, 4, and 5 are respectively in dotted blue, dashed
orange, large-dashed red, and dot-dashed violet. (b) The zero super-
mode m = 3 is in solid green and the side supermodes m = 1 and
5 are respectively in dashed blue and dot-dashed orange. The side
supermodes m = 2 and 4 are in vacuum (black). The 3-dB squeezing
level is in dotted gray. C0 = 0.24 mm−1. η = 0.015 mm−1.

configuration indeed excites the five nonlinear supermodes,
with a zero nonlinear supermode efficiently squeezed (green)
and side nonlinear supermodes squeezing building up hy-
perbolically with an oscillatory modulation. The analytical
solution obtained for the linear supermodes, Eq. (27), antic-
ipated this feature, since the side supermodes (k, N + 1 − k)
are coupled two by two in that basis. We outline that in the
case of pumping the even waveguides (|η2 j | = |η|, |η2 j−1| =
0), we obtain the same solution for the side nonlinear su-
permodes but with the zero nonlinear supermode in vacuum
state. This is due to the inability to excite a supermode com-
posed of odd elements when pumping the even waveguides
in arrays with symmetric coupling profiles. Thus, in terms of
multimode squeezing as a resource for quantum information
the odd pumping is more efficient. Note that this does not
happen in arrays with asymmetric coupling profiles like the
square-root coupling profile [see Fig. 2(c)]. In the case of an
ANW made up of an even number of waveguides, we excite
all the supermodes independently on the parity of the total
number of waveguides since there is no zero supermode.
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Pumping the central waveguide in an odd ANW. Figure 6(b)
shows the evolution of noise squeezing when pumping only
the central waveguide (|η j | = |η| δ j,l ) of a N = 5 waveguide
homogeneous coupling-profile nonlinear array. This pump
configuration leads to the excitation of only three out of five
nonlinear supermodes (the odd ones), with the other two in
vacuum state along propagation. The comparison between
Figs. 5(a) and 6(b) thus further sheds light on the differ-
ence between Figs. 4(g) and 4(i). The squeezing increases
hyperbolically with an oscillatory modulation. Note that in
this pumping configuration there is no direct correlation be-
tween linear and nonlinear supermodes anymore. However,
the nonlinear supermode squeezing exhibited in this case can
be also explained in terms of the linear supermodes as in
Sec. III B 5. The leading terms of the zero (k = l = 3) and side
(k = 1, 5) linear supermode equations correspond to degen-
erate and nondegenerate parametric amplifiers, respectively,
leading to hyperbolic squeezing. First-order terms introduce
a z-dependent coupling between the zero and the side su-
permodes with period zp ≈ 2π/|λ1(5)| for |λ1(5)| � 2|η|. The
main difference here with respect to the flat pump profile
case is that with central pumping the linear supermodes do
not evolve independently but together, leading to coupling.
The Bloch-Messiah decomposition evidences the squeezing
arising from this effect, as exhibited in Fig. 6(b). The pe-
riod shown in the figure agrees with that calculated zp =
2π/(

√
3C0) = 15.1 mm. The level of squeezing is lower than

that obtained in Fig. 5 at the same distance since we use the
same input pump power per waveguide, but the total power
available per individual mode is 1/5. We finally outline that
this configuration, being the more simple in terms pumping
profile, is not an efficient resource for quantum information
since only a subset of the available nonlinear supermodes is
squeezed.

In conclusion, we have demonstrated how the insight
gained in Sec. III from the mode propagation can be used
to engineer multipartite squeezing in ANW. The tuning of
the pumping and coupling parameters, together with suit-
able encoding, leads to different configurations of squeezing.
The multimode squeezing presented above is a resource for
multimode entanglement. We have indeed demonstrated very
recently a protocol for the generation of large multimode
entangled states for quantum networks [20] and the versa-
tile production of cluster states for quantum computing in
ANW [21]. In the next section, we focus on a specific class of
entangled states useful for quantum computing—the cluster
states [65]. We show that pumping with a flat profile as intro-
duced in Sec. III is a good strategy to generate large linear
cluster states. In particular, we demonstrate how to choose
a good working point in an analytically and semianalytically
scanned parameter space and how to further numerically opti-
mize the parameters.

