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Radiation-induced interaction potential of two qubits strongly coupled with a quantized
electromagnetic field
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We investigate the interaction of two two-level qubits with a single-mode quantum field in a cavity without
the rotating wave approximation and considering that qubits can be located at an arbitrary distance from each
other. We demonstrate that there exists a radiation-induced interaction potential between atoms. We studied
the properties of the system numerically and in addition constructed a simple analytical approximation. It is
shown that the observable characteristics are substantially dependent on the distance between the qubits in the
strong-coupling regime. This allows one to perform the quantum control of the qubits, which can be exploited
for the recording and transmission of quantum information.
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I. INTRODUCTION

The quantum Rabi model (QRM) describes the interaction
of a two-level atom with a resonant single-mode quantum
field in a cavity [1,2]. This model plays fundamental role in
the radiation-matter interaction in cavity quantum electrody-
namics [3–5], quantum optics [6], quantum information [7],
and the physics of condensed matter [8]. Recently, the model
attracted attention due to the fact that, in many systems, it is
possible [9,10] to control the interaction strength over a wide
range, including the so-called ultrastrong coupling (USC)
regime, which corresponds to the variation interval from 0.3
to 1.0 of a dimensionless coupling constant f between an
atom (qubit) and a field. The systems with the coupling con-
stant from the USC range were lately realized experimentally
[9,11]. As a result, these achievements are crucial for control
of an interaction of quantum emitters with individual photons
that is an important part of recording and transmission of
quantum information.

Another related direction is the generalization of the QRM
to systems containing multiple qubits, in particular the two
qubits interacting with a resonance quantum field—the Tavis-
Cummings model (TCM) [12,13]. This model is based on two
approximations: The first is the rotating wave approximation
(RWA) applicable for small values of the detuning between
frequencies of the field and the resonant atomic transition and
small values of the coupling constant f of the atom-field inter-
action. The second approximation assumes that the distance
ρ = |R1 − R2| between the qubits is small in comparison
with the wavelength λ of the resonance field, i.e., ρ � λ. In
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addition, in works [4,14] the TCM was investigated beyond
the RWA, however, still under the assumption ρ � λ.

At the same time, the systems containing two qubits lo-
cated at the distance ρ ≈ λ and interacting with a resonant
quantum field were recently realized experimentally. More-
over, it was possible to control the positions of qubits in a
broad range with the use of tightly focused optical tweezers
[15,16]. Similar experiments were recently performed for sys-
tems of Rydberg atoms located inside a cavity [15,17]. As a
result, in our work we theoretically investigate the spectrum
and dynamics of the system in the USC regime beyond the
RWA and as a function of the distance ρ between qubits. We
demonstrate that the dependence on ρ becomes important in
the USC regime where the RWA in not applicable.

In our work we employ a dipole approximation for an
individual qubit interacting with a quantum field. This approx-
imation is consistent with the assumption that ρ ≈ λ due to
the fact that, for optical frequencies of the resonance field, the
distance ρ between qubits is much larger than the character-
istic qubit size a0, therefore ρ � a0, allowing us to work in
the dipole approximation for each qubit. In addition, the large
qubit mass allows us to employ the adiabatic approximation
in an analogy with the Born-Oppenheimer approximation of
molecular physics. As a result, we treat the operator of kinetic
energy of qubits as a perturbation. We show that the energy
levels of the systems form potential surfaces as a function of
the distance ρ, which define the radiation-induced potential
of the interaction between qubits. The form of this potential
is defined by the coupling constant f . Moreover, the distance
between qubits can be considered as an additional parame-
ter to be used to control the system’s characteristics for the
recording and the transmission of quantum information.

In addition, the dependence of observable characteristics of
the system of two qubits on the distance between them adds
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an additional possibility to control the system. In particular,
this allows one to control the location of the peak in the
scattering cross section of the resonance radiation [18]; to vary
the degree of entanglement when the transmission of quantum
information is happening by two emitters (qubits) [19]; to
change the population of states of two two-level systems to
control the probability of a spontaneous emission [20]; and
to obtain a periodic structure in the system of N atoms—the
extended Dicke model [21].

