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Strongly correlated photons with quantum feedback in a cascaded nanoscale double-cavity system
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We characterize via the second-order correlation function the quantum correlations in the transmitted light in
a two-cascaded-cavities system side-coupled to a common waveguide via bidirectional propagation. Adopting
a full quantum master equation and standard input-output theory, we calculate the zero-time-delay second-
order correlation function and identify clearly distinguished parameter regimes with the photon bunching
and antibunching. Our numerical results clearly show that strong photon antibunching can be achieved in
the cascaded double-cavity system without the need for extra modal-overlap-based coupling between the two
cavities. Remarkably, this strong photon antibunching appears in the weak-coupling regime of cavity quantum
electrodynamics. The photon antibunching properties can be manipulated by adjusting the propagation phase.
In addition, we discuss the influences of the emitter-to-cavity coupling strength and the waveguide-to-cavity
coupling rate on the photon antibunching. Also, the experimental feasibility of our proposal with the current
photonic crystal technique is analyzed. This study offers an alternative way to generate the strongly antibunched
photons, which may have applications in on-chip quantum information processing.
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I. INTRODUCTION

In 1976, two different groups, Kimble and Mandel [1]
as well as Carmichael and Walls [2], showed theoretically
that the resonance fluorescence of a two-level atom ex-
cited by a quantum electromagnetic field can exhibit photon
antibunching. One year later, Kimble et al. [3] observed
the phenomenon of photon antibunching in resonance flu-
orescence by using sodium atoms. From then on, studies
about strongly correlated photons have attracted consider-
able attention [4,5] due to their potential applications in
quantum information technologies [6–9]. Especially, cavity
quantum electrodynamics consisting of optical microcavities
(e.g., Fabry–Perot cavities, micropillar cavities, microtoroidal
cavities, or photonic crystal cavities) strongly coupled to
quantum emitters [e.g., atoms, color centers, molecules,
or quantum dots (QDs)] in recent years have made great
progress, which can yield large optical nonlinearity even
at the single-photon level [10–12] and induce an anhar-
monic Jaynes-Cummings ladder [13–15]. Correspondingly,
this gives rise to strong quantum correlation phenomena, in-
cluding photon antibunching and bunching [16–21]. In the
scenario of photon antibunching, coupling of a single pho-
ton to the system prohibits the coupling of the subsequent
photons (tending to arrive one-by-one). On the contrary, for
photon bunching, coupling of initial photons facilitates the
coupling of the subsequent photons (tending to arrive in bun-
dles). To generate this convenient photon antibunching, strong
nonlinear interaction is one of the necessary prerequisites
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[22,23]. Alternatively, it has been reported that the photon
antibunching phenomena can also be found in circuit quantum
electrodynamics systems [24,25], waveguide quantum elec-
trodynamics systems [26,27], cavity optomechanical systems
[28–30], nanoplasmonic cavity-emitter systems [31–33], pat-
terned two-dimensional material monolayer-cavity systems
[34,35], and other special systems [36–41].

In 2010, a new mechanism named unconventional photon
antibunching and based on the destructive quantum interfer-
ence between multiple transition pathways in two directly
coupled cavities (also called photonic molecules) instead of
one cavity was proposed theoretically by Liew and Savona
[42]. This photonic molecule only requires weak nonlinear-
ities in the cavities or weak interactions with the emitter to
create single photons [42,43]. After that, various nonlinear
optical systems based on this underlying mechanism were put
forward to realize the photon antibunching effect, including
two directly coupled single-mode cavities with second-order
or third-order optical nonlinearity [44–50], bimodal opti-
cal cavity containing a single QD [51–54], coupled cavity
optomechanical systems [55–57], and coupled polaritonic
systems [58–61], etc., just to name a few examples.

As far as the two cavities are concerned, generally their
coupling approach can be categorized into two typical con-
figurations: One “cavity-cavity” configuration is to directly
couple two cavities via the modal overlap in the space
[44–50]. Other possible “cavity-waveguide-cavity” configura-
tions are to cascade two cavities (without the spatially modal
overlap) via a common waveguide, among which there exists
(i) purely unidirectional propagation (or scattering) of fields
without feedback [62–66] and (ii) bidirectional propagations
of fields with feedback [67–70]. We note that the vast majority
of the previous studies to date on the unconventional photon
antibunching involving two cavities are based on the former,
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FIG. 1. (a) Sketch of the cascaded setup with feedback under
study: A pair of single-mode cavities (labeled 1 and 2), which have
no mutual coupling by spatially modal overlap but are side-coupled
to a common waveguide representing the input and output ports of
our system, and where one of both cavities, i.e., the cavity 2, is
coupled to a single two-level emitter with the ground and excited
states |g〉 and |e〉. The waveguide is bidirectional, which allows the
light fields to propagate in the forward and backward directions indi-
cated by the blue and gray wavy arrows. Both cavities are arranged
such that the output from cavity 1 is the input of cavity 2 while the
output of cavity 2 feeds back into cavity 1 and also are separated
by a long enough distance L such that there is no direct coupling
between both cavities. In our model, there is only a laser input in
the forward direction (blue wavy arrow) and no laser input in the
reversal direction. The transmitted field is detected. The involved
parameters are defined in more detail in the text. (b) Specific on-chip
implementation plan of schematic (a) using planar photonic crystal
structure: Two L3-type photonic crystal nanocavities, a line-defect
photonic crystal waveguide, and a semiconductor QD embedded
in one nanocavity 2. A small light-green shaded circle denotes the
position of the QD.

i.e., two directly coupled cavities via the modal overlap.
One natural question is whether there exists strongly corre-
lated photon transmission in the latter-two cascaded cavities
side-coupled to a common waveguide via (ii) bidirectional
propagations of fields with feedback; see Fig. 1. Is it possible
to optimize the structure design so that the degree of the
photon antibunching can be significantly enhanced even in
the weak-coupling regime of cavity quantum electrodynamics
where the loss rate exceeds the coherent interaction strength
between the emitter and the cavity mode?