V. EFFICIENT GENERATION OF LINEAR CLUSTER
STATES

An ideal CV cluster state is a simultaneous eigenstate
of specific quadrature combinations called nullifiers [65,66].
Cluster states are associated with a graph or adjacency matrix
J . The nodes of the graph represent the modes of the cluster

state in a given basis and the edges are the entanglement con-
nections among the nodes. Moreover, the label of the modes
that are part of the cluster can be suitably set to maximize the
entanglement between nodes. The nullifiers are given by

δ̂i ≡ x̂i(θi + π/2) −
N∑

l=1

Ji,i′ x̂i′ (θi′ ) ∀i = 1, . . . , N,

where J is the graph associated to the cluster and x̂i(θi ) =
x̂i cos (θi) + ŷi sin (θi) is the ith generalized quadrature in a
given basis. We consider unit-weight cluster states with Ji,i′ =
1 for modes i and i′ being nearest neighbors in the graph and
all the other entries of J are zero.

Cluster states are the resource of CV measurement-based
quantum computing (MBQC) [67]. The computation relies
in this framework on the availability of a large multimode
entangled state on which a specific sequence of measurements
is performed. The choice of basis widens the range of appli-
cation in MBQC [68]. The nullifier variances tend to zero in
the ideal limit of infinite squeezing. Experimentally, a cluster
state can be certified if two conditions are satisfied: (i) The
noise of a set of normalized nullifiers lies below shot noise

V (δ̄i) < 1 ∀i = 1, . . . , N,

where δ̄i ≡ δi/
√

1 + n(i) is the normalized nullifier and n(i) is
the number of nearest neighbors to the ith node of the cluster,
and (ii) the cluster state is fully inseparable, i.e., it violates a
set of multipartite entanglement inequalities [12,69].

We exhibit here how linear cluster states encoded in the
individual mode basis are produced naturally in the flat pump
configuration, introduced in Sec. III and explored from a
squeezing point of view in Sec. IV. Notably, in the context of
MBQC, a linear four-mode cluster state is a sufficient resource
for an arbitrary single-mode Gaussian unitary [70]. Hence,
linear cluster states represent key resources in this domain.
The adjacency matrix Jlin corresponding to a linear cluster is
the same as that related to the coupling in a homogeneous
array when the encoding ith node = jth mode is used. Thus,
the ANWs can be a natural platform for the generation of this
class of cluster states.

The normalized nullifiers for a linear cluster composed of
N modes are given by

δ̄i = yi(θi) − xi−1(θi−1) − xi+1(θi+1)√
1 + n(i)

,

with x0(θ0) = xN+1(θN+1) = 0 and where we have related
the ith node of the cluster with the jth individual mode of
the ANWs (i = j = 1, . . . , N). The full inseparability of the
cluster nodes can also be assessed by means of the van Loock–
Furusawa multipartite entanglement witness (VLF) [69]. For
a linear cluster, the VLF is given in terms of the following
N − 1 inequalities [12]:

V (δ̄i ) + V (δ̄i+1) �
{√

8
3 for i = 1, N − 1,
4
3 for i = 2, . . . , N − 2.

Thus, simultaneous values of V (δ̄i ) < 2/3 ensure the pro-
duction of a linear cluster. Below we exhibit the use of the
analytical solutions, Eqs. (22), in the generation of linear clus-
ter states as that shown in Fig. 7 for N = 5. These solutions are
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FIG. 7. Graph corresponding to five-mode linear cluster state.

a suitable initial working point in the huge space of parameters
for the production of a linear cluster. This is very important in
order to design a sample: We have a starting point from which
optimization via pumping profile, LO phases, and electronic
gains can improve the result. Remarkably, we have found that
these solutions are not very far from the best working point to
produce this kind of states [21].

Figure 8 maps the nullifier variances characterizing a N =
5 linear cluster state produced in an ANWs with homogeneous
coupling and propagation length z = 20 mm. Because of the
symmetry of the system, the nullifiers are degenerate two
by two, except the lth nullifier: V (δ̄1) = V (δ̄5) [Fig. 8(a)],
V (δ̄2) = V (δ̄4) [Fig. 8(b)], and V (δ̄3) [Fig. 8(c)]. The contour
plots display common areas fulfilling the condition V (δ̄i ) <

2/3 (blue areas). For instance, for |η| = 0.06 mm−1 and
C0 = 0.16 mm−1, we get V (δ̄1(5)) = 0.34, V (δ̄2(4)) = 0.42,
and V (δ̄3) = 0.40. These values are of the order of those
obtained in the frequency domain with frequency combs [71].