II. CONSTRUCTION OF A MODEL HAMILTONIAN

The Hamiltonian of two identical two-level atoms (qubits)
with the mass M, located at positions R1 and R2 in the dipole
approximation for the interaction of atoms with the field,
written in natural units (h̄ = c = 1) reads [22,23]

Ĥ = − 1

2M
(�R1 + �R2 ) + ε

2

(
σ 1

3 + σ 2
3

)

+ ω f
[
(âeik·R1 + â†e−ik·R1 )σ 1

1 + (âeik·R2 + â†e−ik·R2 )σ 2
1

]
+ ωâ†â + Va(R1 − R2), (1)

f = e0ω�d

√
4π

ω3V
. (2)

Here V is the volume of the cavity, f is the dimensionless
coupling constant of an atom-field interaction, ε is the res-
onance transition energy between two qubit states χ↑, χ↓
with the dipole transition matrix element d; e0, m0 are the
electron charge and mass respectively; â†, â are the cre-
ation and annihilation operators of the resonant quantum field
with frequency ω and the wave vector k, Va(R1 − R2) is
the atom-atom interaction potential due to the exchange and
dipole-dipole interactions, � is the Laplace operator and σ1,
σ2 are Pauli matrices for qubits one and two, respectively.
The limit of M → ∞ corresponds to the situation of two
immovable qubits.

Let us switch to the center-of-mass reference system in
Eq. (1),

R = R1 + R2

2
, ρ = R1 − R2, (3)

in which the Hamiltonian (1) transforms into

Ĥ = − 1

4M
�R − 1

M
�ρ + ε

2

(
σ 1

3 + σ 2
3

)

+ ω f
[
(âeik·(R+ρ/2) + â†e−ik·(R+ρ/2))σ 1

1

+ (âeik·(R−ρ/2) + â†e−ik·(R−ρ/2))σ 2
1

]
+ ωâ†â + Va(ρ). (4)

The system possesses translational invariance with respect
to the center-of-mass coordinate R. Therefore, in analogy with
the polaron problem we perform the Lee-Low-Pines transfor-
mation [24]

Ĥ ′ = L̂−1Ĥ L̂, L̂ = ei(P−kâ†â)·R, (5)

where P is the total momentum of the system, which in this
case is an integral of motion. As a result, we find the following

expression for the Hamiltonian of the system

Ĥ ′ = 1

4M
(P − kâ†â)2 − 1

M
�ρ + ε

2

(
σ 1

3 + σ 2
3

)

+ ω f
[
(âeik·ρ/2 + â†e−ik·ρ/2)σ 1

1

+ (âe−ik·ρ/2 + â†eik·ρ/2)σ 2
1

] + ωâ†â + Va(ρ). (6)

The characteristic scale with respect to the coordinate of a
relative motion ρ is defined by the wavelength of the radiation
λ = 2π/k and, for the optical frequencies, substantially ex-
ceeds the size of the atom, a0, such that a0/λ ≈ 10−3. At these
distances the contribution from the exchange interaction into
the potential Va(ρ) is exponentially suppressed. The dipole-
dipole interaction potential (van der Waals) of an atom-atom
interaction is proportional [25] to κ (a0/ρ)6 ∼ κ (a0/λ)6, with
a0 being the characteristic atomic size and κ being the dimen-
sional constant. Consequently, in the dipole approximation
(a0/λ � 1) for the interaction of an individual atom with the
electromagnetic field, the potential Va(ρ) should be neglected
in the Hamiltonian Ĥ ′ (6) for consistency. In addition, we can
also neglect a recoil in the operator of kinetic energy since we
are working in the nonrelativistic limit. Consequently, one can
write 〈 1

2M
(Pkâ†â)

〉
≈ P

2M
ω � ω. (7)

As a result, we arrive to the final expression for the Hamil-
tonian, which describes the interaction of two two-level atoms
within the above-described approximations:

Ĥ ′ = P2

4M
− 1

M
�ρ + ε

2

(
σ 1

3 + σ 2
3

) + ωâ†â

+ ω f
[
(âeik·ρ/2 + â†e−ik·ρ/2)σ 1

1

+ (âe−ik·ρ/2 + â†eik·ρ/2)σ 2
1

]
. (8)

