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Single-mode lasers using parity-time-symmetric polarization eigenstates
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Anisotropic mirrors are used to form a laser resonator exhibiting non-Hermitian, parity-time (PT) symmetric,
polarization states. The relative angle of the two mirrors’ principal axes is used to control the degree of
nonhermiticity. A sharp symmetry-breaking transition is observed at a specific angle, called the exceptional
point, where the two states coalesce into a single polarization state and the interference pattern produced
by counterpropagating (CP) waves vanishes. At a smaller angle, in the unbroken PT symmetry regime, the
polarization state experiencing higher losses is suppressed. In the broken-symmetry regime, the two polarization
states coexist, but the orthogonality of the CP waves favors single longitudinal mode emission by suppressing
the interference pattern of the standing wave. The two regimes meet at the exceptional point, where a unique
polarization state exists in a resonator free from interference intensity pattern. Microchip PT-symmetric lasers
operating at the exceptional point are thus an attractive solution to achieve single-mode operation from a
miniature monolithic device without any intracavity element.
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I. INTRODUCTION

Bender and Boettcher showed in 1998 that parity-time
(PT) reflection symmetric operators can exhibit, like Hermi-
tian systems, entirely real eigenvalue spectrum, and therefore
could not be ruled out as possible representations of observ-
ables in quantum mechanics [1]. PT-symmetric operators also
exhibit spontaneous symmetry breaking when the value of
some nonhermiticity parameter is exceeded. It is in the field
of optics that PT-symmetric systems have the most success-
fully been applied (see reviews in Refs. [2–5] and references
therein.) In laser science, PT-symmetry breaking was ap-
plied to generate single longitudinal mode laser operation in
inhomogeneously broadened microring resonators [6,7]. In
one instance, a PT-symmetric single-mode laser was realized
by carefully matching the gain of one microring laser with
the loss of the other coupled resonator such that one single
mode experienced enhanced amplification from PT-symmetry
breaking while the other competing modes were suppressed
by remaining in the unbroken PT-symmetric region [6]. In
a different development, single-mode emission was achieved
by delicately manipulating the gain and loss distribution into
a whispering gallery mode laser utilizing the PT-symmetry-
breaking concept [7].

Here, we present an alternate route to achieve single-mode
laser operation that also makes use of PT-symmetry breaking
but does not require a delicate manipulation of gain and loss
between coupled resonators or their spatial distribution. We
show that anisotropic laser mirrors can be used to form a
laser resonator exhibiting non-Hermitian, PT-symmetric, po-
larization states. By adjusting the relative angle of the two
mirrors, the degree of nonhermiticity can be adjusted. In the
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unbroken PT-symmetry regime, dual-polarization oscillation
is suppressed, while in the broken PT-symmetry regime, sin-
gle longitudinal mode operation is achieved by eliminating
the axial intensity pattern of the standing wave. The two
regimes meet at the transition point between both regimes, the
exceptional point (EP), enabling single-frequency operation.

In conventional linear laser cavity designs, the intensity
pattern of the standing wave produces regularly spaced re-
gions of undepleted inversion density that can be used by
other axial modes to achieve laser oscillation despite their
lower emission cross section [8]. This generally gives rise
to undesired multiple mode operation. Inserting quarter-wave
plates in front of each laser mirror eliminates the contrast of
the standing wave by making counterpropagating (CP) waves
orthogonal [9]. This is the so-called twisted-mode operation,
wherein the interference between CP left- or right-circularly
polarized propagating eigenwaves produces a standing wave
with axially uniform intensity and a linear polarization state
that rotates like a twisted ribbon along the axial direction. But
this scheme has the notorious drawback of not discriminat-
ing between the two coexisting eigenpolarization states. As a
result, dual emission in both polarization states takes place;
it is generally eliminated by placing a polarization-selective
element between a λ/4 wave plate and a mirror [10–12].
Our concept gets rid of that competition between polarization
states at the root by eliminating the very existence of dual po-
larization, while retaining the advantage of single longitudinal
mode operation of the twisted-mode design.

The discovery of exceptional points (EPs) of polarization
goes back to the beginning of the 20th century in connection
to the propagation of light in absorbing biaxial crystals [13].
This phenomenon, observed for some specific directions of
light called singular axes, was correctly analyzed by Pan-
charatnam in 1955 [14]. In addition to demonstrating the
existence of the coalescence of eigenstates of polarization in
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singular directions, Pancharatnam showed that light beams
with polarization states other than the eigenstate gradually
transform into the eigenvector as it propagates along a singular
axis. Hence, Pancharatnam’s discovery really appears to be a
precursor to the recently proposed omnipolarizer [15]. The
idea of PT-symmetry breaking in the polarization space is
more recent and it generally aims at achieving active control
of polarization [15–21], like compact polarization convert-
ers. It is generally realized with engineered metasurfaces or
waveguides, wherein gain and loss are carefully balanced.