In the present work, we give an in-depth investigation
addressing these questions. The system under study con-
sists of two single-mode cavities, one of which contains a
single two-level quantum emitter and which has no cou-
pling by spatial proximity but is side-coupled to a common
bidirectional waveguide. By numerically calculating the zero-
time-delay second-order correlation function [71], we can
identify clearly distinguished parameter regimes with the
photon bunching and antibunching in such a cascaded cavity-
waveguide-cavity quantum electrodynamics architecture with

quantum feedback. We show that the strong photon anti-
bunching of the transmitted light can be obtained under the
proper conditions. The degree of the photon antibunching
can be controlled to change periodically by adjusting the
propagation phase associated with the distance between the
two cavities. The fundamental physics behind this quantum
correlation phenomenon is understood. The influences of the
other system parameters, including the emitter-to-cavity cou-
pling strength and the waveguide-to-cavity coupling rate, on
the antibunching are discussed in detail. What is more, the
optimal condition for strong photon antibunching is analyzed.
It is revealed that the enhanced photon antibunching originates
from destructive interference induced by the bidirectional
propagations of light fields belonging to the two cavities. We
also discuss the feasibility of the proposed scheme by using
current state-of-the-art photonic crystal samples.

On the one hand, unlike Refs. [42–50], here the proposed
scheme is not required to maintain high cavity-cavity coupling
(i.e., coherent hopping) by the spatial proximity. It should
be pointed out that in the nanophotonics platform, this re-
quirement about maintaining both individual addressability
and high coupling strength between the two cavities may be
challenging in experiment because, in general, the intercavity
coupling is obtained by the spatial proximity. On the other
hand, our scheme for generating photon antibunching can
operate in the weak-coupling regime, in contrast with conven-
tional photon antibunching in the strong-coupling regime in
the previous literature [16–20]. So this weak-coupling con-
dition relaxes considerably the requirements on the system
parameters, which makes the experimental implementation of
this proposal easy. Finally, in our model, the two cavities are
arranged such that only a single driving input is applied to
cavity 1 and the output of cavity 1 forms the input of cavity
2 via the waveguide channel, which is completely different
from the previous schemes adopting two individual inputs
to respectively drive the two cavities [44,47–50,52]. As a
consequence, the present cascaded cavity-waveguide-cavity
quantum electrodynamics is simple for engineering and fabri-
cation in the solid-state QD-photonic-crystal platform, and the
way of the achievable photon antibunching is important for the
future generation of tunable single-photon-emission sources.

The rest of this paper is organized as follows: In Sec. II
we present the physical model and describe the theoretical
approach, namely, the full quantum master equation including
incoherent processes, for the considered quantum correlation
in a cascaded bidirectional cavity-waveguide-cavity quantum
electrodynamics architecture. In Sec. III we analyze the ex-
perimental feasibility of our proposal based on the solid-state
QD and photonic crystal platform. In Sec. IV, we discuss
how to calculate the second-order correlation function of the
transmitted field. Numerical and analytical results for the
characteristics of the second-order photon correlation are col-
lected in Sec. V. The transmission properties of the system are
also analyzed. Finally, the paper is summarized in Sec. VI.

II. PHYSICAL SYSTEM AND
THEORETICAL FRAMEWORK

The system of interest is depicted schematically in
Fig. 1(a), where an empty cavity labeled 1 is driven with an
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external pump laser via an input channel and another cavity
labeled 2 contains and interacts with a two-level quantum
emitter, whose ground and excited states are denoted by |g〉
and |e〉, respectively. In the presence of the embedded emitter
in cavity 2, the dynamics of the system can become nonlinear.
We assume that the output of cavity 1 forms the input of cavity
2 via the common waveguide channel, at the same time the
output of cavity 2 also feeds back into cavity 1 (called quan-
tum feedback; see gray wavy arrows in Fig. 1), which we will
refer to as a cascaded quantum system with bidirectional prop-
agating information flows [67–70]. Notice that we consider
that the two cavities 1 and 2 are separated by a sufficiently
long distance L much longer than their wavelengths, so there
is no direct modal overlap (i.e., no coupling) between the two
cavity modes but, nevertheless, these two cavities are closely
connected through this bidirectional waveguide. In the rotat-
ing frame of the pump-laser frequency ωp, the dynamics of
our cascaded bidirectional cavity-waveguide-cavity quantum
electrodynamics system as shown in Fig. 1(a), including the
incoherent processes, follows the master equation according
to Refs. [64,70] (we take hereafter h̄ = 1):

d ρ̂

dt
= i[ρ̂, Ĥsys1 + Ĥsys2]

+ γsL(σ̂ )ρ̂ + γdL(σ̂ †σ̂ )ρ̂

+ κ1L(ĉ1)ρ̂ + κ2L(ĉ2)ρ̂

+√
κe1κe2(eiφ[ĉ1, ρ̂ĉ†

2] + eiφ[ĉ2, ρ̂ĉ†
1] + H.c.), (1)

with ρ̂ being the density-matrix operator of the system, the
notation [•, •] being the commutation relation, and H.c. being
the Hermitian conjugate.

