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Doppler-Raman crossover in resonant scattering by a moving layer
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We consider theoretically light scattering by a resonant layer that periodically moves in real space. At small
frequencies of motion the scattered light spectrum reveals the frequency shift that is governed by the Doppler
effect. At higher motion frequencies, the scattered light spectra acquire sidebands stemming from the Raman
effect. We investigate the crossover between these two regimes and propose a realistic quantum well structure
for its observation.
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I. INTRODUCTION

Frequency conversion is a basic nonlinear optical pro-
cess, widely used for signal multiplexion and frequency comb
generation [1]. An alternative approach is offered by optome-
chanical and optoacoustic nonlinearities [2–4]. The advantage
of optomechanical systems is their relative compactness, en-
abling manipulation of the spectrum of classical and quantum
light on the nanoscale [5,6]. Specifically, mechanical motion
or deformation leads to a dynamical modification of opti-
cal properties such as refractive index [7], optical gain [8],
and resonance frequency [9], allowing one to control the
light intensity, frequency [10,11], and propagation direction
[12], or induce synthetic magnetic [13] and spin-orbit [14,15]
fields. The simplest example of motion-induced frequency
conversion is given by the Doppler effect. The motion of
the light source with respect to the observer with a constant
velocity v leads to the shift of the observed light frequency
by (v/c)ω0, where ω0 is the emitter frequency and c is the
speed of light. Another opportunity for frequency conversion
is given by the Raman effect. When the optical properties
of the medium oscillate at frequency �, the scattered light
spectrum acquires sidebands shifted by � from the initial
frequency. Both Doppler and Raman effects can be realized
if one considers light scattering on an object periodically
moving in space. While the two effects share the same origin,
the corresponding frequency shifts are distinct. The Raman
shift of the scattered light frequency is always a multiple of
mechanical motion frequency �, while the Doppler frequency
shift (�u0/c)ω0, being proportional to the motion velocity,
scales linearly with the mechanical motion amplitude u0. In
this paper, we consider light scattered by a resonant layer
oscillating in space. We calculate the scattered light spectra,
identify the regimes where Doppler and Raman shifts can be
observed, and investigate the crossover between them.
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II. MODEL

We study light reflection and transmission through a mov-
ing layer with resonant polarizability. The microscopic origin
of the resonant response might be the exciton resonance in
semiconductors, plasmon resonance in metals, or atomic reso-
nances (see Ref. [12] for a survey of resonant optomechanical
systems). We suppose that the layer is a macroscopic system
that can be described in the framework of classical electro-
dynamics. The light is incident along the layer normal z and
linearly polarized along x (see Fig. 1). The layer motion along
the z axis is characterized by the displacement uz(t ). The
system can be described by the action

S = 1

8π

∫ [
E2

x (z, t ) − B2
y (z, t )

]
dz dt

+
∫

Px(t )

{
Ex[uz(t ), t] + u̇z(t )

c
By[uz(t ), t]

}
dt + Sd ,

(1)

where the dot denotes the time derivative. The first term in
Eq. (1) is the action of a free electromagnetic field where the
electric and magnetic fields can be expressed via the vector
potential Ax(z, t ) as Ex = −(1/c)(∂Ax/∂t ) and By = ∂Ax/∂z.
The second term in Eq. (1) describes the interaction of the
layer polarization Px(t ) with the electromagnetic field (see the
Appendix for the derivation). The last term Sd is the action
describing layer polarization. We are interested in the layer
with a resonant response, so we take the simplest model of a
harmonic oscillator with the eigenfrequency ω0, described by
the Lagrangian

Sd = π

2c�0

∫ {(
dPx

dt0

)2

− ω2
0P2

x

}
dt0. (2)

Here, dt0 = dt
√

1 − u̇2
z (t ) is the time in the moving reference

frame and the constant �0 is the radiative decay rate of the
oscillator, as justified below.
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FIG. 1. A sketch of a short light pulse incident upon a layer
periodically moving in space.

