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A scheme is proposed to enhance the photon blockade effect in a hybrid optomechanical system with a �-type
atom driven by the microwave. Through analyzing the conventional and unconventional blockade mechanisms,
we find that the enhanced photon blockade effect can be attributed to two aspects: (i) The nonresonant coupled
�-type atom reconstructs the anharmonic eigenenergy spectrum and (ii) the microwave driving field promotes
the destructive quantum interference for two-photon excitation. By means of the joint enhancement effect,
the perfect photon blockade, i.e., the second-order correlation function g(2)(0) � 0, can be achieved without
the strong single-photon optomechanical coupling as reported in the standard optomechanical system. All
the analyses and derivations are further verified via simulating numerically the quantum master equation of
the initial Hamiltonian, showing good agreement between analytical and numerical results. Moreover, the
optimal parameter relation is given to optimize the photon blockade and maximize the occupancy probability
of single-photon excitation at the same time. Our scheme provides a feasible method to engineer a high-quality
and efficient single-photon source.
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I. INTRODUCTION

Over the past decades, optomechanics [1–6], investigat-
ing light-matter interaction, has attracted extensive attention
to explore various questions of quantum mechanics on
the macroscopic scale, such as mechanical cooling [7–12],
squeezing [13–16], entanglement [17,18], and quantum su-
perposition state [19–21]. In contrast, mechanical motion also
affects the optical mode, which triggers some interesting
phenomena, e.g., optical amplification [22,23], optomechan-
ically induced transparency [24–27], nonreciprocity [28], the
Casimir effect [29], and photon blockade [30–34]. Note that
nonreciprocal photon blockade has already been predicted
[35,36] and confirmed experimentally [37]. Among these
studies, the photon blockade, the occupation of the first photon
blocking the consequent injection, is a nonclassical antibunch-
ing effect, which can be used to generate the single-photon
source for those fundamental studies in quantum information
processing and quantum optics fields [38,39]. Therefore, how
to achieve a strong photon blockade has been a hot subject in
the recent years.

A conventional photon blockade mechanism of relying on
the eigenenergy spectrum has been proposed [40–42] and
realized in experiments [43,44]. However, the conventional
photon blockade in an optomechanical system (OMS) has
not been reported experimentally due to the required ex-
cessive single-photon optomechanical coupling [30,31]. On
the other hand, an unconventional photon blockade mecha-
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nism, based on the destructive quantum interference between
different excitation paths [45–51], has been observed ex-
perimentally in a coupled quantum-dot–cavity system [52]
and a superconducting circuit system [53]. According to the
new unconventional photon blockade mechanism, the auxil-
iary cavity mode [36,54–57] or parametric amplification [58]
method was proposed to break the usual limit, in which the
strong photon blockade can be effectively achieved even with
a weak optomechanical coupling. This can be explained by the
fact that the presence of the auxiliary qubit constructs another
transition path to achieve the destructive quantum interference
of two-photon excitation. Analogous to the photon blockade,
the phonon blockade has also been studied in various nanome-
chanical systems [59–62].

Furthermore, there are some related studies about the pho-
ton blockade in the hybrid OMS, such as coupling a two-level
system to the mechanical mode [63] and trapping a third-order
nonlinear medium in the optomechanical cavity [64]. This
paper comprises the strategy to enhance the photon block-
ade effect with a trapped �-type atom in a hybrid OMS
[65–67]. By calculating the second-order correlation function
of photons analytically and numerically, we find a two-step
enhancement phenomenon of photon blockade. First, the non-
resonant coupled atom not only shifts the anharmonic energy
level, but also changes the size of energy splitting between
the higher and lower branches of eigenstates, which results
in a finite enhancement of the photon blockade effect. Sec-
ond, the microwave field acting on the atom further promotes
the photon antibunching effect by improving the destructive
quantum interference. Under the interplay of nonresonant
coupled atoms and a microwave driving field, the strong pho-
ton blockade can be obtained even when the single-photon
optomechanical coupling is much smaller than the mechan-
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FIG. 1. (a) Schematic diagram of the hybrid OMS with a trapped
�-type atom, which includes two hyperfine ground states {|g〉, | f 〉}
and an excited state |e〉. (b) Transition |g〉 ↔ |e〉 coupled to the σ -
polarized optical cavity with coupling coefficient g0. A π -polarized
classical laser field is applied to drive the transition | f 〉 ↔ |e〉 with
Rabi frequency Ee f . The transition |g〉 ↔ | f 〉 is driven by a mi-
crowave field with Rabi frequency Ef g. In addition, the cavity mode
is pumped by a laser field with amplitude El . The frequency and
detuning of different driving fields are illustrated.