The Hamiltonians Ĥsys1 and Ĥsys2 of the empty cavity 1 and
the emitter-coupled cavity 2 within the dipole and rotating-
wave approximations read

Ĥsys1 = �c1ĉ†
1ĉ1 + √

κe1
[
cin

1 ĉ†
1 + (

cin
1

)∗
ĉ1

]
, (2)

Ĥsys2 = �c2ĉ†
2ĉ2 + (�c2 + �e2)σ̂ †σ̂ + gc2(ĉ2σ̂

† + ĉ†
2σ̂ )

+√
κe2

[
cin

1 eiφ ĉ†
2 + (

cin
1

)∗
e−iφ ĉ2

]
, (3)

where ĉ1 (ĉ†
1) and ĉ2 (ĉ†

2) are the photon annihilation (creation)
operators for the cavity-1 and -2 modes, respectively; σ̂ =
|g〉〈e| (σ̂ † = |e〉〈g|) is the electronic lowing (raising) transition
operators between states |g〉 and |e〉 for the two-level emitter;
cin

1 is the amplitude of the continuous-wave external input
pump laser only in the forward direction, initially which is
used to drive the cavity-1 mode at a rate

√
κe1 and can be

expressed as Ep(t ) = cin
1 e−iωpt with the angular frequency ωp;

�c1 = ωc1 − ωp is the detuning of the cavity-1 resonance
frequency ωc1 with respect to the pump laser ωp; �c2 =
ωc2 − ωp is the detuning of the cavity-2 resonance frequency
ωc2 with respect to the pump laser ωp; and �e2 = ωe − ωc2

is the detuning of the two-level emitter ωe (the energy of
the emitter ground state |g〉 is set as zero point, i.e., ωg = 0)
with respect to the cavity-2 resonance frequency ωc2. When
introducing the detuning δ21 = ωc2 − ωc1 between the two
cavities, we have the relationship �c2 = �c1 + δ21. gc2 is the
coupling strengths between cavity 2 and the two-level emitter,
depending on the electric-dipole moment μeg of the emitter

transition and the mode volume V of the cavity, i.e., gc2 =
μeg

√
ωc2/2h̄ε0V , with ε0 being the vacuum permittivity. The

propagation phase factor φ will be explained later on.
The Lindblad superoperator L(Ô) describes the dissipative

coupling to the external baths and takes the form

L(Ô)ρ̂ = 1
2 (2Ôρ̂Ô† − Ô†Ôρ̂ − ρ̂Ô†Ô), (4)

for the collapse operator Ô corresponding to the specific dis-
sipation process. More specifically, the second term on the
right-hand side (RHS) of Eq. (1) corresponds to the two-level
emitter damping, where γs is the spontaneous emission de-
cay rate of the emitter. The third term represents the pure
dephasing of the emitter, where γd is the pure dephasing rate
of the emitter. Note that, for gaseous-state emitters such as
atoms and ions, we neglect dephasing effects because the
pure dephasing rate γd is much smaller than the spontaneous
emission decay rate γs. However, for solid-state emitters such
as QDs, the pure dephasing rate γd becomes relevant, which
is much larger than the spontaneous emission decay rate γs.
The fourth and fifth terms on the RHS of Eq. (1) stand for the
cavity-1 and -2 dampings, where κ1 and κ2 are the total loss
rates (or cavity linewidths) of the two cavities. κ1 is the sum
of the intrinsic (κi1) and extrinsic (κe1) loss rates, i.e., κ1 =
κi1 + 2κe1 for the cavity-1 mode. Likewise, κ2 = κi2 + 2κe2

for the cavity-2 mode. The former (κi1, κi2) is due to loss in the
cavity modes themselves, whereas the latter (2κe1, 2κe2) is due
to the coupling of the cavity modes to the waveguide from the
forward and backward directions. For notational simplicity,
we have assumed them to be the same for both directions.

Finally, the sixth term on the RHS of Eq. (1) describes
forward-backward bidirectional scattering, or two-way infor-
mation flows: The output from cavity 1 is the input of cavity
2, simultaneously the output of cavity 2 feeds back into cavity
1 [70]. Physically, this term models the dissipative coupling at
the rate

√
κe1κe2. The factor φ is the photon propagation phase

[67–70] when the input pump laser propagates from cavity
1 to cavity 2 or vice versa and is expressed by φ = β(ω)L,
where β(ω) is the waveguide’s dispersion and L denotes
the center distance between the two cavities. Obviously, the
propagation phase φ can be tuned by appropriately changing
the distance L between the two cavities. On the other hand,
the dispersion β(ω) of the waveguide can also be used to
control the propagation phase φ. This propagation phase φ

is of interest to us, since it determines the photon correlation
(cf. discussion below).