Our approach differs from previous works in that it does
not require exquisite adjustment of gain and loss or complex
nanofabrication steps. We also emphasize that, in contrast
with previous single-mode lasers based on PT-symmetry
breaking, the selective symmetry breaking of one mode is
not involved here. Indeed, in Ref. [6], the resonators are
designed such that only one mode strikes the right balance
of gain and loss and undergoes selective symmetry breaking,
thereby providing enhanced gain contrast and a mode selec-
tion mechanism. Here, the optical properties of the mirrors
do not significantly change on the scale of the mode spacing,
so several modes simultaneously experience the transition
from unbroken to broken PT symmetry at the exceptional
point. The single-mode selection is nevertheless enabled for
homogeneously broadened active materials by the elimination
of the axial spatial hole burning due to the orthogonality
of the polarization states of the counterpropagating waves.
The transition point between the two regions is identified as
the privileged operation point where effective discrimination
between dual-polarization states and competing longitudinal
modes is simultaneously achieved.

This paper is organized as follows. In Sec. II, we show
that a resonator made of anisotropic mirrors can produce a
characteristic polarization Jones matrix satisfying PT sym-
metry. First, we derive the round-trip Jones matrix of such
a resonator and then we compare it with the general form
of a PT-symmetric matrix for a two-by-two Jones matrix.
This enables us to identify diattenuation and a π -phase shift
between orthogonal principal axes of each mirror as the two
critical ingredients to achieve PT-symmetric eigenpolarization
states. The relative orientation of the mirrors’ principal axes,
α, is also identified as a flexible control parameter that en-
ables to continuously span the transition between unbroken
and broken PT-symmetry regions. In Sec. III, we describe
the experimental conditions used to demonstrate such a laser
system. We describe the laser resonator and the diagnostic
method of the polarization state of the emitted beam and the
experimental setup used to determine the frequency spectrum
of the emitted radiation in order to infer its mode content.
In Sec. IV, we show theoretical calculations and compare
them with experimental results. First, we present the eigen-
values and corresponding polarization eigenstates inside the
resonators. We relate the magnitude of the eigenvalues, which
provide the round-trip losses of the resonator, with the mea-
sured threshold of laser oscillation. We also calculate the
contrast of the standing wave inside the resonator and show
that they become orthogonal in broken PT-symmetric region,
thereby providing efficient elimination of spatial hole burning.
We measure the eigenpolarization states of the emitted beam
and experimentally confirm the suppression of one polariza-

tion state with higher losses in the unbroken PT-symmetric
region and the coalescence of eigenvectors at the exceptional
point. More importantly, we demonstrate the possibility of
single-mode laser operation exploiting PT-symmetry break-
ing. We present the emission spectrum of the emitted radiation
and confirm the prediction that the multilongitudinal mode
emission is suppressed in the broken PT-symmetric region.
We argue that the exceptional point is a privileged point where
both dual polarization and multimode emission are prevented.
We conclude in Sec. V with some discussion about the lim-
itations of our concept. We discuss the anticipated benefit of
reducing the length of the resonator by using nanostructured
anisotropic thin films as laser mirrors, the effect of small
errors in the phase shift of the mirrors and that of thermal
birefringence in the active medium on the performance of the
device.

II. THE PT-SYMMETRIC, TWISTED-MODE
LASER RESONATOR

We consider a standing-wave laser resonator made of two
linearly anisotropic mirrors. The optical response of a non-
depolarizing laser mirror can be modeled by a two-by-two
Jones matrix; they are represented by diagonal Jones matrices
in their principal basis as

M1 =
(r11 0

0 r12

)
xy

(1)

and

M2 =
(r21 0

0 r22

)
xy

, (2)

where each coefficient is complex. One mirror is rotated with
respect to the other around the resonator’s optical axis by
some angle α and we calculate the Jones matrix of an intracav-
ity round-trip, assuming there is no polarizing element inside
the resonator (thermal birefringence inside the active material
is assumed negligible). In our convention, an isotropic mirror
is noted as (1 0

0 −1)xy→x′y′ , the minus sign arising from the
fact that the polarization state at reflection is expressed in new
coordinates (x′, y′, z′) where the y and z axes are reversed at
the reflection. In the left-right circular basis, we obtain

M1 = 1

2

(1 −i
1 i

)(r11 0
0 r12

)(1 1
i −i

)

= 1

2

(r11 + r12 r11 − r12

r11 − r12 r11 + r12

)
lr

(3a)

and

M2 = 1

2

(r21 + r22 r21 − r22

r21 − r22 r21 + r22

)
lr
. (3b)

