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Quantum theory of radiative decay rate and frequency shift of surface plasmon modes
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In this paper we study, in the time domain, the interaction between localized surface plasmons and photons in
arbitrarily shaped metal nanoparticles, by using the Hopfield approach to quantize the plasmon modes, where the
electron oscillations are represented by a harmonic matter field linearly coupled to the electromagnetic radiation.
The plasmon-photon coupling gives rise to dressed plasmon modes. We have found that the radiation does
not induce a significant coupling among the different quasielectrostatic plasmon modes for particles of size
up to the plasma wavelength, but causes a frequency shift and an exponential decay in time of the modes. By
solving the equations governing the expectation values of the plasmon creation and annihilation operators, we
obtain a closed-form full-wave expression for the decay rate and for the frequency shift of the plasmon modes.
It is nonperturbative and it only depends on the surface charge distribution of the quasielectrostatic plasmon
modes. We validate the expression against the Mie theory for a nanosphere of radius comparable to the plasma
wavelength. Eventually, we investigate the decay rate and the frequency shift of the plasmon modes in isolated
and interacting nanoparticle of noncanonical shape, as their size increases up to the plasma wavelength.
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I. INTRODUCTION

The interaction of light with collective oscillations of free
electrons in metal nanoparticles, denoted as surface plasmons,
is one of the most active branches of nano-optics [1]: It
enables the subwavelength confinement of electromagnetic
fields [2] and the enhancement of light-matter interaction
[3]. Even though many phenomena involving surface plas-
mons can be explained by either classical or semiclassical
theories [4], plasmons have an inherent quantum nature [5]
which manifests through wave-particle duality, entanglement
[6], squeezing [7], quantum interference [8], sub-Poissonian
statistics [5], and strong coupling with single molecules [3].
They are also a promising platform for implementing a quan-
tum antenna [9].

The recent advances of femtosecond characterization tech-
niques enabled the experimental investigation of the ultrafast
plasmon dynamic in metal nanoparticles (e.g., [10–20]). In
particular, the plasmon time decay may occur either via the
coupling with photons, i.e., the radiation damping, or via
the decay into excitation of intraband or interband electron-
hole pairs (e.g., [11]), or via the collisions of the conduction
electrons with the ion lattice. The majority of existing experi-
mental studies have mainly focused on the plasmon dynamics
in small particle regimes where the nonradiative decay pro-
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cesses are dominant. Nevertheless, as soon as the size of the
particle becomes comparable with the resonant wavelength,
the radiative damping becomes the dominant damping mech-
anism [21,22].

The theoretical study of plasmon dynamics in the time
domain in terms of natural modes has been so far restricted to
the realm of quasielectrostatic approximation [23], which is
unable to describe the coupling of the surface plasmons with
photons, unless specific perturbation-correction techniques
are implemented [24]. On the other side, frequency-domain
techniques based on full-wave theories, such as the quasinor-
mal mode expansion [25] or the Mie theory [26], have been
used to retrieve synthetic parameters such as the resonance
frequency and the radiative Q factor. In the last few years, the
quantization of surface plasmons coupled to radiative electro-
magnetic fields has been a very active research area [27–32].

In this paper, we study in the time domain the natural
modes of surface plasmons in arbitrarily shaped nanoparticles
by taking into account the coupling with the electromag-
netic radiation. The study is carried out in the framework
of quantum theory following the seminal works of Fano
[33], Hopfield [34], and Barnett [35–37]. Indeed, we use
the Hopfield approach to model the plasmon-photon inter-
action: The electron oscillations are described as a matter
field, and therefore they are quantized as a boson system.
We represent the metal nanoparticle as an electron gas rigidly
confined within the spatial domain occupied by the positive
ion lattice. We expand the transverse electromagnetic field
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in terms of plane waves. We expand the longitudinal compo-
nent of the electron gas displacement field (matter field) and
the longitudinal component of the electric field (Coulombian
field) in terms of the quasielectrostatic plasmon modes of the
nanoparticle proposed by Mayergoyz [38,39]. As we shall
see, this choice allows one to better understand the physics
of the problem, greatly simplifies its mathematical descrip-
tion, and considerably reduces the computational burden of
its numerical solution. In particular, it allows the diagonal-
ization of the plasmon contribution to the Hamiltonian of the
system. The plasmon-photon coupling gives rise to dressed
plasmon modes. The induced coupling among the different
quasielectrostatic plasmon modes is weak for nanoparticles
of sizes up to the plasma wavelength. The plasmon-photon
coupling mainly causes both a frequency shift with respect to
the quasielectrostatic frequency, and an exponentially decay
in time.

In this paper, in particular, we focus on the dynamics of
the expectation values of the plasmon creation and annihila-
tion operators in the ground state of the system. We obtain
closed-form full-wave expressions for the decay rate and the
frequency shift of the plasmon modes for nanoparticle sizes up
to the plasma wavelength in terms of the surface charge distri-
bution of the quasielectrostatic plasmon modes. The formula
is nonperturbative and can be easily numerically evaluated.
We validate the formula for a sphere of size comparable to the
plasmon frequency, against the Mie theory. Then, we study
the decay rate and the frequency shift of plasmon modes in
single nanoparticles and in dimers. We have disregarded non-
radiative damping mechanisms because the aim of the paper
is to provide a quantum description of the coupling between
the plasmon oscillations and the photons, and its effects on the
plasmon radiative decay rate and frequency shift.

The paper is organized as follows. In Sec. II, we present
the classical Lagrangian and Hamiltonian of the system “elec-
tron gas + electromagnetic field” in the Coulomb gauge. In
Sec. III we introduce a representation of the displacement
vector field of the electron gas in terms of longitudinal and
transverse components. In Sec. IV we first perform the canon-
ical quantization by expressing the field operators in terms of
the bases introduced in Sec. III, then we introduce the standard
boson operators, and eventually write down the Heisenberg
equations of the entire system. In Sec. V we first study the
expectation value in the ground state of the plasmon creation
and annihilation operators, and then, we obtain a full-wave
closed-form expression for the frequency shift and the decay
rate by using the pole approximation technique. In Sec. VI we
study the frequency shift and radiative decay of the plasmon
natural modes of single nanoparticles and dimers with differ-
ent sizes and shapes. We discuss the main results and conclude
in Sec. VII. The main properties of the quasielectrostatic
plasmon modes are presented in Appendix.