The action Eq. (1) yields the Euler-Lagrange dynamic
equations

1

c2

∂2Ax

∂t2
− ∂Ax

∂z2
= 4π

c

dPx

dt
δ[z − uz(t )], (3)

d2Px

dt2
0

+ 2�
dPx

dt0
+ ω2

0Px = −�0

π

d

dt0
Ax[uz(t ), t], (4)

where we introduced in Eq. (4) the oscillator damping with
the rate � accounting for nonradiative decay processes.
Equation (3) can be solved using the Green’s function
G(z, t ) = (c/2)θ (ct − |z|) and yields

Ax(z, t ) = A(0)
x (z, t ) + 2πPx[t∗(z, t )], (5)

where A(0)
x is the vector potential of the incident wave and

t∗(z, t ) = t − |z − uz[t∗(z, t )]|/c. In particular, t∗[uz(t ), t] =
t , so A[uz(t ), t] = A(0)

x [uz(t ), t] + 2πPx(t ). Substituting this
into Eq. (4), we obtain a closed-form equation for the polar-
ization,

d2Px

dt2
0

+ 2�′ dPx

dt0
+ ω2

0Px = −�0

π

d

dt0
A(0)

x [uz(t ), t], (6)

where �′ = � + �0. As follows from Eq. (6), the interaction
of the layer polarization with the electromagnetic field leads
to an increase of the polarization decay rate by �0. Therefore,
the latter describes the radiative decay rate of the oscillator.

III. TIME-RESOLVED SPECTROSCOPY

In order to reveal the frequency conversion for light re-
flected from the oscillating layer and analyze the crossover
between the Doppler and Raman effects, we propose to use
optical spectroscopy with a temporal resolution. In such an
approach, which is an alternative to traditional frequency-
resolved spectroscopy, one studies the response of the system
to short optical pulses. When the probe pulse duration is
smaller than the inverse width of the resonance, the reflected
pulse spectrum matches the frequency dependence of the
reflection coefficient [16–18]. Here, since the system under
study changes with time, the reflected pulse spectrum depends
on the time of incident pulse arrival and characterizes the
system reflectivity at that moment. To map the evolution of
optical properties, one should probe the system at moments

corresponding to various phases of mechanical motion. The
temporal separation between these moments should be kept
sufficiently large to avoid the interference of different probe
pulses.

We consider the illumination with a single δ pulse, de-
scribed by the electric field

E (0)(z, t ) = δ(t − τ − z/c) (7)

and vector potential A(0)(z, t ) = −cθ (t − τ − z/c), where τ is
the time of pulse arrival to z = 0. In what follows we suppose
that (i) the mechanical frequency � is much smaller than
the optical frequency ω0, i.e., the Raman shift is small as
compared to the light frequency. (ii) Motion is nonrelativis-
tic, u̇z � c; then the Doppler shift ω0�u0/c is also small as
compared to the light frequency. These assumptions are valid
for any solid-state optomechanical system [19]. Relativistic
motion can only be achieved for, e.g., density waves in plasma
[20], which are out of the scope of the present paper. If
conditions (i) and (ii) are fulfilled, Eq. (6) is solved as

Px(t ) = −�0

π

∫
e−iω[t−τ−uz (τ )/c]

ω2 − ω2
0 + 2iω�′

dω

2π
. (8)

Substituting this result into Eq. (5), we obtain the vector
potential of the reflected wave,

A(r)
x (z, t ) = 2�0

ω0
θ (τ ′) sin ω0τ

′ e−�′τ ′
, (9)

where τ ′ = t + z/c − τ − [uz(τ ) + uz(t + z/c)]/c. The re-
flected pulse spectrum, E (r)

x (ω) = ∫
E (r)

x (τ + t )eiωt dt , as-
sumes the form

E (r)
x (ω) = −�0

∫ ∞

0
ei(ω−ω0+i�′ )t+ik0[uz (τ )+u(τ+t )] dt, (10)

where k0 = ω0/c and we assumed additionally that the res-
onance of the layer is well resolved, �′ � ω0. A similar
consideration for the transmitted wave gives the spectrum

E (t )
x (ω) = 1 − �0

∫ ∞

0
ei(ω−ω0+i�′ )t+ik0[uz (τ )−u(τ+t )] dt, (11)

where the unity term stems from the spectrum of the incident
light pulse. The reflected and transmitted power spectra read
R(ω) = |E (r)

x (ω)|2 and T (ω) = |E (t )
x (ω)|2.