In order to gain insight about the scalability of this con-
figuration, Fig. 9 pictures the evolution along propagation of
the nullifier variances related to linear cluster states made up
of N = 5 [Fig. 9(a)] and N = 15 [Fig. 9(b)] modes. Now, we
optimize the amount of power per waveguide η for a given
coupling constant. We use the sum of the five (fifteen) nul-
lifier variances FC (η) = ∑5(15)

i=1 V (δ̄i ) at each z as the fitness
function to optimize. We use an evolution-strategy algorithm
to tackle this optimization [72]. As commented above, the
nullifier variances are degenerate due to the symmetry of the
system. Remarkably, the linear cluster condition V (δ̄i ) < 2/3
is fulfilled in both cases for a large range of distances. In
order to connect Figs. 8 and 9, we have marked as a black
dot in Figs. 8(a), 8(b), and 8(c) the coordinates (C, η) =
(0.08, 0.033) mm−1 corresponding to the variances of the nul-
lifiers at z = 20 mm shown in Fig. 9(a). The maxima values
of η used in the optimization are 0.038 and 0.035 mm−1 for
N = 5 and 15, respectively. These values are attainable with
current technology [73–75]. Note that the coupling constant
is wavelength-dependent C0 = C0(ωs) [60]. Thus, for a fixed
ANW length, modifying the operating wavelength λs and the
temperature of the sample T , we can access more favorable
conditions to obtain multipartite entanglement. This is clearly
shown in Fig. 8 when fixing the value of nonlinear strength |η|
and checking the value of the nullifiers for different values of
coupling strength C0.

We have demonstrated the production of linear cluster
states with our analytical solutions Eqs. (22). However, the
parameter space of the full approach is much larger than that
corresponding to this special case. This enables the optimized
generation of linear and other classes of cluster states in the
individual mode basis or any other basis [21].

VI. CONCLUSIONS

The ANW is a versatile system for quantum state engineer-
ing, as presented by Barral et al. [21]. Here, we complemented

FIG. 8. Nullifier variances V (δ̄i ) for a N = 5 linear cluster state
generated in an ANWs with homogeneous coupling and flat pump
profiles as a function of the coupling strength C0 and the pump power
via |η|. Simultaneous values of V (δ̄i ) < 2/3 are signature of cluster
production. (a) V (δ̄1) = V (δ̄5), (b) V (δ̄2) = V (δ̄4), and (c) V (δ̄3).
The white areas stand for V (δ̄i ) � 1. The black dot marks the point
(C, η) = (0.08, 0.033) mm−1. φ j = −π/2. z = 20 mm.
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(a)

(b)

FIG. 9. Nullifier variances V (δ̄i ) for (a) N = 5 and (b) N =
15 linear cluster states generated in an ANWs with homogeneous
coupling and flat pump profiles as a function of the propagation
length z. Simultaneous values of V (δ̄i ) < 2/3 (dotted, gray) are sig-
nature of cluster production. (a) N = 5 with, from lower to upper
at z = 50 mm, i = 1, 5 (blue), i = 2, 4 (orange), and i = 3 (green).
(b) N = 15 with, from lower to upper at z = 50 mm, i = 1, 9 (blue),
i = 6, 14 (brown), i = 7, 15 (sky blue), i = 2, 10 (orange), i = 5, 13
(purple), i = 3, 11 (green), i = 3 (yellow), and i = 4, 12 (red). C0 =
0.08 mm−1. φ j = −π/2.

this claim, based on optimization of parameters for the gen-
eration of specific multimode entangled states, with a more
fundamental perspective through a comprehensive analysis of
scalable analytical solutions. As such, we build a model for
the possibilities of the system in terms of the available tuning
parameters. This analytical approach provides insight into the
particular features of the multimode squeezed states, produced
in a given parameter configuration, and into working points in
the parameter-space which maximize given properties of the
generated state.