II. CLASSICAL LAGRANGIAN AND HAMILTONIAN

A metal nanoparticle occupies a region V in free space: ∂V
is the boundary of V , V0 is the vacuum region surrounding the
nanoparticle, and V∞ = V ∪ V0 denotes the entire space. To
describe the collective behavior of the conduction electrons
we model them as an electron gas confined within the positive

ion lattice of the metal. The ion lattice is assumed to be rigid
and the ion distribution is assumed to be uniform in V with
volumetric density n0. At equilibrium, the distribution of the
electron gas is assumed to be equal to n0.

An electric field moves the electron gas. The motion is
incompressible inside V due to the uniformity of the elec-
tron gas distribution at equilibrium. As a consequence, in the
linear regime, the volume charge density is zero inside V ,
but a surface charge with density σ (r) arises on ∂V due to
the charge conservation. The vector field ξ(r), defined in V ,
represents the displacement of the electron gas with respect
to its equilibrium configuration. It is solenoidal in V , but its
normal component to ∂V is different from zero. In the linear
regime, the surface density σ (r) is given by

σ (r) = −en0ξn(r) on ∂V, (1)

and the current density field j(r) is given by

j(r) = −en0ξ̇(r) inV, (2)

where ξn = ξ · n̂, n̂ denotes the normal to the surface pointing
outward and e is the absolute charge of the electrons; we in-
dicate the partial derivative with respect to the time with a dot
and we omit the time variable to simplify the notation. Since
the displacement field is solenoidal in V , the total surface
charge on ∂V is equal to zero. The surface charge generates
a restoring force that combined with the electron inertia gives
rise to a continuum of harmonic oscillators, i.e., the surface
plasmon oscillations. Since the aim of the paper is to study the
effects of the surface plasmon-photon coupling on the natural
motion of the system, we neglect the effects of the losses due
to both the interband and the intraband transitions, and the
collisions of the conduction electrons with the ion lattice.

A. System Lagrangian

Following the standard approach of quantum electro-
dynamics [40], we start from the classical Lagrangian of
the system “electron gas + electromagnetic field.” In the
Coulomb gauge, the Lagrangian of the entire system is com-
posed of three terms, the surface plasmon Lp, the radiation
field Lem, and the interaction term Li:

L(ξ, ξ̇, A, Ȧ) = Lp + Lem + Li, (3)

where

Lp(ξ, ξ̇) =
∫

V

ρ0

2
ξ̇

2
d3r

−
∮

∂V

∮
∂V

ρ0ω
2
p

2

ξn(r)ξn(r′)
4π |r − r′| d2rd2r′, (4a)

Lem(A, Ȧ) =
∫

V∞

[ε0

2
Ȧ2 − 1

2μ0
(∇ × A)2

]
d3r, (4b)

Li
(
ξ̇, A

) =
∫

V
(−en0ξ̇) · Ad3r; (4c)

ε0 is the dielectric constant of vacuum and μ0 is the magnetic
permeability. The vector field A(r) is the magnetic vector
potential in the Coulomb gauge generated by the electron gas.
The first contribution to Lp is the kinetic energy of the electron
gas, where m∗

e is the effective mass of the electrons in the
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conduction band and ρ0 = n0m∗
e is the mass density of the

electron gas at equilibrium. The second contribution to Lp is
the Coulomb potential energy due to the surface charges on
∂V , where ωp = √

e2n0/ε0m∗
e is the plasma frequency of the

electron gas.

B. System Hamiltonian

We introduce the canonical variables:

P = δL
δξ̇(r)

= ρ0ξ̇ − en0A in V, (5a)

� = δL
δȦ(r)

= ε0Ȧ in V∞; (5b)

where δL/δC(r) is the functional derivative of L with respect
to the vector field C(r); P is the momentum density field
canonically conjugated to the displacement field ξ, and the
vector field � is canonically conjugated to the vector potential
A. The Hamiltonian of the system,

H =
∫

V
ξ̇ · Pd3r +

∫
V∞

Ȧ · �d3r − L, (6)

is the sum of three terms: the kinetic energy Hk , the Coulomb
potential energy HCoul, and the energy Hem of the radiation
electromagnetic field,

H(P, ξ,�, A) = Hk + HCoul + Hem, (7)

where

Hk (P, A) =
∫

V

1

2ρ0
(P + en0A)2d3r, (8a)

HCoul(P, A) =
∮

∂V

∮
∂V

ρ0ω
2
p

2

ξn(r)ξn(r′)
4π |r − r′| d2rd2r′, (8b)

Hem(�, A) =
∫

V∞

[ 1

2ε0
�2 + 1

2μ0
(∇ × A)2

]
d3r. (8c)

The Hamilton’s equations for the matter fields are

ξ̇ = δH
δP(r)

= 1

ρ0
(P + en0A) inV, (9a)

Ṗ = − δH
δξ(r)

= −n0eECoul inV, (9b)

where

ECoul(r) = −∇r

[
1

4πε0

∮
∂V

−en0ξn(r′)
|r − r′| d2r′

]
(10)

is the contribution of the Coulomb term to the electric field
generated by the electron gas. The Hamilton’s equations for
the radiation fields are (in V∞ where j = 0 in V0):

Ȧ = δH
δ�(r)

= 1

ε0
�, (11a)

�̇ = − δH
δA(r)

= − 1

μ0
∇ × ∇ × A + (j + ε0ĖCoul ). (11b)

The second term on the left-hand side of Eq. (11b) (be-
tween round brackets) is the solenoidal component of the
current density field in V∞.

III. HELMHOLTZ DECOMPOSITION OF THE MATTER
FIELD

We introduce the scalar product,

〈F, D〉W =
∫

W
F∗(r) · D(r)d3r, (12)

and the norm ‖F‖W = √〈F, F〉W . If the integration domain is
not explicitly indicated, the scalar product is defined over the
volume V .

Any sufficiently smooth solenoidal vector field C defined
in the region V can be resolved into the sum of two terms:
(i) a solenoidal and irrotational vector field C‖ with normal
component on the boundary ∂V different from zero; (ii) a
solenoidal and rotational (nonzero curl) vector field C⊥ with
normal component on the boundary ∂V equal to zero. This is
a particular case of the Helmholtz decomposition for vector
fields defined on a bounded region. The vector fields C‖ and
C⊥ are orthogonal according to the scalar product 〈C⊥, C‖〉.