ical frequency. We analytically derive the optimal parameter
relation, which agrees well with the numerical simulation
of the initial Hamiltonian. Meanwhile, the necessity of mi-
crowave driving field is also demonstrated by calculating the
correlation function analytically in the absence of the mi-
crowave field. Moreover, to ensure the quality and efficiency
of single-photon emission, we discuss how to maximize the
intracavity photon number when the strong photon blockade
occurs. Therefore, our scheme greatly reduces the required
optomechanical coupling to achieve a strong photon blockade
and provides an alternative way for the experimental imple-
mentation of photon blockade.

The rest of paper is organized as follows. In Sec. II we
illustrate the hybrid OMS with a trapped �-type atom and
derive the Hamiltonian of the system under the large detuning
condition. In Sec. III we calculate the second-order correlation
function analytically and numerically and give the optimal
parameter relation to optimize the photon blockade effect.
In addition, we discuss the enhanced photon blockade. A
summary is given in Sec. IV.

II. SYSTEM AND HAMILTONIAN

As depicted in Fig. 1(a), we consider a hybrid OMS,
where a �-type three-level atom is trapped in the optical
cavity consisting of a fixed mirror and a movable one. The
required atomic level configuration can use the 87Rb atom
[68–71], where states |g〉, | f 〉, and |e〉 are represented by the
hyperfine atomic levels |5 2S1/2, F = 1, m = 0〉, |5 2S1/2, F =
1, m = −1〉, and |5 2P1/2, F = 1, m = −1〉, respectively. The
Hamiltonian of the system is written as (h̄ = 1)

Hs = ωca†a + ωmb†b + ω f | f 〉〈 f | + ωe|e〉〈e|
+ g0(a†|g〉〈e| + a|e〉〈g|) − ga†a(b† + b), (1)

where the first four terms represent the free Hamiltonian of the
optical cavity, the mechanical oscillator, and the atom. Here
we have chosen the energy of level |g〉 as the zero potential
energy point. The fifth term describes the interaction between
the atom and optical cavity with coupling strength g0. The
last term is the optomechanical interaction with single-photon
coupling strength g. Meanwhile, the considered system is

driven by three classical laser fields and the Hamiltonian is

Hd = Ele
iφl a†e−iωl t + Ee f eiφe f |e〉〈 f |e−iωe f t

+ E f geiφ f g| f 〉〈g|e−iω f gt + H.c., (2)

where the first term represents the pumping-cavity interaction
with pumping amplitude El , frequency ωl , and phase φl . The
last two terms are the interactions between the atom and two
driving fields, where the transition | f 〉 ↔ |e〉 is driven by a
π -polarized classical laser (driving amplitude Ee f , frequency
ωe f , and phase φe f ) and the transition |g〉 ↔ | f 〉 is driven by
a microwave field (driving amplitude E f g, frequency ω f g, and
phase φ f g). In the actual experiments, the microwave driving
field can be indirectly achieved by the extra Raman resonance
process [72]. Therefore, the total Hamiltonian is H = Hs +
Hd and all the interactions are illustrated in Fig. 1(b). For
simplicity, we perform a rotating transformation defined by

V1 = exp(−iωl ta†a − iωet |e〉〈e| − iω f gt | f 〉〈 f |). (3)

After that, the transformed Hamiltonian H1 = V †
1 HV1 −

iV †
1 V̇1 is rewritten as

H1 = �ca†a + ωmb†b + � f g| f 〉〈 f | + g0a†|g〉〈e|e−i�l t

− ga†a(b† + b) + Ee f eiφe f |e〉〈 f |ei(�e f +� f g)t

+ El e
iφl a† + E f geiφ f g| f 〉〈g| + H.c., (4)

where �c = ωc − ωl , � f g = ω f − ω f g, �e f = ωe − ω f −
ωe f , and �l = ωe − ωl are the corresponding detunings of
different fields.