III. THE INTERACTION POTENTIAL OF TWO QUBITS

Let us investigate the Schrödinger equation with the
Hamiltonian (8). For this purpose we choose a coordinate
system in which the x axis is directed along the k and seek
a solution in the form �(ρ) = exp{−i(pyy + pzz)}�(x):

E�(x) =
{

P2

4M
+

(
p2

y + p2
z

)
M

− 1

M

d2

dx2
+ ε

2

(
σ 1

3 + σ 2
3

)

+ωâ†â + ω f
[
(âeiφ + â†e−iφ )σ 1

1

+ (âe−iφ + â†eiφ )σ 2
1

]}
�(x), (9)

where φ = πx/λ.
The case of x = 0 corresponds to the situation that atoms

are unified and form a system with different parameters.
Therefore, we assume that, in the operator (9), the coordi-
nate x is varying in the range |x| > x0, where the quantity
x0 ∼ a � λ. In the general case the vector ρ can be directed
under an arbitrary angle with respect to the vector k. However,
we consider that the conditions y ≈ z ≈ x0 are fulfilled for the
projections of ρ on the direction perpendicular to the k vector.

As explained in the introduction, the operator of kinetic
energy of a qubit is a small correction in comparison with
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FIG. 1. (left panel) The potential surface u0(φ) of the ground state as a function of the dimensionless coupling constant f and the coordinate
φ = πx/λ. The parameter δ = 1. When the system of two qubits is in the USC regime, the potential wells are the deepest. (right panel) The
transition frequency �ν1,ν2 (φ) from the ground state to the third excited state as a function of the dimensionless coupling constant f and the
coordinate φ. The parameter δ = 1.

the operator of the interaction of a qubit and a resonance
field. Therefore, we employ an adiabatic approximation and
separate variables in Eq. (9):

�(x) ≈ �(x)ψν, (10)

Uν (x)ψν =
{

ε

2

(
σ 1

3 + σ 2
3

) + ωâ†â + ω f [(âeiφ + â†e−iφ )σ 1
1

+ (âe−iφ + â†eiφ )σ 2
1

]}
ψν, (11)

E�(x) =
{

P2

4M
+

(
p2

y + p2
z

)
M

− 1

M

d2

dx2
+ Uν (x)

}
�(x). (12)

In these equations the index ν denotes a set of quantum
numbers of qubit-photon system and the terms Uν (x) de-
fine the radiation-induced interaction potential of two qubits
in full analogy with molecular physics. The solution of the
Schrödinger equation (12) determines the relative motion of
qubits induced by the potential Uν (x).

We want to mention here that when the φ equals zero the
operator in Eq. (11) coincides with the one obtained in works
[4,14]. In this case, Uν (0) corresponds to the spectrum found
in Refs. [4,14].

To calculate the potential function Uν (x), approximate
methods can be employed [16]. In our work we have devel-
oped the analytical approximation for energy levels and in
addition performed an exact numerical solution by diagonaliz-
ing the Hamiltonian matrix written in the basis of eigenstates
of σ3 and Fock states of the field. The details of the calcula-
tions are given in Appendix.

From the structure of Eq. (11) it follows that the Hamilto-
nian of the system is a periodic function with a period 2λ.

It is convenient to express the energies in the units of the
photon frequency

Uν (x) = ωuν (x), (13)

uν (x)ψν =
{

δ

2

(
σ 1

3 + σ 2
3

) + â†â + f [(âeiφ + â†e−iφ )σ 1
1

+ (âe−iφ + â†eiφ )σ 2
1

]}
ψν, (14)

where we introduced δ = ε/ω.

We plot in Fig. 1 (left panel) the potential surface as a
function of the coupling constant f for the ground state of the
system when δ = 1. The depth of the potential wells varies
by two orders of magnitude when the coupling constant is
changing in the range [0, 1]. When the system is in the USC
regime and approaching f = 1, the depth of the wells is four
times larger (i.e., 4δ) than the splitting δ between qubit energy
levels. As a result, we will mainly be investigating this most
interesting regime.