III. DISCUSSION OF THE EXPERIMENTAL
IMPLEMENTATION OF THE MODEL

Now we address the experiment feasibility of the proposed
scheme. Ultrahigh-Q photonic crystal nanocavities have been
realized in a two-dimensional triangular-lattice air-hole pho-
tonic crystal slab [72–74], which is a promising platform for
the experimental implementation of our model; see Fig. 1(b)
for a sketch of our setup (not to scale). The photonic crystal
structures can be fabricated by using electron-beam lithog-
raphy, followed by inductively coupled plasma dry etching
and selective wet etching of the sacrificial AlGaAs layer. The
linear defects are introduced to form two L3-type photonic-
crystal nanocavities, where “3′′ denotes the number of missing
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air holes. To further improve the cavity quality factor Q,
the holes adjacent to the cavity need to be shifted properly.
A line-defect W1-type photonic-crystal waveguide is formed
by missing a row of holes in between the two nanocavities
and separated from them by three rows of holes. Coupling
efficiency, i.e., the ratio of light leaking from cavity mode into
the waveguide to the total leakage, can be controlled by the
gap between the cavity and waveguide. The two nanocavi-
ties are directly side-coupled to a common photonic crystal
waveguide along the �K lattice direction, but have no di-
rect coupling owing to the three-row spacing and sufficiently
long separation distance L ≈ 12a, a being the lattice constant
of the underlying photonic crystal lattice, according to the
experimental data of Refs. [75,76]. The distance L between
the two cavities can be adjusted by changing the number of
periods. The detailed characterization of similar structures and
the fabrication process are described elsewhere [75,76].

For the above-mentioned two-level emitter confined in one
of the two L3 photonic crystal nanocavities, we can adopt a
low-density self-assembled InGaAs/InAs QD because of its
large dipole moment [77] and good integration [78]. Semi-
conductor QDs can be grown by molecular-beam epitaxy
[79], where the simple two-level approximation is valid for
small epitaxial QD. A single QD can be added to the L3
nanocavity based on precise positioning techniques of atomic
force microscopy [80]. In the experiment, the strong cou-
plings between the L3 photonic crystal nanocavity and the
QD have been observed [81,82]. Experimental results [83–85]
have shown that the QD transition can be tuned through
the cavity resonance by using the local-temperature-tuning
technique.

The parameters of the coupled photonic crystal waveg-
uide, L3 nanocavity, and QD system used in the calculations
are adopted according to the existing experimental data of
Refs. [86–90]. By improving the spatial alignment of the
QD and cavity field, the coupling strength can reach val-
ues up to gc/2π ≈ 40 GHz as reported in Ref. [91]. Hence,
within experimentally achievable parameter ranges we choose
gc2/2π = 15 GHz [86,87]. In particular, recent improvements
in design and fabrication have allowed for intrinsic loss rates
as low as κi/2π ≈ 4 GHz in experimental GaAs photonic
crystal nanocavity [92]. Here we assume that each nanocavity
has the same modest intrinsic loss rate; that is, κi1/2π =
κi2/2π = 15 GHz [89]. The extrinsic loss rates κe1 and κe2

depend on the distance between the photonic crystal waveg-
uide and nanocavity, which can be postfabrication tailored
by carefully dimensioning the structure. As an example, here
κe1/2π = κe2/2π = 10 GHz are considered for the two L3
nanocavities side-coupled to the waveguide, which are readily
available in experiments [82]. With these given parameter
values above, the loaded (including the waveguide coupling)
and intrinsic quality factors are estimated to be 5500 and
13 000 at the cavity resonance wavelength λc1 = λc2 = 1550
nm (telecom band). Thanks to the total loss rate of the sys-
tem being much larger than the QD-cavity coupling strength,
i.e., κ2 > gc2, the QD-cavity system operates in the weak-
coupling regime (also called the bad-cavity limit). Following
Refs. [87,90], we set the spontaneous emission decay rate
and the pure dephasing rate for solid-state QD to be γs/2π =
0.16 GHz and γd/2π = 1 GHz, respectively.

Finally, coupling to the photonic crystal waveguide can be
obtained through microscope objectives and micropositioners
[93]. The photon correlation of the transmitted signal is mea-
sured experimentally by using a Hanbury-Brown and Twiss
device, which comprises one fiber beam splitter and a pair of
single-photon avalanche photodiodes [94,95].

IV. CALCULATION OF SECOND-ORDER PHOTON
CORRELATION g(2)(0)

Here, we discuss how to calculate the second-order corre-
lation function g(2)(0) of the transmitted field. In the present
study, we are interested in the statistical properties of the
transmitted photons from the waveguide channel in this
cascaded cavity-waveguide-cavity quantum electrodynamics
system (see Fig. 1). Following the input-output theory from
quantum optics [62–64], we can achieve the transmission
amplitude ĉout

2 of the system, with the form

ĉout
2 = eiφ

(
cin

1 − i
√

κe1ĉ1
) − i

√
κe2ĉ2, (5)

and then the statistical properties of the transmitted photons
can be described by the normalized zero-time-delay second-
order correlation function [71]

g(2)(0) =
〈(

ĉout†
2

)2(
ĉout

2

)2〉

〈
ĉout†

2 ĉout
2

〉2 , (6)

which characterizes the joint probability of detecting two pho-
tons at the same time. The symbol 〈•〉 denotes the quantum
expectation value. From the density matrix the expectation
value of an observable Â can be computed as 〈Â〉 = Tr(Âρ̂ ),
where Tr denotes the trace. When the condition g(2)(0) <

1 holds, the sub-Poisson statistics of the transmission field
appears, which is a nonclassical effect often called photon
antibunching. In contrast, the condition of g(2)(0) > 1 corre-
sponds to super-Poisson statistics, which is a classical effect
referred to as photon bunching for 2 > g(2)(0) > 1 and pho-
ton superbunching for g(2)(0) > 2. In particular, the value of
g(2)(0) = 1 corresponds to a Poissonian distribution typical
of coherent light and g(2)(0) = 2 corresponds to thermal or
chaotic light. Hence we can determine whether the antibunch-
ing happens according to g(2)(0).