In the case of large detuning, i.e., �l � g0 and �e f +
� f g � Ee f , the excited state |e〉 can be adiabatically elimi-
nated. Then we obtain the reduced Hamiltonian

H2 = �ca†a + ωmb†b + � f | f 〉〈 f | − g2
0

�l
a†a|g〉〈g|

− g0Ee f

�l
eiφe f a†|g〉〈 f | − ga†a(b† + b)

+ El e
iφl a† + E f geiφ f g| f 〉〈g| + H.c., (5)

where � f = � f g − E2
e f /�l and E2

e f /�l | f 〉〈 f | is the Stark
shift caused by the classical laser field Ee f . In addition,
(g2

0/�l )a†a|g〉〈g| represents the Stark shift originating from
atom-cavity coupling and g0Ee f /�l is the Raman coupling
strength between the cavity and the transition |g〉 ↔ | f 〉. Here,
for convenience, we have assumed �e f + � f g = �l , which
represents the three-photon resonance. In the mechanical dis-
placement representation defined by

V2 = exp
( g

ωm
a†a(b† − b)

)
, (6)

the nonlinear optomechanical coupling is transformed to the
Kerr-like nonlinearity of the optical cavity [73]. Moreover,
those phases can be renormalized after a canonical transfor-
mation V3 = exp(iφl a†a − iφ f g|g〉〈g|). Specifically, the trans-
formed Hamiltonian H3 = V †

3 V †
2 H2V2V3 reads

H3 = �ca†a + ωmb†b + � f | f 〉〈 f | − g2

ωm
(a†a)2

− g2
0

�l
a†a|g〉〈g| − g0Ee f

�l
e−iθ a†e− g

ωm
(b†−b)|g〉〈 f |

+ El a
†e−(g/ωm )(b†−b) + E f g| f 〉〈g| + H.c., (7)
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where g2/ωm is the strength of the obtained Kerr-like non-
linearity and θ = φl − φe f − φ f g is the renormalized relative
phase among those external driving fields. In the actual OMSs,
the single-photon optomechanical coupling is usually tiny,
namely, g � ωm. Under the weak single-photon optomechan-
ical coupling condition, the exponential factor exp[− g

ωm
(b† −

b)] in Eq. (7) can be omitted safely. For this case, the Hamil-
tonian is decoupled into two parts, i.e., the optical part

H4 = �ca†a + � f | f 〉〈 f | − G0a†a|g〉〈g| − G(a†a)2

− Je−iθ a†|g〉〈 f | + Ela
† + E f g| f 〉〈g| + H.c. (8)

and the mechanical free part Hm = ωmb†b. For simplicity, the
system parameters have been renormalized as

G0 = g2
0

�l
, G = g2

ωm
, J = g0Ee f

�l
. (9)

Meanwhile, the dynamical evolutions of optical and mechan-
ical parts are independent, namely, exp[−i(H4 + Hm)t]|	〉 =
exp(−iH4t )|ψ〉 ⊗ exp(−iHmt )|ψ〉m, where |	〉, |ψ〉, and
|ψ〉m are the states of the whole system, the optical part,
and the mechanical part, respectively. This means Eq. (8) is
sufficient to study the photon statistics when we only care
about the optical properties of the system.