In particular, we have shown how the available internal
and external parameters of the ANW affect the generated
multimode squeezing, which is at the root of multimode
entanglement. We have detailed how the fields propagate

and how their fluctuations are squeezed in three relevant
mode bases, related to three encodings of quantum informa-
tion. The practical individual mode basis, where each mode
corresponds to an individual waveguide, naturally provides
individual outputs which are useful in quantum networks
architectures . The linear supermode basis provides insight
through analytical solutions and simple detection with a con-
stant LO profile . Finally, the local nonlinear supermode
basis maximizes the squeezing resources and is instrumental
for multimode entanglement through LO shaping or post-
processing. We have provided insights on the engineering
choices that can be made in terms of coupling strength
and profile, measurement strategy, and pumping geometry in
phase and amplitude. We have exemplified the usefulness of
our analytical solutions and further numerical optimization,
providing working points in the parameter space to pro-
duce linear cluster and assess their scalability. The quantum
information-encoding strategies and extended toolbox that are
provided here are applicable to all implementations of non-
linear waveguide arrays including very recent and promising
developments [73–77]. The analyzed compact and original
interplay of nonlinearity and coupling in the nonlinear arrays
of waveguides produces multimode entanglement in a way
that is accessible only to guided-wave nonlinear components
and serves the purpose of quantum technologies. Our results
thus provide an innovation to implement quantum protocols
with integrated optics in a compact way.
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APPENDIX

The covariance matrix in the linear supermode basis VS

obtained directly from Eq. (19) is block diagonal. Suitable
rotations (phase shifts) in the phase space related to each su-
permode can, however, diagonalize fully the linear supermode
covariance matrix VS . From Eq. (19), we can straightforwardly
calculate the covariance matrix VS related to the uncoupled
kth linear supermode. A rotation in the kth supermode phase
space of an angle

ϑk = 1

2
arctan

[
2V (xS,k, yS,k )

V (yS,k, yS,k ) − V (xS,k, xS,k )

]
+ π

2

diagonalizes the covariance matrix VS , yielding

V (x′
S,k, x′

S,k ) = V (xS,k, xS,k ) + V (yS,k, yS,k )

2
+

√
[V (yS,k, yS,k ) − V (xS,k, xS,k )]2 + 4V (xS,k, yS,k )2

2
,

V (y′
S,k, y′

S,k ) = V (xS,k, xS,k ) + V (yS,k, yS,k )

2
−

√
[V (yS,k, yS,k ) − V (xS,k, xS,k )]2 + 4V (xS,k, yS,k )2

2
.
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This diagonal matrix is the same as K2(z) obtained by the
Bloch-Messiah decomposition Eq. (13). R1(z) can be factor-
ized thus as R1(z) = MR(�ϑ ), with

R(�ϑ ) =
(

cos (�ϑ ) sin (�ϑ )

− sin (�ϑ ) cos (�ϑ )

)
,

and cos (�ϑ ) = diag{cos (ϑ1), . . . , cos (ϑk ), . . . , cos (ϑN )}
[equally for sin (�ϑ )].

We show an example for the sake of clarification. For
a pump phase profile �φ− = 0 with φ = 0, the covariance
matrix elements in the propagation supermode basis are

V (xS,k, xS,k ) = [cosh (rk ) + sinh (rk ) cos (2Fkz)]e−rk ,

V (yS,k, yS,k ) = [cosh (rk ) − sinh (rk ) cos (2Fkz)]erk ,

V (xS,k, yS,k ) = sinh (rk ) sin (2Fkz),

with rk = (1/2) ln [(λk + 2|η|)/(λk − 2|η|)]. The squeez-
ing phase is given by ϑk = π/2 − (1/2) arctan{[(cosh (rk )
tan (Fzz)]−1}. It depends on the pump power via |η|, the
coupling strength C0, and the propagation length z, and thus
R1(z). The larger squeezing is obtained periodically at dis-
tances zk = (2n + 1)π/(2Fk ), which are different for each
kth supermode, with n being any positive integer. The diag-
onalized variances at those distances are V (x′

S,k �=l , x′
S,k �=l ) =

e2rk , V (y′
S,k �=l , y′

S,k �=l ) = e−2rk . These are the same values as
the minima of the blue and orange curves in Fig. 5. The
kth-mode squeezing disappears at periodic distances z′

k =
nπ/Fk , the maxima of blue and orange curves in Fig. 5.
In the case of an odd number of waveguides, a ϑl = π/4
rotation in phase space diagonalizes the covariance matrix
corresponding to the zero supermode independently of z,
with V (x′

S,l , x′
S,l ) = e4|η|z, V (y′

S,l , y′
S,l ) = e−4|η|z (green curves

in Fig. 5). The zero supermode is therefore the same for both
bases.

In summary, the total available squeezing of the linear and
nonlinear supermodes is the same, but it is distributed in a
different way.
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