If one mirror is rotated by angle α, with respect to the other,
then the Jones matrix for a round-trip, J, is given by [22]

J = T M2T T M1T, (4)

where T is the rotation matrix by angle α/2, given by

T (α/2) =
(exp(iα/2) 0

0 exp(−iα/2)

)
. (5)
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The propagation inside the resonator in free space or
inside a homogeneous active material corresponds to a
multiple of the identity matrix and does not play any

role apart from a constant phase factor and is thus ig-
nored. The computation of Eq. (4) with Eqs. (3) and (5)
gives

J = 1

4

(
(r21 + r22)(r11 + r12) exp(2iα) + (r21−r22)(r11 − r12) (r21+r22)(r11 − r12) exp(iα)+(r21 − r22)(r11 + r12) exp(−iα)
(r21 + r22)(r11 − r12) exp(−iα) + (r21 − r22)(r11 + r12) exp(iα) (r21 + r22)(r11 + r12) exp(−2iα)+(r21−r22)(r11 − r12)

)
lr
.

(6)

Now, it is interesting to ask for the conditions required for
J to be PT-symmetric. If we have the general form of a PT-
symmetric Jones matrix and compare it to Eq. (6), we might
be able to specify the optical properties of the mirrors (i.e.,
the ri j values) and we might find an experimentally accessible
control parameter that makes it possible to continuously cover
the unbroken and broken PT-symmetric regions. We shall see
that such a control parameter does exist and is closely linked
to the torsion angle, α.

We define a matrix J as PT-symmetric if it satisfies the
commutation relation [1]:

(PT )J − J (PT ) = 0, (7)

where P is the parity operator and T is the time-reversal op-
erator, defined here as the complex conjugate. Mostafazadeh
[23], and Wang [24] derive the general form for a PT-
symmetric two-by-two matrix as

JPT =
( A+B cos θ − iC sin θ (B sin θ + iC cos θ+iD) exp (−iϕ)

(B sin θ + iC cos θ − iD) exp (iϕ) A − B cos θ + iC sin θ

)
, (8)

where A, B, C, and D can take any real value, 0 � θ < π

and 0 � ϕ < 2π . Wang used a different definition of the
time-reversal operator. We present another derivation in the
Appendix, consistent with our definition of the time-reversal
operator, which is based solely on the invariance of the eigen-
values by unitary transformations of polarization states.

By comparing Eqs. (6) and (8), we find that the round-trip
operator JRT can be made PT-symmetric by taking all rij as
real. The comparison gives

A = 1

4
[(r21+r22)(r11+r12) cos(2α) + (r21 − r22)(r11 − r12)],

(9a)

B = r21r11 − r22r12

2
cos α, (9b)

C = −1

4
[(r21 + r22)(r11 + r12) sin(2α)], (9c)

D = r22r11 − r21r12

2
sin α, (9d)

θ = π/2, (9e)

ϕ = 0. (9f)

We note that J is Hermitian when C = 0; hence, C deter-
mines the degree of nonhermiticity. We may define an order
parameter χ as (cf. the Appendix)

χ ≡ C2/(B2 + D2). (10)

The condition for unbroken symmetry, where J and PT
operators share the same eigenvectors and the eigenvalues are
real, is given by

χ � 1. (11)

It is instructive to compute χ for a simple case of a pair
of identical mirrors, i.e., r21 = r11 ≡ r1 and r22 = r12 ≡ r2 so

that M1 = M2 = (r1 0
0 r2

)xy. From Eqs. (9) and (10), we then
find

χ = (r1 + r2)2sin2(α)

(r1 − r2)2 . (12)

One can see that the nonhermiticity is controlled by the
torsion angle, α, and the dichroism, |r1 − r2|. The transition
occurs at the exceptional point, α = αEP, where χ = 1:

αEP = ± arcsin
( r2 − r1

r1 + r2

)
. (13)

Note that the transition between unbroken and broken PT
symmetry at the exceptional points exists only if:

(1) r1 and r2 have the same sign, which, in our convention,
implies that a π -phase shift exists between orthogonal axes;

and
(2) r1 �= r2, i.e., diattenuation exists.
Resonators made of mirrors without phase shift, where r1

and r2 take real values of opposite signs, are not interesting
despite their PT-symmetric character, because the PT symme-
try cannot be broken for any α value, since χ<1 for any α.
Likewise, resonators without diattenuation, where r1 = r2, are
not suitable for controlling PT symmetry, since χ>1, for any
α value, except for the trivial case, α = 0 and π /2, where the
resonator is isotropic.