Here the reduced Hamiltonian can be diagonalized in the
relevant Hilbert space {|n, g〉, |n − 1, f 〉}. The corresponding
eigenenergy then is given by

εn± = (2n − 1)�c + � f

2
−

(
n2 − n + 1

2

)
G − n

2
G0

±
√

nJ2 +
[ (2n − 1)G + nG0

2
− �c − � f

2

]2

.(10)

It is easy to find that the anharmonicity of eigenenergy
mainly originates from two aspects, i.e., the nonlinear op-
tomechanical coupling and the energy splitting caused by
the atom-cavity interaction. Meanwhile, we can see that the
existence of the �-type atom not only shifts the energy
level structure, but also changes the size of energy split-
ting between the higher and lower branches of eigenstates.
For instance, the frequency shift and energy splitting of n-
excitation eigenstates caused by the �-type atom are −nG0/2
and

√
4nJ2 + [(2n − 1)G + nG0 − �c + � f ]2, respectively,

in which the energy splitting is anharmonic and increases with
the enhancements of the Stark shift strength G0 and the photon
excitation number n. Hence, the photon statistics property in
our proposal would be affected inevitably by the �-type atom.
In the following section, the enhanced photon blockade effect
is verified and discussed in detail.

III. PHOTON STATISTICS

From the above calculation, we reduce the initial hybrid
OMS with a trapped �-type atom to an atom-cavity system
by utilizing the large detuning and weak optomechanical cou-
pling conditions. Here we investigate the photon statistics
property in the optical cavity via calculating its correlation
function analytically and numerically. The validity of the re-
duced Hamiltonian in Sec. II is also proved by comparing the
analytical and numerical results, where the numerical simula-

tion is carried out with the initial Hamiltonian of the hybrid
OMS.

A. Analytical solution

The analytical solution of correlation function can be cal-
culated via the non-Hermitian Schrödinger equation, which
involves the influence of the external environment by adding
phenomenologically the system decay into the reduced
Hamiltonian (8). The modified non-Hermitian Hamiltonian is
thus

HNM = H4 − i
κ

2
a†a, (11)

where κ is the photon decay rate of the cavity. It is worth
noting that we have ignored the spontaneous emission of the
ground state | f 〉 due to the extremely weak strength (electric
dipole forbidden). Meanwhile, the proposal still works even
if the spontaneous emission of the ground state | f 〉 is consid-
ered. Substituting the Hamiltonian (11) into the Schrödinger
equation i∂|ψ (t )〉/∂t = HNM|ψ (t )〉, a set of linear differential
equations about the probability amplitudes is obtained. Here
|ψ (t )〉 is the time-dependent optical state which can be ex-
panded as

|ψ (t )〉 =
∑
n,m

Cng(t )|n, g〉 + Cm f (t )|m, f 〉, (12)

where Cng and Cm f are the corresponding probability ampli-
tudes of states |n, g〉 and |m, f 〉, respectively. Further, {n, m} ∈
Z represents the photon number in the optical cavity. Under
the condition of weak driving {El , E f g} � κ , the dynamical
evolution of the system is confined in a low-excitation sub-
space, which can be truncated by a low enough photon number
to solve analytically. Meanwhile, the set of differential equa-
tions for probability amplitudes is given by

i
∂C0g

∂t
= ElC1g + E f gC0 f ,

i
∂C1g

∂t
= ElC0g + �1C1g − Je−iθC0 f + E f gC1 f +

√
2ElC2g,

i
∂C0 f

∂t
= E f gC0g − JeiθC1g + � f C0 f + ElC1 f ,

i
∂C1 f

∂t
= E f gC1g + ElC0 f + �′C1 f −

√
2JeiθC2g,

i
∂C2g

∂t
=

√
2ElC1g −

√
2Je−iθC1 f + 2�2C2g, (13)

where �1 = �c − i κ
2 − G0 − G, �′ = �c − i κ

2 + � f − G,
and �2 = �c − i κ

2 − G0 − 2G. When the system reaches its
steady state, the time-independent probability amplitudes are
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approximatively solved as

C1g � ElJe−iθ + El� f

J2 − � f �1
,

C0 f � ElJeiθ + El�1

J2 − � f �1
,

C1 f � ElJeiθC1g + El (C1g + C0 f )�2

J2 − �2�′ ,

C2g � ElJe−iθ (C1g + C0 f ) + ElC1g�
′

√
2(J2 − �2�′)