The canonically conjugate vector fields P(r) and ξ(r) are
defined in V where they are solenoidal, but their normal com-
ponent to ∂V is different from zero; instead �(r) and A(r) are
solenoidal everywhere, and their normal component to ∂V is
continuous. We now express the Hamiltonian in terms of the
longitudinal and transverse components of P(r) and ξ(r). It
is the sum of five terms: the plasmon term Hp, the radiation
field term Hem, the plasmon-photon interaction term Hi, and
the kinetic energy of the electron gas vibrating in the radiation
field (H′

ii + H′′
ii),

Hp =
∫

V

1

2ρ0
P‖2

d3r

+
∮

∂V

∮
∂V

ρ0ω
2
p

2

ξ ‖
n (r)ξ ‖

n (r′)
4π |r − r′| d3rd3r′, (13a)

Hem =
∫

V∞

[ 1

2ε0
�2 + 1

2μ0
(∇ × A)2

]
d3r, (13b)

Hi = e

m∗
e

∫
V

P‖ · Ad3r, (13c)

and

H′
ii =

∫
V

1

2ρ0

(
P⊥2 + 2en0P⊥ · A

)
d3r, (14a)

H′′
ii =

∫
V

e2n0

2m∗
e

A2d3r. (14b)

The contribution of the diamagnetic term H′′
ii may be disre-

garded in a moderate coupling regime between the plasmons
and photons as for systems of bound particles in the low-
intensity radiation regime (e.g., [40]). In Sec. VI we validate
this approximation. Furthermore, as we shall see later, H′

ii
does not influence the natural motion of the plasmon modes.

We note that the Hamiltonian does not depend on the
transverse component of ξ(r).

IV. CANONICAL QUANTIZATION

The physical quantities of the system are quantized in a
standard fashion (e.g., [36,40]) by enforcing the canonical
commutation relations between the fields and their conjugates.
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To the canonically conjugate matter vector fields P(r) and
ξ(r) correspond, respectively, the Hermitian operators P̂(r)
and ξ̂(r), and to the canonically conjugate radiation vector
fields � and A correspond, respectively, the Hermitian op-
erators 
̂ and Â. We impose the equal time commutation
relations:

[P̂(r), ξ̂(r′)] = −ih̄ I
↔

δ(r − r′) r, r′ ∈ V, (15a)

[
̂(r), Â(r′)] = −ih̄ I
↔

δ⊥(r − r′) r, r′ ∈ V∞, (15b)

while all other commutators of the canonical variables vanish;
I
↔

is the three-dimensional unit tensor and δ⊥ is the transverse
δ function (e.g., [40]).

A. Normal mode expansion

We indicate with {U‖
m} an orthogonal basis of the functional

space U‖(V ) of the longitudinal vector fields defined in V , and
with {U⊥

m} an orthogonal basis of the functional space U⊥(V )
of the transverse vector fields defined in V , with m running
through discrete values (both these functional spaces have a
discrete basis).

For diagonalizing the plasmon Hamiltonian term Hp, we
choose as basis for U‖(V ) the set of the quasielectrostatic
plasmon modes of the nanoparticle, which is discrete [23,39].
The quasielectrostatic plasmon mode U‖

m is given by

U‖
m(r) = −∇

∮
∂V

wm(r′)
4π |r − r′|d2r′ inV, (16)

where wm is the solution of the eigenvalue problem,

Es{wm}(r) = 1

γm
wm(r) with r ∈ ∂V, (17)

and

Es{w}(r) =
∮

∂V

(r − r′)
2π |r − r′|3 · n̂(r)w(r′)d2r′ ∀r ∈ ∂V ; (18)

n̂ is the normal to ∂V pointing outward. The function wm(r)
represents the surface charge distribution of the quasielec-
trostatic plasmon mode. The spectrum of the operator Es is
discrete. The eigenvalues {γm} are real with |γm| > 1. The
eigenfunctions and the eigenvalues only depend on the shape
of V ; they do not depend on its size. For a detailed description
of the properties of the operator Es see Appendix.

As we shall see in the next section, we do not need to
chose explicitly a basis for U⊥(V ) because the transverse
component of the electron gas motion does not influence the
natural motion of the plasmon modes.

The field operators P̂(r) and ξ̂(r) are represented by means
of the following expansions:

P̂(r) =
∑

n

p̂‖
n

1

V‖
n

U‖
n(r) +

∑
n

p̂⊥
n

1

V⊥
n

U⊥
n (r), (19a)

ξ̂(r) =
∑

n

q̂‖
nU‖

n(r) +
∑

n

q̂⊥
n U⊥

n (r), (19b)

where { p̂‖
m, q̂‖

m} and { p̂⊥
m, q̂⊥

m} are two sets of canonically con-
jugate Hermitian operators, and V‖

m = ‖U‖
m‖2

, V⊥
m = ‖U⊥

m‖2
.

The vector fields U‖
m and U⊥

m are dimensionless quantities,
therefore V‖

m and V⊥
m have the dimension of a volume, q̂‖

m

and q̂⊥
m have the dimension of a length, p̂‖

m and p̂⊥
m have the

dimension of a linear momentum.
The functional space F (V∞) of the canonically conjugate

vector fields �(r) and A(r) has a continuum basis. We indi-
cate with {fq} an orthogonal basis of F (V∞) with q running
through a set of continuum values. In this paper we use the
transverse plane waves as a basis for F (V∞), namely,

fq(r) = 1

(2π )3/2 εs,keik·r, (20)

where k ∈ R3 is the propagation vector, εs,k is the polarization
unit vector with εs,k = εs,−k, and s = 1, 2 (e.g., [40]). The
index q is a multi-index corresponding to the pair of param-
eters k and s, q = (s, k). The two polarization vectors are
orthogonal between each other, ε1,k · ε2,k = 0, and are both
transverse to the propagation vector, ε1,k · k = ε2,k · k = 0.
The set of functions {fq} are orthonormal:

〈fq′ , fq〉 = δs′,sδ(k − k′). (21)

In the following, we denote δs′,sδ(k − k′) with δq,q′ and∑2
s=1

∫
R3 (·)d3k with

∑
q (·).

The field operators 
̂(r) and Â(r) are represented through
the following expansions:

Â(r) =
∑

q

Âqfq(r), (22a)

�̂(r) =
∑

q


̂qf∗
q (r), (22b)

where Âq, 
̂q are canonically conjugate operators. The op-
erators Â and �̂ are Hermitian, therefore Â†

q = Â−q and

̂†

q = 
̂−q.
The operators p̂‖

m, q̂‖
m, p̂⊥

m, q̂⊥
m , Âq, 
̂q verify the equal time

commutation relations,

[ p̂‖
m, q̂‖

m′ ] = −ih̄δm,m′ , (23a)

[ p̂⊥
m, q̂⊥

m′ ] = −ih̄δm,m′ , (23b)

[
̂q, Â†
q′ ] = −ih̄δq,q′ , (23c)

while all other commutators of these variables vanish.