It is instructive to consider also the reflection and trans-
mission spectra averaged over the probe arrival time τ .
Performing the averaging in Eqs. (10) and (11), we get

R(ω) = �2
0

�′ C(ω − ω0), (12)

T (ω) = 1 − �0(�0 + 2�)

�′ C(ω0 − ω), (13)

where

C(ω) = Re
∫ ∞

0
C(t )eiωt−�′t dt, (14)

C(t ) = 〈eik0[uz (τ+t )−uz (τ )]〉τ , (15)

the angular brackets denote averaging over τ , and we recall
that �′ = � + �0. In the absence of nonradiative decay, � =
0, the conservation law

R(ω) + T (2ω0 − ω) = 1 (16)
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FIG. 2. The reflected light spectra after excitation of the resonant layer periodically moving in space with a short pulse. The plots are
calculated for various motion frequencies and amplitudes, revealing the crossover between different scattering regimes, indicated by the
background color. The left panels show the color plots of the spectra as a function of pulse arrival time τ . The right panels show the τ -averaged
spectra. The nonradiative resonance broadening is supposed to be absent, � = 0.

is fulfilled, i.e., the sum of the reflected spectral power taken at
the frequency shifted up by the Doppler effect and transmitted
spectral power taken at the frequency shifted down, or vice
versa, is equal to the spectral power of the incident pulse. If the
motion of the layer is invariant under time-reversal symmetry,
C(t ) = C(−t ), then C(t ) is real and C(ω) = C(−ω). In such a
case, both the reflected and transmitted power spectra are sym-
metric with respect to the resonance frequency ω0, while the
conservation law assumes a simpler form R(ω) + T (ω) = 1.
The total reflected power

∫
R(ω)dω/(2π ) = �2

0/�
′ does not

depend on the specifics of layer motion, that only redistributes
the power over the spectrum.

A. Periodic layer motion

First, we consider the case of the periodic layer motion
described by uz(t ) = u0 sin �t . Shown in Fig. 2 are the color
plots of the reflected light spectra R(ω) depending on the
pulse arrival time τ and calculated for various motion am-
plitudes and frequencies. The graphs on the right present
the τ -averaged spectra R(ω). We distinguish several regimes
indicated by the color fill.

When � � �′, the pulse is reflected at a timescale smaller
than the motion period. Therefore, its spectral conversion is
governed by the Doppler effect in the corresponding time
moment. If the Doppler shift is small, k0u0� � �′ [regime (i),
white area], the effect is smeared by resonance broadening.

If k0u0� � �′ [regime (ii), green area], the maximum of
the reflected spectrum shifts strongly with the pulse arrival
time τ following the layer velocity, ω0[1 − (�u0/c) cos �t],
indicated by the dashed curve, with a retardation on the
order of 1/�′.

As the motion frequency is increased, � ∼ �′, the side-
bands start to appear around the central peak that still follows
the cosine dependence of the Doppler shift [10]. The case
� � �′ corresponds to the well-resolved Raman sidebands
while the cosine dependence of the Doppler shift is fragmen-
tized. The τ -averaged spectra R(ω) is conveniently presented
as the sum of Lorentzians at the sideband frequencies,

R(ω) =
∞∑

n=−∞
J2

n (k0u0)
�2

0

(ω − n�)2 + �′2 , (17)

where Jn is the Bessel function of the first kind. When
the Raman scattering probability is weak, k0u0 � 1 [regime
(iii), yellow area], only the first-order scattering sideband is
revealed (see dashed lines indicating the sidebands at ω0 ±
�). If k0u0 � 1 [regime (iv), blue area], the sidebands of
higher order begin to appear, while the amplitude at the initial
frequency ω0 gets suppressed, in accordance with Eq. (17).
We note that Eq. (17) is valid in all scattering regimes. While
the peaks corresponding to different sidebands are well re-
solved in the regimes of the Raman effect (iii) and (iv), they
overlap in the regime of the Doppler effect (ii). Then, the
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FIG. 3. The transmitted light spectra after excitation of the resonant layer periodically moving in space with a short pulse. Background
colors indicate different scattering regimes. The left panels show the color plots of the spectra depending on the pulse arrival time τ . The right
panels show the τ -averaged spectra. The nonradiative resonance broadening is supposed to be absent, � = 0.

spectrum assumes a non-Lorentzian shape corresponding to
the time-averaged Doppler shift.