,

(14)

where we have assumed E f g = El and C0g � 1 and ignored
the high-order small quantity due to the weak-driving con-
dition. Generally, the photon statistics property is measured
via the various correlation functions, where the single-photon
blockade can be expediently characterized by the delayed
second-order correlation function

g(2)
2 (τ ) = lim

t→∞
〈a†(t )a†(t + τ )a(t + τ )a(t )〉

〈a†(t )a(t )〉〈a†(t + τ )a(t + τ )〉 . (15)

Here the second-order correlation function represents the
probability of detecting the first photon at time t and the sec-
ond photon after a time delay τ . When the system reaches its
steady state ρs = |ψ〉ss〈ψ |, the delayed second-order correla-
tion function can be conveniently calculated by the equivalent
definition

g(2)
2 (τ ) = Tr[a†aU (τ )aρsa†U †(τ )]

Tr(a†aρs)2
, (16)

where U (τ ) represents the dynamical evolution operator of
the system. In the following, we give the analytical expres-
sion for the steady-state zero-delay second-order correlation
function

g(2)(0) = 〈a†a†aa〉
〈a†a〉2

� 2|C2g|2
|C1g|4 , (17)

where we have used the fact {|C2g|, |C1 f |} � {|C1g|, |C0 f |} �
|C0g| for the case of weak driving. According to the above
result and the last of Eqs. (14), we can obtain the optimal
parameter condition to generate the perfect photon blockade
in the optical cavity. The direct expression of parameters is too
cumbersome to show here, so we just give the optimal relation
of those parameters as

Je−iθ = − (� f + Je−iθ )�′

�′ − G0 + 2J cos θ
. (18)

So far, we have given the analytical expression of the zero-
delay second-order correlation function and recalculated the
delayed second-order correlation function to characterize the
photon statistics property. Moreover, the optimal parameter
relation to generate the perfect photon blockade was also
derived in Eq. (18), which is helpful to select the appropriate
system parameters. Next we verify the above analyses via
numerically simulating the system’s master equation of the
initial Hamiltonian.

B. Numerical simulation

It is worth noting that the previous analytical calcula-
tion was obtained through some approximate conditions, e.g.,
large detuning, weak single-photon optomechanical coupling,
and weak driving. So it is necessary to verify the accuracy of
the above analytical results via the exact numerical simulation
with the initial Hamiltonian

H ′ = �ca†a + ωmb†b + � f g| f 〉〈 f | + �l |e〉〈e|
+ g0e−iθ a†|g〉〈e| − ga†ab† + Ela

† + Ee f |e〉〈 f |
+ E f g| f 〉〈g| + H.c., (19)

where, for convenience, we have taken a transformation de-
fined by

V ′ = exp(−iωl ta†a − iωl t |e〉〈e| − iω f gt | f 〉〈 f |),
ae−iφl → a, | f 〉〈e|e−iφe f → | f 〉〈e|,

|g〉〈 f |e−iφ f g → |g〉〈 f |. (20)

Here the exact numerical simulation is carried out by the
method of the quantum master equation, which is written as

∂ρ

∂t
= −i[H ′, ρ] − κ

2
(a†aρ − 2aρa† + ρa†a)

− γ (|e〉〈e|ρ − |g〉〈e|ρ|e〉〈g| − | f 〉〈e|ρ|e〉〈 f | + ρ|e〉〈e|)
− (nth + 1)γm

2
(b†bρ − 2bρb† + ρb†b)

− nthγm

2
(bb†ρ − 2b†ρb + ρbb†), (21)

where γ is the spontaneous emission rate of the atom, which
we have assumed to be the same for the spontaneous emis-
sions of |e〉 → |g〉 and |e〉 → | f 〉. In addition, γm represents
the damping rate of the mechanical oscillator and nth =
[exp(h̄ωm/kBT ) − 1]−1 is the mean thermal phonon number
at temperature T , where kB is the Boltzmann constant. When
the system reaches its steady-state density matrix ρs, the zero-
delay second-order correlation function can be calculated by

g(2)(0) = Tr(a†a†aaρs)