On the other hand, according to Eq. (5), the correspond-
ing normalized transmission intensity is yielded by T =
〈ĉout†

2 ĉout
2 〉/(cin

1 )2. In what follows, we will calculate the
second-order correlation function g(2)(0) and the transmission
T of the system by numerically solving the master equation
(1) within a truncated Hilbert space under the steady state
(i.e., setting d ρ̂/dt = 0, which is independent of the initial
states). The numerical results are presented in Figs. 2–7 below
in various parameter spaces.

V. NUMERICAL RESULTS AND DISCUSSIONS
ABOUT CORRELATION g(2)(0) TOGETHER

WITH TRANSMISSION T

First of all, let us focus on how the propagation phase φ

modifies quantum correlations between photons. In Fig. 2, we
plot the zero-delay second-order correlation function g(2)(0)
of the transmitted field as a function of the detuning �c1/2π
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with the four different values of the propagation phase φ.
As shown in the figure, the photon correction of the out-
put light depends so sensitively on the propagation phase φ

that the corresponding profiles of g(2)(0) are quite different.
Specifically, for the scenario that φ = mπ with m being an
integer in Fig. 2(a), the spectrum of the second-order cor-
relation function g(2)(0) is symmetric with respect to the
resonance point �c1/2π = 0 GHz, which exhibits the two
bunching peaks between the three antibunching dips. Here,
for the sake of convenience we term the corresponding anti-
bunching dips (bunching peaks) as the left-sideband, central,
and right-sideband ones (the left-sideband and right-sideband
ones) from left to right in all the figures. For the central anti-
bunching dip at �c1/2π = 0 GHz, the value of g(2)(0) reaches
g(2)(0) � 0.84. For the left-sideband and right-sideband anti-
bunching dips at �c1/2π = ±19 GHz, the depth of the two
antibunching dips becomes shallow obviously with respect
to the central antibunching dip, where we have the values
g(2)(0) � 0.91. On the other hand, for the left-sideband and
right-sideband bunching peaks at �c1/2π = ±13 GHz, the
values of g(2)(0) arrive at g(2)(0) � 1.7.

Whereas when φ = mπ + π/4 in Fig. 2(b), the correlation
spectrum of g(2)(0) evolves into an asymmetric profile with
respect to �c1/2π = 0 GHz. It can be seen that the cen-
tral antibunching dip moves with and shifts slightly toward
the right direction, with a minimum value of g(2)(0) � 0.25
at �c1/2π = 3 GHz. The depth of the left-sideband and
right-sideband antibunching dips increases and reaches the
values g(2)(0) � 0.71 at �c1/2π = −16 GHz and g(2)(0) �
0.81 at �c1/2π = 19 GHz, respectively. The height of the
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FIG. 2. The second-order correlation function g(2)(0) versus the
detuning �c1/2π for four different values of the propagation phase
factor φ: (a) φ = mπ , (b) φ = mπ + π/4, (c) φ = mπ + π/2, and
(d) φ = mπ + 3π/4 (m is an integer). The other parameters of
the system are chosen as gc2/2π = 15 GHz, κi1/2π = κi2/2π =
15 GHz, κe1/2π = κe2/2π = 10 GHz, γs/2π = 0.16 GHz, γd/2π =
1 GHz, δ21/2π = 0 GHz, �e2/2π = 0 GHz, and cin

1
√

κe1/2π =
1 GHz.
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FIG. 3. The normalized transmission intensity T as a function
of the detuning �c1/2π for four different values of the propagation
phase factor φ: (a) φ = mπ , (b) φ = mπ + π/4, (c) φ = mπ + π/2,
and (d) φ = mπ + 3π/4 (m is an integer). The other parameters
of the system are chosen as gc2/2π = 15 GHz, κi1/2π = κi2/2π =
15 GHz, κe1/2π = κe2/2π = 10 GHz, γs/2π = 0.16 GHz, γd/2π =
1 GHz, δ21/2π = 0 GHz, �e2/2π = 0 GHz, and cin

1
√

κe1/2π =
1 GHz.

left-sideband bunching peak increases slightly with a value
of g(2)(0) � 1.8 at �c1/2π = −11 GHz. However, the height
of the right-sideband bunching peak increases significantly,
with a maximum value of g(2)(0) � 3.1 at �c1/2π = 13 GHz,
which shows superbunching because of g(2)(0) > 2.