Figure 3 shows the color plots for the transmitted light
spectra. The Doppler shift has opposite signs for transmitted
and reflected light [cf. the spectra evolution in regime (ii) in
Figs. 2 and 3]. The other difference of the transmitted light
spectra from that of the reflected light is that the transmitted
light is the result of interference between the initial pulse
[first term in Eq. (11)] and the scattered light [second term
in Eq. (11)]. Depending on the phase of the scattered light,
the interference can be both constructive and destructive. As
a result, the spectral intensity of the transmitted pulse can be
both greater or smaller than that of the incident pulse [10],
which is encoded by red and blue colors in Fig. 3, respectively.

B. Stochastic layer motion

Now we turn to the case when the layer displacement uz(t )
is a stochastic function of time. The averaged reflection and
transmission spectra are still given by Eqs. (12)–(15), where
the averaging over τ should be replaced by averaging over the
realizations of the function uz(t ).

We assume that the displacement u(t ) has a Gaussian
probability distribution. To evaluate the spectra, we rewrite
Eq. (15) as C(t ) = 〈ei(ω0/c)

∫ t
0 u̇z (t ′ )dt ′ 〉. Next, we expand the

exponent into the series, use the Wick’s theorem, and obtain

C(t ) = e(k2
0/2)

∫ t
0

∫ t
0 K̈ (t ′−t ′′ )dt ′dt ′′

, (18)

where K (t ) = 〈uz(0)uz(t )〉 is the correlation function of the
layer displacement. Performing integration in Eq. (18), we
finally get

C(t ) = ek2
0 [K (t )−K (0)]. (19)

As an example, we consider the case when the layer motion
corresponds to a harmonic oscillator driven by a stochastic
force with a white-noise spectrum. The Fourier compo-
nent of the displacement correlation function is K (ω) ∝ 1/

[ω2 − (� + iγ )2], which yields

K (t ) = u2

(
cos �t + γ

�
sin �|t |

)
e−γ |t |, (20)

where � is the eigenfrequency of the oscillator, γ is its damp-
ing rate, and u2 is the variance of the layer displacement. We
suppose that γ � �,�′ and obtain

C(ω) = Re
∫ ∞

0
ek2

0 u2(cos �t−1)+iωt−�′t dt . (21)

Similarly to the case of periodic motion, the reflected pulse
power spectra can be decomposed into a sum of Lorentzians
centered at the Raman sideband frequencies,

R(ω) = e−k2
0 u2

∞∑
n=−∞

In
(
k2

0u2
) �2

0

(ω − n�)2 + �′2 , (22)

where In is the modified Bessel function of the first kind.
Resolved sidebands are realized in the regime of Raman
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FIG. 4. The intensity of the Raman sidebands in the spectra of
the pulse reflected from a resonant layer that moves (a) periodically
as u(t ) = u0 sin �t and (b) randomly with the correlation function
〈u(0)u(t )〉 = u2 cos �t . Points correspond to different motion am-

plitudes, characterized by parameters k0u0 and k0

√
u2, for the case

of periodic and random motion, respectively. Lines are a guide for
the eye.

scattering, � � �′; if � � �′, the spectrum assumes the
form of the averaged Doppler shift. Equation (22) can
be obtained by averaging the result for periodic motion
Eq. (17) over the Gaussian distribution of motion amplitudes,∫ ∞

0 R(ω)u0 e−u2
0/(2u2 )/

√
u2 du0.