Tr(a†aρs)2
. (22)

C. Maximizing the single-photon occupancy

Generally, although the strong photon blockade can be
obtained based on the above analysis, it is necessary to further
make it occur at the single-excitation resonance to maximize
the efficiency of single-photon emission. Therefore, we an-
alyze the eigenenergy of the system to obtain its energy of
single-excitation resonance, which can be directly given as

ε1± = �c + � f

2
− G + G0

2

±
√

J2 +
(G + G0

2
− �c − � f

2

)2

. (23)

Applying the condition of single-excitation resonance, the
optimal cavity-pumping detuning is given by

�c = G + G0 + J2

� f
(� f �= 0), (24)
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FIG. 2. (a) Zero-delay second-order correlation function g(2)(0)
versus the cavity-pumping field detuning �c coming from the
analytical solution and the numerical simulations with different
Hamiltonians. The solid black line is the analytical solution of the
correlation function defined by Eq. (17), the dashed red line repre-
sents the numerical simulation from the master equation (21) with
the reduced Hamiltonian in Eq. (8), and the blue asterisks show
another numerical simulation with the initial Hamiltonian in Eq. (19).
(b) Intracavity photon number 〈a†a〉 versus the cavity-pumping field
detuning �c.

which will maximize the single-photon occupancy (equivalent
to the high efficiency of single-photon emission). Combining
the optimal cavity-pumping detuning and the previous optimal
parameter relation in Eq. (18), we can obtain the strong photon
blockade and the high single-photon occupancy at the same
time, which means a high-quality and efficient single-photon
source is generated. Different from Ref. [58], the anharmonic
eigenenergy spectrum modified by the trapped �-type atom
provides the possibility to manipulate the position of the op-
timal photon blockade without changing the optomechanical
coupling strength.

Next we solve the second-order correlation function with
the optimal condition via the analytical result in Eq. (17) and
via the numerical simulation from Eq. (21) to validate our
calculations, as shown in Fig. 2(a). For comparison, we also
give the numerical simulation with the reduced Hamiltonian in
Eq. (8). In the above calculations, the system parameters were
selected appropriately based on the experiments in [74–76],

FIG. 3. (a) Zero-delay second-order correlation function g(2)(0) versus the detuning � f and �c via numerically simulating the master
equation. The dashed white line represents the location of the perfect photon blockade, which comes from the analytical result in Eq. (24).
Also shown are the (b) optimal relative phase θ and (c) driving amplitude Ee f versus the detuning � f , which are obtained by solving Eq. (18).
(d) Delayed second-order correlation function g(2)(τ ) versus the delay time, which is calculated by the definition in Eq. (16).

e.g., κ = 2π MHz, g0/κ = 10, and γ /κ = 0.5, where the
atom-cavity coupling belongs to the strong-coupling region.
In addition, the parameters of the mechanical oscillator are
set as ωm/κ = 100, g/ωm = 0.03, and γm/ωm = 10−6, which
is a high-Q resonator. The external drivings are chosen ap-
propriately as �l/κ = 100, El/κ = E f g/κ = 0.01 � 1, and
� f /κ = −0.5. The temperature of the system is precooled
to T = 1 mK. The Ee f and the relative phase θ are chosen
according to the optimal relation in Eq. (18). We can see
that the analytical solution agrees well with those numerical
simulations in the vicinity of the occurring photon blockade.
Further, the correlation function is nearly zero at the optimal
detuning given in Eq. (24), which indicates the appearance of
a strong photon blockade. We also show the intracavity photon
number 〈a†a〉 � |C1g|2 versus the cavity-pumping detuning
with the optimal system parameters, as shown in Fig. 2(b).
We can see that the intracavity photon number reaches its peak
value (related to the driving amplitudes and about E2

l /κ2) at
the optimal detuning, which implies that the single-photon
occupancy is highest at this time. Here the analytical result
of the intracavity photon number is also identical to those
numerical simulations. Therefore, a strong photon blockade
is achieved and a high occupancy probability of single-photon
excitation is also obtained at the same time.