B. Quantized Hamiltonian

The quantized Hamiltonian is composed of four terms,
associated to the plasmons Ĥp, to the radiation field Ĥem, to
the plasmon-photon interaction Ĥi, and to the electron kinetic
energy in the radiation field Ĥ′

ii (we have disregarded the
diamagnetic term Ĥ′′

ii),

Ĥ = Ĥp + Ĥem + Ĥi + Ĥ′
ii. (24)

The plasmon term Ĥp is given by

Ĥp =
∑

n

(
1

2M‖
n

p̂‖
n

2 + M‖
n�

2
n

2
q̂‖

n
2

)
, (25)
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where M‖
m = ρ0V‖

m,

�m = ωp

√
1

2

(
1 − 1

γm

)
, (26)

‖U‖
m‖2 = 1

4

(
1 − 1

γ 2
m

)
. (27)

U‖
m is given by Eq. (16) and γm is the corresponding eigen-

value. The frequencies {�m} are the natural frequencies of the
quasielectrostatic surface plasmon modes of the nanoparticle.
The first term in the expression of Ĥp takes into account
the contribution to the kinetic energy due to the irrotational
component of the electron gas motion; the second term takes
into account the contribution of the Coulomb potential energy.

The expression of the radiation field term Ĥem is

Ĥem =
∑

q

(
1

2ε0

̂†

q
̂q + ε0ω
2
q

2
Â†

qÂq

)
, (28)

where ω2
q = c2

0k2, and c0 is the light velocity in vacuum. The
expression of the plasmon-photon coupling term is

Ĥi = e

m∗
e

∑
n,q

1

V‖
n

〈U‖
n, fq〉 p̂‖

nÂq. (29)

The expression of the term H′
ii is

Ĥ′
ii =

∑
n

1

M⊥
n

p̂⊥
n

2 + e

m∗
e

∑
n,q

1

V⊥
n

〈U⊥
n , fq〉 p̂⊥

n Âq, (30)

where M⊥
m = ρ0V⊥

m .
We now express the operators Âq, 
̂q and the operators

p̂‖
m, q̂‖

m by means of the standard boson operators âq, â†
q and

b̂m, b̂†
m, respectively. The operators âq and b̂m are defined as

âq = 1

2

(√
2ε0ωq

h̄
Âq + i

√
2

ε0 h̄ωq

̂q

)
, (31a)

b̂m = 1

2

⎛
⎝

√
2M‖

m�m

h̄
q̂‖

m + i

√
2

M‖
mh̄�m

p̂‖
m

⎞
⎠. (31b)

They verify the equal time commutation relations,

[âq, â†
q′ ] = δq,q′ , (32a)

[b̂m, b̂†
m′ ] = δn,n′ , (32b)

while all other commutators of the bosonic operators van-
ish. Note that â†

q �= â−q. The operators b̂m are dimensionless,
while the operators âm have the dimensions of length−3/2.
Then, the different terms of the Hamiltonian are expressed as

Ĥp =
∑

n

h̄�n

(
b̂†

nb̂n + 1

2

)
, (33a)

Ĥem =
∑

q

h̄ωq

(
â†

qâq + 1

2

)
, (33b)

Ĥi =
∑
n,q

V n
q (b̂n − b̂†

n)(âq + â†
−q), (33c)

Ĥ′
ii =

∑
n

1

2M⊥
n

p̂⊥
n

2

+ e

m∗
e

∑
n,q

1

V⊥
n

〈U⊥
n , fq〉 p̂⊥

n (âq + â†
−q), (33d)

where

V n
q = i

h̄ωp

2

√
�n

ωq

1

‖U‖
n‖

〈U‖
n, fq〉. (34)

We note that 〈U‖
m, fq〉 is the coefficient of the expansion of the

transverse component of the vector field U‖
m in terms of trans-

verse plane waves 20. In Appendix we show that to evaluate
〈U‖

m, fq〉 it is sufficient to compute a surface integral over the
nanoparticle surface involving only the charge distribution of
the quasielectrostatic plasmon mode U‖

m.

C. Heisenberg equations

We now use the Heisenberg picture, assuming the entire
system to be initially in its ground state. Since the Hamiltonian
does not depend explicitly on q̂⊥

m , we have p̂⊥
m(t ) = p̂⊥

m(t =
0) = p̂⊥

m
(0), where p̂⊥

m
(0) is the observable in the Schrödinger

picture. Therefore, the expectation value at any time of p̂⊥
m is

0. The time derivative of the observable q̂⊥
m is different from

zero: It only depends on the time evolution of the vector po-
tential observable. Indeed, in the classical model P⊥ vanishes
when the electron gas is initially at rest according to Eq. (9b).
The component ξ⊥ of the displacement field is evaluated once
the vector potential A is known by using Eq. (9a). In the
classical model (ξ⊥, P⊥) are not true state variables of the
system: They do not influence the evolution of the longitudinal
components (ξ‖, P‖).

The Heisenberg equations for b̂m(t ) and âq(t ) [m =
1, 2, ..., and q = (s, k) where s = ε1,k, ε2,k and k ∈ R3] are

˙̂bm = 1

ih̄
[b̂m(t ), Ĥ(t )], (35a)

˙̂aq = 1

ih̄
[âq(t ), Ĥ(t )], (35b)

where

[b̂m, Ĥ] = h̄�mb̂m +
∑

q

(
V m

q âq − V m
q

∗â†
q

)
, (36a)

[âq, Ĥ] = h̄ωqâq +
∑

n

V n
q

∗(b̂n − b̂†
n) + ĉq, (36b)

and the constant operator ĉq is given by

ĉq = e

m∗
e

∑
n

1

V⊥
n

〈fq, U⊥
n 〉 p̂⊥

n
(0). (37)

Therefore, the equations of motion for ˙̂bm and ˙̂am are

˙̂bm + i�mb̂m + i

h̄

∑
q

(
V m

q âq − V m
q

∗â†
q

) = 0, (38a)

˙̂aq + iωmâq + i

h̄

∑
n

V n
q

∗(b̂n − b̂†
n

) = − i

h̄
ĉq. (38b)
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V. NATURAL FREQUENCIES OF THE DRESSED
PLASMON MODES

We now consider the evolution of the expectation values of
the operators {b̂m} and {âq} in the Heisenberg picture, βm(t ) =
〈b̂m(t )〉 and αq(t ) = 〈âq(t )〉. The average of ĉq over the ground
state is 0 at any time. From Eqs. (38a) and (38b) we obtain

β̇m + i�mβm + i

h̄

∑
q

(
V m

q αq − V m
q

∗
α∗

q

) = 0, (39a)

α̇q + iωqαq + i

h̄

∑
n

V n
q

∗(βn − β∗
n ) = 0. (39b)

Equation (39b) gives

αq(t ) = − i

h̄

∑
n

V n
q

∗
∫ ∞

0
hq(t − τ )[βn(τ ) − β∗

n (τ )]dτ,

(40)
where

hq(t ) = θ (t )e−iωqt , (41)

and θ (t ) is the Heaviside function. By substituting (40) into
(39a), we obtain the following system of integro-differential
equations:

β̇m + i�mβm + 1

h̄2

∑
n,q

∫ ∞

0

[
V m

q V n
q

∗hq(t − τ )

−V m
q

∗V n
q h∗

q(t − τ )
]
[βn(τ ) − β∗

n (τ )]dτ = 0,

m = 1, 2, ....