For the case that φ = mπ + π/2 in Fig. 2(c), although
the spectral structure of g(2)(0) is similar to that for the
case that φ = mπ in Fig. 2(a), the degree of the pho-
ton bunching and antibunching is enhanced obviously. Most
strikingly, the depth of the central antibunching dip at
�c1/2π = 0 GHz increases considerably and reaches a
value as low as g(2)(0) � 0.07 much smaller than for either
min{g(2)(0)} � 0.84 in Fig. 2(a), or min{g(2)(0)} � 0.25 in
Fig. 2(b). Likewise, for the left-sideband and right-sideband
antibunching dips at �c1/2π = ±17 GHz, the value of
g(2)(0) also decreases and reaches g(2)(0) � 0.65. Neverthe-
less, for the left-sideband and right-sideband bunching peaks
at �c1/2π = ±12 GHz, the value of g(2)(0) rapidly increases
and reaches g(2)(0) � 3.4, which displays superbunching
[g(2)(0) > 2].

With a further increase in φ, e.g., φ = mπ + 3π/4 in
Fig. 2(d), the spectrum of g(2)(0) again becomes asymmet-
ric with respect to the spectrum center. The minimum for
g(2)(0) occurs at �c1/2π = −3 GHz, which corresponds to
the central antibunching dip and yields a value of g(2)(0) �
0.25. The left-sideband antibunching dip for g(2)(0) yields
a value of g(2)(0) � 0.81 at �c1/2π = −19 GHz and the
right-sideband antibunching dip yields a value of g(2)(0) �
0.71 at �c1/2π = 16 GHz. The left-sideband bunching peak
reaches a maximum at �c1/2π = −13 GHz with a value
g(2)(0) � 3.1. The right-sideband bunching peak for g(2)(0)
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FIG. 4. (a) Two-dimensional plot of the second-order correla-
tion function g(2)(0) as a function of the detuning �c1/2π and the
propagation phase factor φ. The color bar corresponds to the val-
ues of g(2)(0). (b) A cut through the left-hand panel (a) along the
indicated vertical white dashed line, i.e., �c1/2π = 0 GHz. The
other parameters of the system are chosen as gc2/2π = 15 GHz,
κi1/2π = κi2/2π = 15 GHz, κe1/2π = κe2/2π = 10 GHz, γs/2π =
0.16 GHz, γd/2π = 1 GHz, δ21/2π = 0 GHz, �e2/2π = 0 GHz,
and cin

1
√

κe1/2π = 1 GHz.

gives a value of g(2)(0) � 1.8 at �c1/2π = 11 GHz. Compar-
ing Fig. 2(d) with Fig. 2(b), it is evident that the spectrum of
g(2)(0) when φ = mπ + 3π/4 in Fig. 2(d) is the mirror image
of the spectrum when φ = mπ + π/4 in Fig. 2(b) with respect
to �c1/2π = 0 GHz.

Figures 3(a)–3(d) provide the plots of the normalized trans-
mission intensity T as a function of the detuning �c1/2π
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FIG. 5. The normalized transmission intensity T as a function
of the propagation phase factor φ when �c1/2π = 0 GHz. The
other parameters of the system are chosen as gc2/2π = 15 GHz,
κi1/2π = κi2/2π = 15 GHz, κe1/2π = κe2/2π = 10 GHz, γs/2π =
0.16 GHz, γd/2π = 1 GHz, δ21/2π = 0 GHz, �e2/2π = 0 GHz,
and cin
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κe1/2π = 1 GHz.
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FIG. 6. (a) Two-dimensional plot of the second-order correlation
function g(2)(0) as a function of the QD-cavity coupling strength
gc2/2π and the propagation phase factor φ. The color bar represents
the values of g(2)(0). (b) A cut through the left-hand panel (a) along
the indicated horizontal white dashed line. The other parameters
of the system are chosen as κi1/2π = κi2/2π = 15 GHz, κe1/2π =
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0 GHz, δ21/2π = 0 GHz, �e2/2π = 0 GHz, and cin

1
√

κe1/2π =
1 GHz.

through the waveguide corresponding to the driving laser uti-
lized in Figs. 2(a)–2(d). Specifically, for the case of φ = mπ

in Fig. 3(a), we find a symmetric M-type spectral structure
with three transmission dips and two transmission peaks,
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FIG. 7. (a) Two-dimensional plot of the second-order correla-
tion function g(2)(0) as a function of the waveguide-cavity coupling
strength κe/2π and the propagation phase factor φ. The color bar
denotes the values of g(2)(0). (b) A cut through the left-hand panel
(a) along the indicated horizontal white dashed line. For convenience,
we take κe1 = κe2 = κe for both cavities. The other parameters of
the system are chosen as gc2/2π = 15 GHz, κi1/2π = κi2/2π =
15 GHz, γs/2π = 0.16 GHz, γd/2π = 1 GHz, �c1/2π = 0 GHz,
δ21/2π = 0 GHz, �e2/2π = 0 GHz, and cin
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which is inbuilt in a broad transmission dip. Looking closer,
we see that the aforementioned three transmission dips and
two transmission peaks just correspond to the three anti-
bunching correlation dips and two bunching correlation peaks
of g(2)(0) in Fig. 2(a). For the central antibunching dip
at �c1/2π = 0 GHz, the intensity transmission T arrives
at 18.1%. However, when φ is tuned to φ = mπ + π/4
in Fig. 3(b), the transmission spectrum of T evolves into
an asymmetric lineshape with respect to �c1/2π = 0 GHz.
When φ = mπ + π/2 in Fig. 3(c), the transmission spectrum
of T returns to a symmetric profile with two dips and a nearly
flat peak lying in the vicinity of the resonance point �c1/2π =
0 GHz. As clearly shown, for the situation that the most strong
antibunching is generated at �c1/2π = 0 GHz in Fig. 2(c), the
normalized intensity transmission of the system reaches the
magnitude of 17.8%. When φ = mπ + 3π/4 in Fig. 3(d),
the asymmetric spectrum of T exhibits a mirror image of the
spectrum for φ = mπ + π/4 in Fig. 3(b).