We pay attention to the fact that the period of oscillations of
the potential equals λ/2, which is different from the periodic-
ity 2λ of the Hamiltonian of the system. This symmetry arises
also in the analytical approximation derived in Appendix (see
also Fig. 5). The decrease of the period of the oscillations of
the interaction potential is explained by the fact that the eigen-
values of the Hamiltonian in Eq. (14) are degenerate—the
eigenvalues are invariant under the transformation R−1

j HRj of
the Hamiltonian, j = 1, 2, 3 with R1 = exp{iπ â†â/2}, R2 =
exp{−iπ â†â/2} and R3 = exp{iπ â†â}.

We also note here that the dependence of the energy of
the ground state on x is caused mainly by the counter-rotating
terms in the Hamiltonian (8). This follows from the fact that,
in the RWA, the exact ground state of the system is given by
ψRWA

0 = χ1
↓χ2

↓|0〉 and by acting with Ĥ ′ on ψRWA
0 one finds

that uRWA
ν (x) = −δ and is independent of x. Here χ1

↓, χ2
↓ are

the ground states of the first and second qubits, respectively,
and |0〉 is the vacuum state of the field.

IV. EXACT NUMERICAL SOLUTION

Let us present how we performed the exact numerical so-
lution for the analysis of the system’s dynamics. For this, we
consider that both atoms in the initial moment of time occupy
the down states χ1

↓ and χ2
↓ and the field is prepared in the

coherent state with the amplitude α = √
n̄ (n̄ is the average

number of photons):

|�(0)〉 = |α〉χ1
↓χ2

↓. (15)

The functions χ1
↓, χ2

↓ and χ1
↑, χ2

↑ are the eigenfunctions of
σ3. We also use the following convention and ordering for the
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extended spin space unit base vectors:

|χ1〉 ≡ χ1
↑χ2

↑ =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠, |χ2〉 ≡ χ1

↑χ2
↓ =

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠,

|χ3〉 ≡ χ1
↓χ2

↑ =

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠, |χ4〉 ≡ χ1

↓χ2
↓ =

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠. (16)

First one needs to obtain the exact numerical solution of the
eigenvalue problem. For this purpose we introduce the follow-
ing matrix elements of the Hamiltonian (14) in the Fock field
states and spin base vectors (16):

Hnk =
(

δ

2
(σ3 ⊗ I2 + I2 ⊗ σ3) + nI4

)
δnk

+ f [(
√

keiφδn,k−1 + √
k + 1e−iφδn,k+1)σ1 ⊗ I2

+ (
√

ke−iφδn,k−1 + √
k + 1eiφδn,k+1)I2 ⊗ σ1], (17)

where I4 is a unit 4 × 4 matrix, I2 is the unit 2 × 2 matrix.
By numerically solving the eigenvalue problem for

Eq. (17), we obtain the set of eigenvalues {Eκ} and cor-
responding eigenvectors {|ψκ〉} (in the form of a list of
expansion coefficients {Cκ

kq} for each eigenvector). As a re-
sult, one can construct the time-dependent wave vector as an
expansion over the stationary states:

|�(t )〉 =
∑
κ

Aκ|ψκ〉e−iEκ t , (18)

where

|ψκ〉 =
∞∑

k=0

4∑
q=1

Cκ

nq|k〉|χq〉 =
∞∑

k=0

⎛
⎜⎝

Cκ

k1
Cκ

k2
Cκ

k3
Cκ

k4

⎞
⎟⎠|k〉. (19)

The coefficients Aκ can be obtained from the initial condition:

Aκ = 〈ψκ|�(0)〉 =
∞∑

k=0

(
Cκ

k4

)∗ αk

√
k!

e−α2/2. (20)

The density matrix of the system is

ρ̂ = |�(t )〉〈�(t )|, (21)

and the density matrix of the atomic subsystem can be calcu-
lated by tracing out the field degrees of freedom in Eq. (21):

ρ̂TQ =
∞∑

n=0

〈n|�(t )〉〈�(t )|n〉. (22)

Finally, the probability of finding both atoms in the down state
can be obtained as follows:

P−1(t ) = 〈χ4|ρ̂TQ|χ4〉

=
∑

n

∣∣∣∣∣
∑
κ

Aκe−iEκ tCκ

n4

∣∣∣∣∣
2

. (23)

V. OBSERVABLE CHARACTERISTICS OF THE SYSTEM

One of the observable consequences of the dependence of
the energy of the system on the distance between qubits is
the variation of the transition frequencies with the variation
of x, i.e.,

�ν1ν2 (x) = ω(uν2 (x) − uν1 (x)). (24)

In Fig. 1 (right panel) we plot this example. The depen-
dence of the transition frequency on the distance between
qubits allows one to control the scattering cross section of
the resonance radiation on the system [18]. At the same
time the change of the population of quantum states of
QRM with x (see Fig. 2) extends the possibility to con-
trol the transition probability and the linewidths of atomic
transitions [20].

Another consequence of the dependence of the transition
frequency on the distance is that, for different x, the period of
the Rabi oscillations and the time evolution of the system is
modified, as is demonstrated in Fig. 2. In this figure, instead
of the time evolution of the ground state in the time domain
P−1(t ), we plot its Fourier transform P−1(ω), which is an even
function of the frequency when the field is prepared in the
coherent state with the average number of photons n̄ = 25.
As a result, we plotted only the region of positive frequencies
ω. This quantity demonstrates the changes in the dynamics of
the system with the change of the dimensionless coupling con-
stant f . As such, for small values of the coupling constant [see
Fig. 2 (left panel)] the spectrum possesses a strong maximum
located at the frequency ω ≈ 5

√
n̄ = 5 f , to which coincides a

period of oscillations with only a single Rabi frequency. The
contributions from other frequencies are highly suppressed.
When the coupling constant increases we start to observe
the increase of the amplitudes of other harmonics that are
located on different frequencies. This signifies that the system
transitions in the chaotic regime [26]. The spectrum is an even
function of the frequency. Consequently, the appearance of
the new maximum brings two new frequencies of an opposite
sign (doubling). The amplitudes of new peaks in the spectrum
increase in the region where the rotating wave approximation
is not applicable. This region is defined by the dimensionless
coupling constant f ∼ 1/

√
n̄ (see Ref. [27]). This behavior of

the spectrum can be interpreted as bifurcations. As a result, in
the strong-coupling regime [Fig. 2 (right panel)] the system
possesses a spectrum with a broad range of frequencies. How-
ever, we pay attention to the fact that the spectrum changes
with the distance between qubits.

In addition to the spectrum and dynamics of the system, we
also investigate the correlation properties such as the average
number of photons inside the cavity and the entanglement of
the qubit states. The dependence of these quantities on the
distance x between qubits allows one to perform their control.
For this purpose let us investigate these quantities for the
ground state of the system.

We represent the wave function of the system in the basis
of Fock states |n〉 and χ1

s1
, χ2

s2
the spin states of qubits,

ψ0 =
∑

n,s1,s2

C0
n,s1,s2

|n〉χ1
s1
χ2

s2
. (25)
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FIG. 2. (left panel) Fourier transform P−1( f , ω) of the evolution of the population inversion as a function of the dimensionless coupling
constant f plotted for two values of the distance between qubits, φ = 0 and φ = π/4. The parameter δ = 1 and the field is prepared in the
coherent state with n̄ = 25. When the coupling constant increases we observe the doubling of frequencies, which signals the transition to the
chaotic behavior [26]. (right panel) Fourier transform P−1( f , ω) of the evolution of the population inversion as a function of the dimensionless
coupling constant f plotted for two values of the distance between qubits, φ = 0 and φ = π/4. The parameter δ = 1 and the field is prepared
in the coherent state with n̄ = 25. When the system transitions into the USC regime we observe chaotic behavior, when all frequencies appear
in the spectrum.