(42)

To determine the free evolution we solve this system with
the initial conditions: β1(0+) = 1, βm(0+) = 0 for m �= 1;
β2(0+) = 1, βm(0+) = 0 for m �= 2; and so on. These prob-
lems are solved by applying the Laplace transform, F (s) =∫ ∞

0 f (t )e−st dt . Denoting the Laplace transform of βm(t ) by
B′(s) and of β∗

m(t ) by B′′(s), Eq. (42) becomes in the Laplace
domain,

(s + i�m)B′
m + �m

∑
n

Rmn(B′
n − B′′

n ) = δmk, (43)

where

Rmn(s) = 1

h̄2�m

∑
q

(
V m

q V n
q

∗

s + iωq
− V m

q
∗V n

q

s − iωq

)
, (44)

and m, k = 1, 2, . . .. The Laplace transform converges for
Re(s) > 0.

In the system (43) the term �m
∑

n Rmn(B′
n − B′′

n ) ac-
counts for the plasmon-photon coupling. The self-coupling
term �mRmm(B′

m − B′′
m) is only responsible for the coupling

between the mth quasielectrostatic plasmon mode and the
photons, while the remaining terms determine an additional
coupling among different quasielectrostatic plasmon modes
mediated by the radiation. Nevertheless, we found that the
mutual coupling coefficients Rmn are negligible with respect
to the self-coupling coefficients Rmm in a wide range of
nanoparticle sizes because |Rmn| � |Rmm| for n �= m and any
m. This is due to the orthogonality of the quasielectro-
static plasmon modes. In Fig. 1, for example, we represent

(a) x = kplc = 0.1

(b) x = kplc = π

(c) x = kplc = 2π

1 4 9

1

4

9

1 4 9

1

4

9

1 4 9

1

4

9

10−4 10−3 10−2 10−1 100

FIG. 1. Magnitude of the matrix elements Rmn, computed in
s = −i�k + 0+, for a sphere with different values of kplc where
lc is the radius. In each panel, each occurrence has been nor-
malized to max

m
|Rmm|. The coupling among the electric dipoles

(m, n = 1, 2, . . . 3), quadrupoles (m, n = 4 . . . 8), and octupoles
(m, n = 9 . . . 15) have been considered.
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|Rmn|/ max
m

|Rmm| for the first 15 modes of a sphere, in-

cluding three degenerate dipole modes (m, n = 1, 2, 3), five
degenerate quadrupole modes (m, n = 4, . . . , 8), and seven
degenerate octupole modes (m, n = 9, . . . , 15), evaluated at
s = −i�k + 0+ according to the pole approximation tech-
nique (e.g., [41]) that we apply later. We consider three values
of the size parameter x = kplc, where kp = ωp/c0 and lc here
is the sphere radius. In all the investigated cases, the ampli-
tudes of the mutual coupling coefficients are smaller than the
amplitudes of the self-coupling coefficients (of at least two
orders of magnitude). We have found similar results for all the
shapes and arrangements we have investigated (for example,
in the bow-tie antenna the off-diagonal terms Rmn are at least
three orders of magnitude smaller than the terms Rmm on the
diagonal). Therefore, the self-coupling coefficients certainly
prevail over those of mutual coupling. This numerical evi-
dence prompted us to disregard the off-diagonal terms in the
system of equations (43). Thus, we obtain for m = 1, 2, ... the
following system of two equations:(B′

m
B′′

m

)
+ Mm

(B′
m

B′′
m

)
=

(1
1

)
, (45)

where

Mm(s) = �m

(i + Rmm −Rmm

Rmm −(i + Rmm)

)
. (46)

This is a central result of our analysis. The plasmon-photon
coupling gives rise to dressed plasmon modes, but the radia-
tion does not induce a relevant coupling among the different
quasielectrostatic plasmon modes for particles of sizes up
to the plasma wavelength. The effects of the interaction of
the mth quasielectrostatic plasmon mode with the photons,
represented by the term �mRmm(s)(B′

m − B′′
m), cause mainly

both a frequency shift with respect to the quasielectrostatic
frequency, and an exponentially decay in time of the plasmon
amplitude.

We solve Eq. (45) by using the pole approximation tech-
nique (e.g., [41]), under which Rmm(s) is approximated by its
value at s = (−i�m + 0+), which we denote with ρm,

ρm = − i

h̄2�m

∑
q

∣∣V m
q

∣∣2
(

1

�m + ωq
+ 1

ωq − �m − i0+

)
.

(47)
Since (e.g., [42])

lim
ε→0

1

x − iε
= P 1

x
+ iπδ, (48)

we have

ρm = 1

h̄2�m

∑
q

∣∣V m
q

∣∣2
[
πδ(ωq − �m)

−P i

ωq − �m
− i

�m + ωq

]
, (49)

where P denotes the Cauchy principal value. Therefore, the
complex natural frequency of the mth plasmon mode, indi-
cated with λm, is the eigenvalue with the negative real part
of the matrix,

Mm(−i�m + 0+) = �m

(i + ρm −ρm

ρm −(i + ρm)

)
. (50)

It is given by

λm = −i�m

√
1 − 2iρm. (51)

The eigenvalue with the positive real part is instead a spurious
solution introduced by the pole approximation, which has to
be disregarded in the study of the positive time dynamics.
Then, the radiative decay rate �m and the frequency shift ��m

of the mth plasmonic mode, with respect to the quasielectro-
static resonance frequency �m, are given by

�m = 2Re{λm}, (52a)

��m = −Im{λm} − �m. (52b)

Equation (51) represents the main finding of the present
manuscript. Combined with Eqs. (52a) and (52b) it provides a
closed-form full-wave expression for the decay rate and for
the frequency shift of plasmon modes, which only depend
on the surface charge distribution of the quasielectrostatic
plasmon mode.