D. Discussion

Here we discuss the effect of parameter fluctuation on
photon blockade according to the foregoing analysis. We take
the detuning � f as an example to explore its effect on photon
blockade. Figure 3(a) shows the variation of the zero-delay
second-order correlation function g(2)(0) with the detuning
� f and �c via numerically simulation. We find that the lo-
cation of the perfect photon blockade occurring changes with
the detuning � f when the optimal condition is satisfied. How-
ever, we also notice that the photon blockade vanishes in the
vicinity of � f /κ = 0, which means that the detuning of the
microwave field cannot be equal to the Stark shift of level | f 〉
and is consistent with the analytical calculation in Eq. (24).
Furthermore, the dashed white line represents the analytical
location of a perfect photon blockade appearing, which is
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FIG. 4. (a) Zero-delay second-order correlation function g(2)(0)
versus the single-photon optomechanical coupling g for the atom
and microwave field existing or not. (b) Correlation function g(2)(0)
changing with the optomechanical coupling g and cavity-pumping
detuning �c, which can also describe the change of the perfect
photon blockade location caused by the optomechanical coupling.
The dashed white line is the relation between the blockade location
and optomechanical coupling obtained by Eq. (24).

identical to the trend of numerical simulation. The optimal
relative phase θ and driving amplitude Ee f are calculated
and shown in Figs. 3(b) and 3(c), respectively. Significantly,
the classical driving Ee f does not need to satisfy the above
weak-driving assumption (|Ee f /κ| > 1) in our scheme. This
is because the transition | f 〉 ↔ |e〉 is suppressed due to the
large-detuning condition �e f � Ee f . Moreover, we also cal-
culate the delayed second-order correlation function g(2)(τ )
according to the definition given in Eq. (16) and the result is
shown in Fig. 3(d). As we can see, the delayed second-order
correlation function is always larger than the zero-delay one,
which indicates that the photon is an antibunching state and
tends to be emitted one by one. When the delay time is long
enough, the delayed correlation function reaches 1 and the
photon is a standard Poisson distribution.

Crucially, we discuss the effect of optomechanical cou-
pling on photon blockade. In the usual OMSs, the strong
photon blockade requires a very large single-photon optome-
chanical coupling [see the dotted blue line in Fig. 4(a)], which
has been difficult to achieve in recent experiments. Different
from the schemes assisted by harmonic cavity [56,57], we
study the effect of the �-type atom on photon blockade and
find that the �-type atom not only shifts the energy level struc-
ture, but also changes the size of the energy splitting between
the higher and lower branches of eigenstates. Therefore, a new
anharmonicity is introduced into the eigenenergy of the sys-
tem. Through numerically simulating Eq. (21), we obtain an
enhanced photon blockade effect when the microwave field is
nonexistent [see the dashed black line in Fig. 4(a)]. However,
the enhanced photon blockade effect is not satisfactory when
the single-photon optomechanical coupling is small, which
means that the excessively large optomechanical coupling is
still necessary to achieve the strong photon blockade effect.
Fortunately, the photon blockade effect can be further en-
hanced significantly via the microwave driving field [see the
solid red line in Fig. 4(a)], where a satisfactory photon block-
ade is obtained. We note further that the correlation function is
not strictly equal to 0 when the single-photon optomechanical
coupling is too small (g/ωm < 0.1). This is because of the

inherent disadvantage of suppressing multiphoton excitation
incompletely in the unconventional photon blockade mecha-
nism. However, the photon blockage phenomenon gradually
becomes perfect [g(2)(0) � 0] with the optomechanical cou-
pling increasing. In the above simulations, we have selected
the single-excitation resonant condition �c = G or �c = G +
G0 + J2/� f , which respectively corresponds to the atom ex-
isting or not. Furthermore, we also discuss the influence of
optomechanical coupling on the optimal blockade location,
as shown in Fig. 4(b). We find that the optimal blockade
location is related to optomechanical coupling, which can also
be demonstrated by Eqs. (9) and (24). However, it is worth
noting that the optomechanical coupling has no impact on the
selection of those optimal parameters [substituting Eq. (24)
into Eq. (18)]. We thus can conclude that the optomechanical
coupling just changes the location of the strong photon block-
ade occurring.