Figure 4 shows the intensities of the sidebands for different
amplitudes of layer motion. Figures 4(a) and 4(b) correspond
to the cases of periodic and stochastic layer motion, respec-
tively. For periodic harmonic layer motion, in Fig. 4(a) the
sideband intensity oscillates with the sideband number. For
large motion amplitudes, the most intensive sideband is that
with the number ∝k0u0. In contrast, in the case of stochastic
layer motion shown in Fig. 4(b), the intensities of the side-
bands decay monotonously with the sideband number.

IV. TIME-MODULATED RESONANCE

The essence of the considered Doppler-Raman crossover
is the periodic modulation of the layer resonant frequency
due to the Doppler shift. However, such modulation can be
also realized directly. Generally, a deformation of the layer
can lead to a shift of its resonance. This effect is especially
strong in semiconductors, where the deformation potential
mechanism leads to a strong shift of the exciton energy by
δωx = �ζ , where ζ is the deformation and � ∼ 10 eV [6,21].

Consider the quantum well with the exciton resonance
frequency changing in time as

ωr (t ) = ωx + δωx cos �t (23)

due to the effect of an acoustic wave. The evolution of the
exciton dipole polarization of the quantum well is described
by the modified version of Eq. (6) with uz = 0 and ω0 replaced
with ωr (t ),

P̈x + ωr (t )2Px + 2�′Ṗx = −�0

π

∂A0

∂t
(0, t ). (24)

We again suppose that the frequency shifts are small
δωx,� � ωx and use the Wentzel-Kramers-Brillouin approx-

imation to solve Eq. (24),

Px(t ) = �0θ (t − τ )

π
√

ωr (t )ωr (τ )
sin

[∫ t

τ

ωr (t ′)dt ′
]

e−�′(t−τ ). (25)

Then, the reflected light spectrum at the frequencies close to
ωx is given by

Er (ω) = −�0

∫ ∞

0
ei(ω+i�′ )t−i

∫ τ+t
τ

ωr (t ′ )dt ′
dt, (26)

while the transmitted spectrum is Et (ω) = 1 + Er (ω). In the
absence of nonradiative damping, � = 0, the conservation law
has the form R(ω) + T (ω) = 1.

The reflected pulse spectra for the cases of a trem-
bling layer and a layer with oscillating resonance frequency,
Eqs. (10) and (26) match (up to a certain phase) if one takes
δωx(t ) = ω0u̇(t ). That is exactly the condition of the Doppler
shift for backscattered light being emulated by the direct mod-
ification of the resonance frequency. Similarly, the transmitted
light spectra match if δωx(t ) = −ω0u̇(t ).

V. CONCLUSION

To conclude, we have developed a theory of light inter-
action with moving resonant layers. The scattering of short
pulses by layers oscillating in space was considered. Our
calculation demonstrates that when the motion frequency is
small as compared to the resonance width, the spectrum of the
reflected pulse features a peak at the frequency that changes
in time, in accordance with the Doppler effect. In the opposite
case of high layer motion frequency, the reflected spectrum
comprises several Raman sidebands shifted by multiples of
the mechanical frequency. The intensities of the sidebands are
determined by the correlation function of layer displacement.
Both effects, as well as the crossover between them, can
be emulated by use of the quantum well, where the exciton
resonance frequency is modulated by strain.
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APPENDIX: DERIVATION OF THE ACTION

Here, we derive the Lagrangian describing the interaction
between the electromagnetic field and the moving dipole P(t ).
The dipole position at time t is given by r = u(t ). We start
from the action of a particle with charge e in electromagnetic
field [22],

S = e
∫

A[r(t ), t]ṙ(t )dt . (A1)

The dipole P(t ) can be represented by two charges, +e and
−e, located at coordinates r = u(t ) + P(t )/2e and r = u(t ) −
P(t )/2e, respectively. Then, using Eq. (A1) and considering
the limit e → ∞, we obtain the action

S =
∫

[(P · ∇)A(u, t ) + A(u, t ) · Ṗ]dt . (A2)
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Finally, we perform integration by parts and get

S =
∫

P · [E(u, t ) + u̇ × B(u, t )]dt . (A3)

Note that here P is the dipole in the reference frame at rest.
However, in the relevant case of u ⊥ P, it coincides with the
dipole in the moving reference frame.
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