We could have taken an alternative path for the derivation
of the natural frequencies of the dressed plasmon modes, by
introducing a further, more restrictive, approximation in the
Hamiltonian Ĥ. Specifically, by applying the rotating wave
approximation to the term Ĥi of the Hamiltonian in Eq. (33c),
and following the same steps of the previous section, includ-
ing neglecting the coupling among different plasmon modes,
we obtain the following natural frequency of the mth mode:

λRWA
m = −i�m

(
1 − iρRWA

m

)
, (53)

where

ρRWA
m = 1

h̄2�m

∑
q

∣∣V m
q

∣∣2
[
πδ(ωq − �m) − P i

ωq − �m

]
.

(54)
The radiative decay rate and the frequency shift in the RWA
are then obtained using Eqs. (52a) and (52b), provided that
we replace λm with λRWA

m . We point out that, even in the
limit |ρm| � 1, the natural frequency given by Eqs. (49) and
(51) differs from the natural frequency λRWA

m predicted by the
RWA through Eqs. (53) and (54), because they differ by the
imaginary quantity − i

�m+ωq
. Based on these considerations,

we expect that, in the limit of very small particles, the RWA
returns the correct decay rate, but not the correct frequency
shift.

In the next section we validate both Eqs. (51) and (53)
against the Mie theory for a metal nanosphere of radius com-
parable to the plasma wavelength.

VI. RADIATIVE DECAY RATE AND FREQUENCY SHIFT
OF METAL NANOPARTICLES

In this section, we investigate the radiative decay rate �k

and the frequency shift ��k of the kth plasmonic mode with
respect to the quasielectrostatic resonance frequency of the
metal nanoparticle as a function of the size parameter x =
kplc, where kp = ωp/c0 and lc is a characteristic size of the
nanoparticle. We analyze nanoparticles with different shapes
and spatial arrangements.

First, aiming at a validation of our approach, we study
a sphere where an analytic solution, namely the Mie theory
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FIG. 2. (a) Frequency shift ��k (with respect to the quasielec-
trostatic resonance frequency �k), normalized to �k ; and (b) decay
rate �k , normalized to �k , for the dipole (blue lines with squares),
quadrupole (red lines with circles), octupole modes (yellow lines
with triangles) of a sphere as a function of the size parameter
x = kplc, where lc is the radius R. Three different approaches have
been used: the pole approximation (continuous line), the rotating
wave approximation RWA (dotted line), and the poles of the Mie
coefficients (dashed line). The corresponding surface charge density
distributions of the modes are shown above, labeled with the same
symbol of the corresponding curves.

[43], exists. We consider the first 15 modes (including three
degenerate dipole modes, five degenerate quadrupole modes,
and seven degenerate octupole plasmonic modes). In Fig. 2
we show the frequency shift ��k/�k [Fig. 2(a)] and the
radiative decay rate �k/�k [Fig. 2(b)] of the dipole (blue
lines with squares), quadrupole (red lines with circles), and
octupole (yellow lines with triangles) plasmonic modes of
a sphere as a function of x. Three different approaches are
compared: the Mie theory (dot-dash), the pole approximation
(continuous line) computed from Eq. (51), and the rotating
wave approximation (RWA) (dots) computed from Eq. (53).
Regarding the Mie validation we follow Ref. [26]. Con-
sistently with the Lagrangian expression (3), we calculate
the poles of the Mie coefficients using a Drude permittivity
with plasma frequency ωp and vanishing collision frequency,
namely,

εR = 1 − ω2
p

ω2
. (55)

The quasielectrostatic surface charge density distributions
associated with the dipole, quadrupole, and octupole modes
are shown above, enclosed in a box whose color matches the
color of the corresponding curves.

The results obtained by using the pole approximation are
in overall good agreement with the results obtained by the
Mie theory in the whole range [0, 2π ]. We recall that (i) we
neglected the diamagnetic term (13c) in the Hamiltonian and
(ii) we applied the pole approximation technique to solve
Eq. (45). The good agreement we found shows that these
approximations are well founded in the range [0, 2π ]. This is
a core aspect for what concerns the modeling of devices and
experiments, since this range includes all the metal nanopar-
ticle sizes that are of practical use in nanophotonics. For
instance, contextualizing our results to existing materials: For
a gold sphere with ωp ≈ 6.79 T rad/s [44], the upper limit
of the investigated range x = 2π corresponds to R = 270 nm
(diameter of 540 nm). It is very uncommon to encounter larger
particles in the applications.

On the contrary, the rotating wave approximation, even if
it is able to qualitatively capture the shape of the curve of
frequency shift and decay rate, gives numerical predictions
that appreciably deviate from the poles of the Mie coefficients.
Specifically, in the limit of very small particle x → 0, while
the pole approximation and the Mie theory perfectly agree,
the rotating wave approximation only captures the slope of
the decay rate, but not the slope of the frequency shift. The
reason for this discrepancy has already been pointed out at the
end of the previous section.

Having validated our model, we now use it to investigate
the behavior of the decay rate and of the frequency shift of
nanoparticles with different shapes and spatial arrangements.
For the sphere, as the size parameter increases, starting from
x = 0, all the modes first undergo a relative red shift with
respect to their quasielectrostatic resonance frequency and
then a blue shift, as shown in Fig. 2(a). Lower multipolar
modes reach the maximum relative red shift for smaller size
parameters than higher multipoles. Similarly, decay rates of
dipole, quadrupole, and octupole modes, increase for small
size parameters, reach a point of maximum, and then decrease,
as shown in Fig. 2(b). This behavior has been already pointed
out in Ref. [26].

By using now only the pole approximation of Eq. (51), we
analyze the frequency shift and the decay rate of the plasmon
modes of cylinders and triangular prisms. In Fig. 3 we show
the frequency shift and the decay rate of the first four non-
degenerate modes of a finite-size cylinder with lc = R = H ,
whose rounded edges have a radius of curvature 0.1lc (R is
the radius of the cylinder and H is the height) as the size
parameter varies. In particular, the horizontal dipole mode
(blue curve with squares) of the cylinder behaves similarly
to the dipole mode of the sphere, while the vertical dipole
(purple curve with triangles) features a larger decay rate and
a larger frequency shift. The second and the third mode are
quadrupoles and behave similarly to the corresponding mode
of a sphere.