In the preceding discussion we investigated the generation
of strong photon blockade and found that the photon blockade
effect is only slightly enhanced when the microwave field is
nonexistent. Here we analyze the reason for this phenomenon
via calculating the photon statistics without the microwave
field (E f g = 0). Meanwhile, the probability amplitudes in
Eq. (12) can be similarly solved and written as

C1g � El� f

J2 − � f �1
,

C0 f � ElJeiθ

J2 − � f �1
,

C1 f � El JeiθC1g + ElC0 f �2

J2 − �2�′ ,

C2g � El Je−iθC0 f + ElC1g�
′

√
2(J2 − �2�′)

. (25)

It is easy to confirm that we cannot derive the real solution of
the equation |C2g| = 0, i.e., J2 + � f (�c − i κ

2 + � f − G) =
0, which means the perfect photon blockade cannot be gen-
erated in the absence of the microwave filed E f g. However,
it is worth emphasizing that the photon blockade still exists
due to g(2)(0) < 1, which is possible with appropriate system
parameters, as shown in Fig. 5(a). In Fig. 5(b), the dynamical
evolution of the correlation function is shown to verify the
above analysis under the steady-state assumption. We also dis-
cuss the dynamical evolution of the intracavity photon number
when the microwave driving exists or does not, and the results
are shown in Fig. 5(c). We can see that the single-photon
occupancy is higher when the microwave driving is nonexis-
tent. That means the better blockade effect corresponds to the
lower intracavity photon number. In order to get a perfect pho-
ton blockade effect, we must sacrifice the intracavity photon
number and the microwave driving is necessary. Finally, the
delayed second-order correlation function g(2)(τ ) is shown in
Fig. 5(d) when the microwave driving field is existent or not.
We find that the delayed second-order correlation function is
always low in the presence of microwave driving field, which
further shows the promoting effect of the microwave driving
field on photon blockade.
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FIG. 5. (a) Zero-delay second-order correlation function g(2)(0) versus the cavity-pumping detuning �c and the driving amplitude Ee f when
the microwave field is nonexistent (Ef g = 0). Also shown are the dynamical evolutions of (b) the zero-delay second-order correlation function
g(2)(0) and (c) the intracavity photon number 〈a†a〉 with or without the microwave driving field Ef g. (d) Delayed second-order correlation
function g(2)(τ ) with or without the microwave driving field.

IV. CONCLUSION

We have proposed a promising scheme to investigate the
photon statistics in a hybrid OMS with a trapped �-type atom,
in which a microwave field is utilized to drive the atomic
transition. The strong photon blockade effect can be achieved
even with a weak optomechanical coupling and it is mea-
sured by the usual second-order correlation function, which
is calculated via analytically solving the Schrödinger equa-
tion and numerically simulating the quantum master equation.
Specifically, when the weak microwave field and nonresonant
coupled �-type atom satisfy the derived optimal parameter
relation, the strong photon blockade can be achieved, which
breaks the strong-coupling limitation in usual OMSs. This
is because the interplay of the nonresonant coupled atom
and microwave driving field is conducive to suppressing
the two-photon excitation completely, thus resulting in the
enhancement of the photon blockade effect. We also demon-
strated analytically that the photon blockade is imperfect

when the microwave field is nonexistent. Moreover, in order
to improve the efficiency of single-photon emission in our
scheme, we selected the single-excitation resonant condition
to maximize the occupancy probability of single-photon ex-
citation when the strong photon blockade occurs. Therefore,
a high-quality and efficient single-photon source can be gen-
erated. Our work explores the feasibility of a strong photon
blockade occurring with a weak single-photon optomechan-
ical coupling and might have application in generating the
few-photon quantum states.
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