For further insight into the above behavior of the pho-
ton correlations, we plot the color-scale two-dimensional
(2D) map of g(2)(0) as a function of the detuning �c1/2π

and the propagation phase φ in Fig. 4(a), where the color
bar represents the magnitude of g(2)(0). As can be seen in
Fig. 4(a), on the one hand, g(2)(0) is π periodic with re-
spect to the propagation phase φ. As a consequence, any two
generating spectra of g(2)(0) at φ = X1 (X1 is an arbitrary
angle from 0 to π ) and φ = π + X1 are exactly identical,
as shown in Fig. 4(a). Denoting g(2)(0) with g(2)(0)[�c1, φ]
here, we have an explicit relationship g(2)(0)[�c1, φ = X1] =
g(2)(0)[�c1, φ = π + X1]. On the other hand, the spectra of
g(2)(0) at φ = X2 (X2 is an arbitrary angle from 0 to π )
and φ = π − X2 are horizontal mirror symmetric, namely,
g(2)(0)[�c1, φ = X2] = g(2)(0)[−�c1, φ = π − X2]. It should
be pointed out that we have carried out extensive numerical
calculations (not shown here), all the results support these
claims, but it is very difficult to prove the latter claim analyti-
cally. The former claim about π periodicity will be explicitly
clarified below.

Figure 4(b) shows the cross sections of Fig. 4(a) for the
specific value of the detuning �c1/2π = 0 GHz correspond-
ing to the vertical white dashed line. One can find from
Fig. 4(b) that g(2)(0) is less 1 (i.e., antibunching) at �c1/2π =
0 GHz for any values of the propagation phase φ. Again, it
is clearly shown that g(2)(0) varies periodically with varying
φ, and the period is π . As the propagation phase φ is opti-
mized by changing the number of lattice periods, for example
taking φ = mπ + π/2, the photon antibunching effect is the
strongest as shown in Fig. 4(b). From what has been ana-
lyzed above, we can conclude that the degree of the photon
antibunching for the transmitted light can be significantly
improved and enhanced by adjusting the propagation phase
φ appropriately.

To get more insights, the normalized transmission intensity
T versus the propagation phase φ is displayed in Fig. 5. It
is shown that, when the optimized phases to collect strong
antibunching transmission light are taken as φ = mπ + π/2
(m is an integer, for example, φ = π/2 and φ = 3π/2), the
normalized intensity transmission can reach approximately
17.8% at these phases. The subject of how both the large
intensity transmission and the strong photon antibunching of

the system are simultaneously achieved can be interesting
for straightforwardly measuring such correlations in practical
experiments, which is left for further study.

To gain a deeper understanding of the physics behind the
above quantum correlation behavior, we begin by rewriting
the sixth term in the previous quantum master equation (1)
as Q̂st = √

κe1κe2(eiφ[ĉ1, ρ̂ĉ†
2] + Peiφ[ĉ2, ρ̂ĉ†

1] + H.c.) by in-
troducing an auxiliary factor P with P = 0 or 1. If P = 0, the
output of cavity 1 drives cavity 2, but there is no backward
scattering from cavity 2 to cavity 1, i.e., unidirectional scatter-
ing without feedback. In this scenario, Eq. (1) simplifies to the
master equation of a cascaded unidirectional quantum system.
On the contrary, if P = 1, not only the output of cavity 1
drives cavity 2 (forward scattering), but also there is the back-
ward scattering from cavity 2 to cavity 1, i.e., bidirectional
scattering with feedback; see Fig. 1. What is more, there is
a quantum interference between the forward- and backward-
scattering contributions for P = 1. When we define ˆ̃c2 =
e−iφ ĉ2 and |ẽ〉 = eiφ |e〉 in Eq. (1) as well as ˆ̃cout

2 = e−iφ ĉout
2

in Eq. (5) together with their Hermitian conjugate, after some
algebra, the forms of all the expressions involved in the mas-
ter equation are kept unchanged except that the sixth term
Q̂st = √

κe1κe2(eiφ[ĉ1, ρ̂ĉ†
2] + Peiφ[ĉ2, ρ̂ĉ†

1] + H.c.) needs to
be changed to

ˆ̃Qst = √
κe1κe2([ĉ1, ρ̂ ˆ̃c†

2] + Pe2iφ[ ˆ̃c2, ρ̂ĉ†
1] + H.c.). (7)

That is to say, after we replace e−iφ ĉ2 → ĉ2, eiφ |e〉 → |e〉,
e−iφ ĉout

2 → ĉout
2 , and Q̂st → ˆ̃Qst throughout, the feature of the

system is the same as before the transformation. From Eq. (7),
it is quite straightforward to see the following three key points.
First, the physical quantities of the system, including but
not limited to g(2)(0), are of π periodicity [see the under-
lined part in Eq. (7)]. Second, the phase dependence of the
system would vanish provided that no backward scattering
from cavity 2 to cavity 1 exists (P = 0 without feedback).
So the backward scattering (the feedback) from cavity 2 to
cavity 1 plays an important role in controlling g(2)(0). Third,
the strong photon antibunching can occur at φ = mπ + π/2
(corresponding to e2iφ = −1) because the destructive interfer-
ence (corresponding to the minus sign) between the forward-
and backward-scattering contributions prevents the escape of
photons from the system. These results are consistent with
those obtained from Figs. 2 and 4.