Next, we investigate the triangular prism of edge 2lc, height
0.5lc shown in Fig. 4, whose rounded edges have a radius of
curvature 0.1lc. The first mode is a horizontal dipole (blue
curve with squares) and features a higher radiative decay rate
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FIG. 3. (a) Frequency shift ��k (with respect to the quasielec-
trostatic resonance frequency �k), normalized to �k ; and (b) decay
rate �k normalized to �k , of the first four modes of a finite-size
cylinder of radius R = lc and height H = R. The surface charge
density distributions of the modes are shown above, labeled with the
same symbol of the corresponding curve.

if compared to the dipole of a sphere. Among the remaining
modes we also recognize a quadrupole (third mode) and a
vertical dipole (fourth mode).

We now employ the nanoparticles we investigated so far as
building blocks of dimers. Specifically, we investigate the fre-
quency shift and the decay rate of the first four nondegenerate
plasmon modes, for a dimer of spheres in Fig. 5, for a dimer of
cylinders in Fig. 6, and for a bow-tie antenna in Fig. 7. These
modes originate from the hybridization of the correspond-
ing dipole modes of the isolated building blocks. Different
edge-edge gaps have been considered, namely δ = 2lc, δ = lc,
δ = lc/2. In each panel we monitor a specific dimer mode as
the edge-edge gaps are decreased, showing how the surface
charge density distribution, the frequency shift, and the decay
rate are affected by the change in the gap size. Despite the
difference among the different shapes of the building blocks,
we found similar trends of the corresponding modes. In par-
ticular, in Figs. 5, 6, and 7 the first and the fourth modes are
the bonding and antibonding longitudinal (with respect to the
dimer’s axis) dipole modes, respectively. Similarly the second
and third modes are the antibonding and bonding transverse
dipole modes.

Overall both �k and �k , respectively, resemble the shift
and decay rate exhibited by the dipole mode of the cor-
responding isolated building blocks. Nevertheless, several

−0.6

−0.3

0

(a)

0

0.4

0.8

1.2

0 π/2 π 3/2π 2π

(b)

(a)

Δ
Ω

k
/Ω

k
Γ

k
/Ω

k

x = kplc

FIG. 4. (a) Frequency shift ��k(with respect to the quasistatic
resonance frequency �k), normalized to �k ; and decay rate �k (b),
normalized to �k of the first four modes of a triangular prism of
basis edge 2lc and height lc/2, as a function of the size parameter
x = kplc. The surface charge density distributions of the modes are
shown above, labeled with the same symbol of the corresponding
curve.

shoulders arise from the radiative coupling between the
charges of the two constituent nanoparticles.

VII. CONCLUSIONS

We introduced a time-domain model of the natural motion
of the dressed plasmon modes in metal nanoparticles, which
arise from the interaction between plasmons and photons. The
plasmon-photon coupling is described in the framework of
the Hopfield model for the plasmon oscillations, where the
plasmon oscillations are represented by a harmonic matter
field linearly coupled to the electromagnetic radiation. The
main effects of plasmon-photon coupling are a frequency shift
with respect to the quasielectrostatic frequency, and an expo-
nentially decay in time of the plasmon mode amplitude, while
we found the coupling among different quasielectrostatic plas-
mon modes to be negligible for nanoparticles of sizes up to the
plasma wavelength. We also found the diamagnetic term in the
Hamiltonian to be negligible.

By solving the equations governing the expectation values
of the plasmon creation and annihilation operators, we have
derived closed-form full-wave expressions for the frequency
shift and for the decay rate of the plasmon natural modes.

We found the frequency shift and the decay rate of the
dressed plasmons by using the pole approximation, obtaining
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FIG. 5. (a), (c), (e), and (g) Frequency shift ��k (with respect to the quasistatic resonance frequency �k), normalized to �k ; and (b), (d),
(f), and (h) decay rate �k , normalized to �k , of the first four modes of a sphere dimer [first mode (a) and (b), second mode (c) and (d), third
mode (e) and (f), fourth mode (g) and (h)] as a function of the size parameter x = kplc, where lc = R. For each mode, different edge-edge gap
sizes have been considered, namely δ = 2R (blue line with squares), δ = R (red line with circles), and δ = R/2 (yellow line with triangles).
The charge density distributions of the plasmon modes are shown above the corresponding panels.

good quantitative agreement with the Mie theory for spheres
of radius up to the plasma wavelength. Instead, we found that
the rotating wave approximation fails to describe their natural
evolution even for very small particles.

Then, we studied the decay rate and the frequency shift
of the plasmon modes in isolated nanoparticles and dimers
of different shapes, as their size increases up to the plasma
wavelength. In all the investigated cases, as the size increases,
the resonance frequency of the natural plasmon modes first
undergoes a relative red shift with respect to its correspond-

ing quasielectrostatic position, which is then followed by a
blue shift. Similarly, the decay rate increases for small sizes,
reaches a maximum and then decreases.

The developed approach leads, as expected from the cor-
respondence principle, to the same outcome obtained of
the classical Hamiltonian equations. Nevertheless, it consti-
tutes a first step toward a full-wave time-domain quantum
framework based on a modal analysis for describing the inter-
action between a quantum emitter, an arbitrary shaped metal
nanoparticle, and the electromagnetic radiation.
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FIG. 6. (a), (c), (e), and (g) Frequency shift ��k (with respect to the quasistatic resonance frequency �k), normalized to �k ; and (b), (d),
(f), and (h) decay rate �k , normalized to �k , of the first four modes of a cylinder dimer [first mode (a) and (b), second mode (c) and (d), third
mode (e) and (f), fourth mode (g) and (h)] as a function of the size parameter x = kplc, with lc = R. Different edge-edge gap sizes δ have been
considered, namely δ = 2R (blue line with squares), δ = R (red line with circles), δ = R/2 (yellow line with triangles). The charge density
distributions of the plasmon modes are shown above the corresponding panels.
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FIG. 7. (a), (c), (e), and (g) Frequency shift ��k (with respect to the quasistatic resonance frequency �k), normalized to �k ; and (b), (d),
(f), and (h) decay rate �k , normalized to �k , of the first four modes of a bow-tie antenna [first mode (a) and (b), second mode (c) and (d),
third mode (e) and (f), fourth mode (g) and (h)] as a function of the size parameter x = kplc, where lc = L/2. Different edge-edge gap sizes
δ have been considered, namely δ = 2lc = L (blue line with squares), δ = lc = L/2 (red line with circles), δ = lc/2 = L/4 (yellow line with
triangles). The surface charge density distributions of the plasmon modes are shown above the corresponding panels.

APPENDIX: LONGITUDINAL NORMAL MODES

In this Appendix we introduce the orthogonal basis to
represent the functional space U‖(V ) of the solenoidal and
irrotational vector fields defined on the bounded region V
that diagonalize the plasmon term Hp of the Hamiltonian of
the system. Eventually, we provide two simple formulas to
compute the coefficients ‖U‖

m‖2
and 〈U‖

m, fq〉V .