The coefficients C0
n,s1,s2

are computed numerically by diago-
nalizing the Hamiltonian matrix in this basis. Consequently,
with the help of this expansion we can compute the average
number of photons inside the cavity as

〈n(x, f )〉 = 〈â†â〉 =
∑

n,s1,s2

n
∣∣C0

n,s1,s2

∣∣2
, (26)

which we plot in Fig. 3. This figure demonstrates that, in the
USC regime, even when the system is in the ground state,
the interaction between qubits and the quantum field leads
to the excitation of three photons. However, this number de-
pends significantly on the distance between qubits.
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FIG. 3. The surface of the expectation value of the photon num-
ber operator 〈n(x, f )〉 = 〈â†â〉 of the ground state and the sixth
excited state as a function of the dimensionless coupling constant
f and the coordinate φ. The parameter δ = 1. When the system of
two qubits is in the USC regime the expectation value is significantly
different from zero.

To compute the entanglement E we use the definition [28]

E (x, f ) = −
∑

s1

ps1 log2 ps1 , (27)

ps1 =
∑
n,s2

∣∣C0
n,s1,s2

∣∣2
, (28)

which is demonstrated in Fig. 4. As expected, for large values
of the coupling constant f , the states of both qubits are entan-
gled and the degree of entanglement depends on the distance
between qubits. The control of the entanglement of different
quantum states by the variation of the distance between qubits
can be used for the encoding of quantum information by two
two-level emitters [19]. In addition, an analytical approxima-
tion (A6) demonstrates that the spin part of the system is
entangled with the field part.
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FIG. 4. The surface of the entanglement E (φ, f ) of the ground
state and the fifth excited state as a function of the dimensionless
coupling constant f and the coordinate φ. The parameter δ = 1.
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VI. CONCLUSION

In our work we have investigated a system of two qubits
which interact with the quantum electromagnetic field inside
a cavity. The qubits are located at distances of the order of
the wavelength of the radiation, which is sufficiently larger
than the corresponding qubit size. This allowed us to de-
scribe the individual qubit within the dipole approximation.
In addition, we have employed the adiabatic approximation
and considered the operator of the kinetic energy of the
qubits as a perturbation. As a consequence, we have approxi-
mately separated the variables in the center-of-mass reference
system of qubits. In a full analogy with molecular physics
we have computed the radiation-induced potential (terms) of
the system of two qubits. As a result, the observable char-
acteristics of the system became functions of the distance
between qubits and the coupling constant f of the qubits-field
interaction.

We have identified the most interesting range of the cou-
pling constant (USC regime) when the interaction between
qubits and the field is the strongest. We have calculated
the observable characteristics numerically and constructed
an analytical approximation. Moreover, we have demon-
strated that, by varying the distance between qubits, the
observable characteristics are strongly changing. In addi-
tion, by changing the qubit positions one can perform a
quantum control of the system, which is useful for the
recording and transmission of quantum information. For ex-
ample, this can be important in the following applications:
scattering of the resonant radiation [18]; dynamics of an
entanglement of two-level emitters [19]; controlling the char-
acteristics of spontaneous emission in two-level systems [20];
appearance of the periodic structure in the interaction poten-
tial in a system of N atoms—the continuous Dicke model
[21], which should be investigated beyond the rotating wave
approximation.

APPENDIX: ANALYTICAL APPROXIMATION FOR
ENERGY LEVELS

In this Appendix we will derive an analytical approxi-
mation for eigenvalues and eigenvectors of the system of
two two-level atoms interacting with a single-mode quantum
field.

Let us first consider the case when δ equals zero in the
Hamiltonian of the system (14). In this case the problem
becomes exactly solvable, since both spins are diagonalized
by one of the following wave functions: χ1

↑χ2
↑, χ1

↑χ2
↓, χ1

↓χ2
↑,

χ1
↓χ2

↓, where χ↑, χ↓ are eigenvectors of σ1. The field part
of the Hamiltonian contains only the first powers of oper-
ators. As is well known, in this case the field Hamiltonian
is diagonalized by displacing the classical component from
the field operators or in other words by performing a unitary
transformation of the Hamiltonian with the operator of the co-
herent state D̂(u) = exp(uâ† − u∗â) that transforms the field
operators as

D̂†(u)âD̂(u) = â + u,

D̂†(u)â†D̂(u) = â† + u∗. (A1)

The parameter u is then chosen from the condition that
the first power of the operators vanishes. By performing the
unitary transformation of the field part of the Hamiltonian we
can find out the following expressions for each of the four spin
wave functions listed above:

Ĥ1f = â†â + u1(â + â†) + u2
1

+ 2 f (â + â†) cos φ + 4u1 f cos φ, (A2)

Ĥ2f = â†â − iu2(â − â†) + u2
2

+ 2i f (â − â†) sin φ − 4u2 f sin φ, (A3)

Ĥ3f = â†â − iu3(â − â†) + u2
3

− 2i f (â − â†) sin φ + 4u3 f sin φ, (A4)

Ĥ4f = â†â + u4(â + â†) + u2
4

− 2 f (â + â†) cos φ − 4u4 f cos φ. (A5)

Here we considered that parameters of the coherent states
for the cases 1, 4 are pure real and for the cases 2, 3
are pure imaginary numbers. From here we can conclude
that u1 = 2 f cos φ, u4 = −2 f cos φ and u2 = 2i f sin φ, u3 =
−2i f sin φ.

Now let us consider the general situation of δ �= 0. In this
case the spins and the field are entangled and the approximate
wave function of the system is expressed as a linear combina-
tion of the four previously found possibilities, namely,

|�〉 = A1χ
1
↑χ2

↑|n, 2 f cos φ〉 + A2χ
1
↑χ2

↓|n,−2i f sin φ〉
+ A3χ

1
↓χ2

↑|n, 2i f sin φ〉 + A4χ
1
↓χ2

↓|n,−2 f cos φ〉,
(A6)

where we introduced the notation |n, u〉 = D̂(u)|n〉. As a re-
sult, the energy of the system is given as the solution of
the eigenvalue problem Ĥ |�〉 = E |�〉, with the Hamilto-
nian Ĥ defined by Eq. (14) in the finite basis, consistent
with four wave functions. The solution of this eigenvalue
problem leads to the desired coefficients Ai, i = 1, . . . , 4
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FIG. 5. The comparison of the exact numerical solution with the
approximate analytical result of the ground-state energy EGS as a
function of the distance φ between two atoms. The parameter δ = 1
and the USC regime is considered for f = 0.8.
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and the eigenvalues. For example, for the first four states
one finds the following expressions for the Hamiltonian

matrix (here we employed the notation for the coherent states
|0, u〉 = |u〉):

Hi j =

⎛
⎜⎜⎜⎝

u2
1 + 4 f u1 cos φ δ

2 〈u1|iu2〉 δ
2 〈u1|iu3〉 0

δ
2 〈iu2|u1〉

(
u2

2 − 4 f u2 sin φ
)

0 δ
2 〈iu2|u4〉

δ
2 〈iu3|u1〉 0

(
u2

3 + 4 f u3 sin φ
)

δ
2 〈iu3|u4〉

0 δ
2 〈u4|iu2〉 δ

2 〈u4|iu3〉
(
u2

4 − 4 f u4 cos φ
)

⎞
⎟⎟⎟⎠, (A7)

where the overlapping integrals between different coherent
states are defined as

〈v|u〉 = 〈0|ev∗â−vâ†
euâ†−u∗â|0〉

= 〈0|e(u−v)â†−(u∗−v∗ )â|0〉e1/2(uv∗−vu∗ )

= e−1/2|u−v|2 e1/2(uv∗−vu∗ ).

By diagonalizing the matrix (A7) of the system one finds
the following expressions for the energy levels of the first four
states:

E1 = −2 f 2 −
√

4 f 4 cos2 2φ + δ2e−4 f 2
,

E2 = −4 f 2 sin2 φ,

E3 = −4 f 2 cos2 φ,

E4 = −2 f 2 +
√

4 f 4 cos2 2φ + δ2e−4 f 2
.

Analogous formulas can be obtained for other states of the
system.

Finally, we pay attention to the fact that the period of oscil-
lations is equal to π/2, despite that fact that the Hamiltonian
of the system has periodicity 2π in the dimensionless distance
φ between qubits. In Fig. 5 we plot the slice of the potential
surface for f = 0.8 and compare the numerical versus ana-
lytical energy of the ground state. As can be concluded from
the figure, the analytical approximation well describes all the
qualitative properties of the system and agrees with the exact
numerical solution.
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