Next, it is also interesting to look at the dependency of
the second-order correlation function g(2)(0) on the coupling
strength gc2/2π between the QD and cavity 2. Figure 6(a)
shows the color-scale 2D map of g(2)(0) versus the QD-cavity-
2 coupling strength gc2/2π and the propagation phase φ/π .
It is seen from Fig. 6(a) that the spectral profile of g(2)(0)
is modified dynamically with the changes of both gc2 and φ.
g(2)(0) always varies periodically with varying φ, the period
is π , but the concrete varying shape is closely associated
with the value of gc2. To show this explicitly, by fixing the
propagation phase φ = π/2 corresponding to the horizontal
white dashed line in Fig. 6(a), g(2)(0) versus gc2/2π is plotted
in Fig. 6(b). As displayed in Fig. 6(b), when QD is inactive (no
QD-cavity coupling), i.e., gc2/2π = 0 GHz, we find that the
value of g(2)(0) equals unity. In this situation, the transmitted
field is a typically coherent source [g(2)(0) = 1]. The reason
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for this is that the nonlinearity used to generate photon anti-
bunching is absent in the system with gc2/2π = 0 GHz. As the
coupling strength gc2 increases, the value of g(2)(0) decreases
rapidly because the strength of the QD-induced nonlinear-
ity increases. After this, g(2)(0) reaches the minimum at the
optimal point g(opt)

c2 = 2π × 20 GHz, producing an extremely
strong antibunching [g(2)(0) � 0.05]. Further increase of gc2

above the optimal point g(opt)
c2 leads to a rise of g(2)(0) and

eventually photon bunching because the nonlinearity of the
system is saturated and then weakened. As can be also seen
in Fig. 6(b), the optimal point g(opt)

c2 to achieve strong anti-
bunching falls in the weak-coupling regime, i.e., g(opt)

c2 < κ2;
this make the experimental realization of the scheme easier.

Finally, we illustrate how the waveguide-cavity coupling
strength κe affects the second-order correlation function
g(2)(0). For notational convenience and without losing gen-
erality, here we have set κ1e = κ2e = κe for the two cavities.
In Fig. 7(a), we plot the color-scale 2D map of g(2)(0) as
a function of the waveguide-cavity coupling strength κe/2π

and the propagation phase φ/π . Figure 7(b) shows the cross
sections of Fig. 7(a) for the specific value of the propagation
phase φ = π/2 corresponding to the horizontal white dashed
line. One can find from Fig. 7(a) that the value of g(2)(0)
varies periodically upon changing φ from 0 to 2π and the
corresponding period is π . However, the concrete varying rule
of the g(2)(0) profile is directly related to the value of κe. For
instance, for the case of φ = π/2 presented in Fig. 7(b), it
can be seen that initially the value of g(2)(0) decreases fast
from g(2)(0) = 1 upon increasing the coupling strength κe

and reaches the minimum, i.e., min{g(2)(0)} � 0.02 around
κ

(opt)
e /2π � 12 GHz. With the increase of κe above the op-

timal value κ
(opt)
e , the value of g(2)(0) again grows quickly

such that g(2)(0) > 1 (bunching). Physically, this behavior is
mainly due to the presence of the additional Q̂st term being
P = 1 (quantum feedback).

VI. CONCLUSIONS

In summary, we have explored the two-photon correlation
characteristics of the transmitted light in a cascaded cavity-
waveguide-cavity quantum electrodynamics system with the
bidirectional scattering. The considered system is based on
the solid-state QD-photonic-crystal platform well within the

reach of current experimental abilities and only requires a
single drive instead of two individual drives utilized in the pre-
vious schemes [44,47–50,52]. By means of the second-order
correlation function g(2)(0) and numerical simulations, we can
identify clearly distinguished optimal parameter regimes with
photon bunching and antibunching. We find that the strong
photon antibunching can be obtained in such a cascaded
scheme, which, on the one hand, works in the weak-coupling
regime and, on the other hand, does not need the intercavity
coupling by the spatial proximity compared with the previous
systems [42–50]. It is revealed that the photon antibunch-
ing properties can be manipulated to change periodically
by adjusting the propagation phase appropriately, which is
closely associated with the center distance between the two
cavities. The fundamental physics behind this quantum corre-
lation phenomenon is presented in support of this statement.
Furthermore, we discuss in detail the influence of the QD-to-
cavity coupling strength and the waveguide-to-cavity coupling
rate on the photon antibunching. Our work provides insights
into how to manipulate the second-order correlation func-
tion g(2)(0) in such devices. This scheme is compatible with
integrated photonics and may have potential application in
on-chip quantum information processing. We believe that our
proposal is feasible for experimental implementations and
deserves to be tested with currently existing technologies.
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J. Vučković, Controlling cavity reflectivity with a single quan-
tum dot, Nature (London) 450, 857 (2007).

[85] A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković,
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