1. Single and double layer scalar potentials

We consider the single-layer scalar potential,

ϕ(r) = 1

4π

∮
∂V

w(r′)
|r − r′|d2r′ r ∈ V∞, (A1)

that is generated in the whole space by a free-standing layer
of charge with surface density w(r) located on the boundary
∂V of V . We introduce the integral operator,

Es{w}(r) = 1

2π

∮
∂V

(r − r′)
|r − r′|3 · n̂(r)w(r′)d2r′ ∀r ∈ ∂V,

(A2)
where n̂ is the normal to ∂V pointing outward. Then, the
normal derivative to ∂V of ϕ(r) at ∂V is given by

−∂ϕ±

∂n
= ∓1

2
w + 1

2
Es{w}on ∂V, (A3)

where ϕ± are the restriction of ϕ(r) in V and V∞/V , respec-
tively.

We now also consider the scalar potential φ(r) generated
in the whole space by a free-standing double layer of charges
located on ∂V with surface density ν(r),

φ(r) = 1

4π

∮
∂V

(r′ − r)

|r′ − r|3 · n̂(r′)ν(r′)d2r′ with r ∈ V∞.

(A4)

We also introduce the integral operator E†
s dual to the integral

operator Es{w},

E†
s {ν}(r) = 1

2π

∮
∂V

(r′ − r)

|r′ − r|3 · n̂(r′)ν(r′)d2r′ r ∈ ∂V.

(A5)
Then, the scalar potential φ(r) is given by

φ± = ± 1
2ν + 1

2E
†
s {v}, (A6)

where φ± denote the restriction of φ(r) in V and V∞/V ,
respectively.

2. Auxiliary eigenvalue problems

We now introduce the eigenvalue problem:

Es{w}(r) = 1

γ
w(r) with r ∈ ∂V. (A7)

The operator Es is symmetric but not Hermitian, and its spec-
trum has the following properties ([41,42]).

(i) The set of eigenvalues {γm} and the set of eigenfunc-
tions {wm} are infinite countable.

(ii) The eigenvalues and the eigenfunctions are real, and
|γm| � 1.

(iii) The eigenvalue and the eigenfunctions depend on the
shape of V but not on its sizes.

(iv) The normal derivative of the scalar potential ϕm gen-
erated by the surface charge density wm is given by

∂ϕ±
m

∂n
=

(
±1 − 1

γm

)
wm

2
on V. (A8)

The operator E†
s is the adjoint of the operator Es. It has the

following properties.
(i) Its spectrum coincides with the spectrum of the integral

operator Es except for the eigenvalue γ = 1.
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(ii) The eigenfunction vn of E†
s associated with the eigen-

value γn and the eigenfunction wm of Es associated with the
eigenvalue γm for n �= m are orthogonal, namely assuming a
relative permittivity:∮

∂V
wm(r)vn(r)d2r = 0 for n �= m. (A9)

(iii) The scalar potential φm(r) generated by the double
layer surface density vm is given by

φ±
m =

(
±1 + 1

γm

)
vm

2
on ∂V. (A10)

(iv) Under proper normalization, the scalar potential ϕn(r)
generated by the surface charge density wm, and the scalar
potential φn(r) generated by the double layer surface density
vn are equal,

ϕn = φn inV∞. (A11)

3. Basis for linear functional space U‖(V ) and diagonalization
of the plasmon Hamiltonian

We now introduce the vector field U‖
m(r) generated in the

whole space by the surface charge with density wm(r),

U‖
m(r) = −∇ϕm inV∞. (A12)

The vector field U‖
m is irrotational everywhere in V∞; it

is solenoidal both in V and in V0 = V∞\V , the normal
components to ∂V are different from zero, and they are dis-
continuous.

If we indicate with U‖
m

(+) · n̂ the normal component of
U‖

m on the outer page of ∂V and with U‖
m

(−) · n̂ the normal
component of U‖

m on the inner page we have

U‖
m

(±)∣∣
∂V · n̂ = ± 1

2wm + 1
2Es{wm} on ∂V. (A13)

The vector fields {U‖
m} have the following properties

([38,39]):
(i) 〈U‖

m′ , U‖
m〉V = δm′,m‖U‖

m‖2
V ;

(ii) 〈U‖
m′ , U‖

m〉V0 = δm′,m‖U‖
m‖2

V0
;

(iii) (γm + 1)‖U‖
m‖2

V = (γm − 1)‖U‖
m‖2

V0
;

(iv) ‖U‖
m‖2

V∞ = 2γm

γm−1‖U‖
m‖2

V .

(v) The set of the vector fields {U‖
m} is complete in the

functional linear space of the irrotational and solenoidal
functions defined on V and V0 with discontinuous normal
components on ∂V .

We now use as the basis for the functional space U‖ intro-
duced in Sec. IV A the restriction to the domain V of the set
of vector fields {U‖

m}. This choice allows us to diagonalize the

plasmon Hamiltonian term Hp. By expanding ξ̂
‖

and P̂‖ as

ξ̂
‖ =

∑
m

q̂‖
mU‖

m(r), (A14)

P̂‖ =
∑

m

p̂‖
m

1

V‖
m

U‖
m(r), (A15)

by using (A7), (A13), and the relation,∮
∂V

∮
∂V

wm(r)wm′ (r′)
4π |r − r′| d2rd2r′ = ‖U‖

m‖2
V∞δm,m′ , (A16)

we obtain for the plasmon Hamiltonian term,

Ĥp =
∑

n

(
1

2M‖
n

p̂‖
n

2 + M‖
n�

2
n

2
q̂‖

n
2

)
, (A17)

where M‖
m = ρ0V‖

m, V‖
m = ‖U‖

m‖2
, and

�m = ωp

√
1

2

(
1 − 1

γm

)
. (A18)

4. Evaluation of ‖U‖
m‖2 and 〈U‖

m, fq〉V

We now evaluate the quantity ‖U‖
m‖2

by using the Gauss
theorem. We have

‖U‖
m‖2 =

∮
∂V

ϕ(+)
m

∂ϕ(+)
m

∂n
d2r. (A19)

We now evaluate the quantity 〈U‖
m, fq〉V by using again the

Gauss theorem. By using Eq. (A12) and ∇ · fq = 0 in V , we
have

〈U‖
m, fq〉V = −

∮
∂V

f (r) · n̂(r)ϕ+
n (r)d2r. (A20)
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