III. EXPERIMENTAL METHODS

The laser resonator is made of a flat rear mirror that is
transparent to pump light (λ = 933 nm) and highly reflec-
tive at laser wavelength (λ = 1030 nm) and a concave output
coupler with a 100-mm radius of curvature and a 92% re-
flectance at the laser wavelength. An antireflection-coated
zero-order quarter-wave plate is placed in front of each mirror
to create a π -reflection phase shift between orthogonal axes.

043522-3



BISSON AND NONGUIERMA PHYSICAL REVIEW A 102, 043522 (2020)

A 1-mm-thick glass plate inclined at 60◦ near the Brewster
angle with respect to normal incidence is placed immediately
in front of the output-coupler–λ/4 plate combination: the three
components together simulate a deattenuating and birefrin-
gent mirror with π -phase shift with reflection matrix:

M1 =
(0.70 0

0 1.0

)
, (14)

in the horizontal-vertical basis, while the rear mirror–λ/4 com-
bination simulates a birefringent mirror with π -phase shift of
the form

M2 =
(1.0 0

0 1.0

)
, (15)

i.e, without any dichroism, in the basis of its principal axes.
The rear mirror is mounted on a rotation stage in order to
control the relative orientation α of the two mirrors and
study its effects on the laser characteristics. A 1-mm-thick,
antireflection-coated, 10 at %. Yb3+-doped Y3Al5O12 ceramic
is placed between the two mirrors. The total resonator length
is L ≈ 2.5 cm. The knowledge of the free spectral range (FSR)
enabled us to assign regularly spaced interference rings. The
mode size of the TEM00 Gaussian mode is estimated from
the resonator geometry alone to be about w0 = 120 μm near
the rear mirror. Light emitted from a fiber-coupled laser diode
emitting at 933 nm is concentrated on the active material in
an end-pumped scheme using a pair of plano-convex lenses
to match the size of the TEM00 fundamental mode inside the
active medium. In order to minimize the generation of heat
and thermal birefringence inside the active material, the pump
is turned on during 10 μs for most experiments and this is
repeated every 125 μs (8% duty cycle). Sometimes the pump
pulse duration needed to be increased or decreased in order to
make one of the two eigenpolarization modes to come out and
lend itself to analysis of its polarization state. Part of the emit-
ted laser radiation is sent onto a silicon-based photodetector to
enable the detection of the onset of the laser oscillation. The
minimum driving current of the laser diode required to obtain
the laser oscillation is sought by optimizing the alignment
of the cavity mirrors for every set α value. This, combined
with the knowledge of the current-power characteristics and
the fraction of absorbed pump power by the active element,
enable us to plot the threshold absorbed pump power as a
function of angle α.

For the determination of the polarization state outside
the resonator, the emitted radiation is transmitted through a
quarter-wave plate, called a compensator, followed by a po-
larizer, called an analyzer, each mounted on a rotation stage
that allowed us to adjust the rotation angle in order to reach
as close an extinction of the transmitted beam as possible.
Extinction can be obtained first by converting the generally
elliptical beam into a rectilinear polarization by aligning the
compensator’s fast axis with one axis of the elliptical pattern
of the transverse electric field vector and then by seeking
extinction by rotating the analyzer. Then, the angle of the
analyzer at extinction is subtracted from the angle of the fast
axis of the compensator (ξ ) to produce the angle ψ . Then, the
x, y, z coordinates on the Poincaré coordinates are determined

by using [25]

(x
y
z

)
=

(cos (2ξ ) cos (2ψ )
sin (2ξ ) cos (2ψ )

− sin (2ψ )

)
. (16)

We found that the two states in the broken PT-symmetric
region coexisted and randomly hopped from one to the other;
although a detrimental effect, this coexistence enabled us to
measure ξ and χ separately for each eigenstate.

The calculated external eigenstate vector is obtained by
multiplying the internal eigenstate vector incident on the out-
put coupler by matrix:

TM1 =
(√

0.70 0
0 −i

)
, (17)

where the upper left term accounts for diattenuation and the
second for the quarter-wave phase advance in the y direction.

The polarization states of counterpropagating waves of
each mode is also an important parameter for laser operation,
because the proximity of their polarization state determines
the axial intensity contrast of the standing-wave pattern and
the possibility of multiple longitudinal mode operation. If we
assume that the intensity of the CP waves is nearly equal,
the visibility V of the interference pattern is equal to the
magnitude of the Hermitian scalar product of the CP waves
of each mode i [22]:

V ≡ Imax − Imin

Imax + Imin

∼= ‖ui+†ui−‖, (18)

where ui+ and ui− denote the Jones vector of the mode i
propagating in the positive and negative z directions and the
symbol † denotes the conjugate transpose.

For the determination of the emission spectrum, the exper-
imental setup and the calculation used to convert the fringe
position in the camera into a frequency shift are explained
in detail in Ref. [26]. In summary, in order to analyze the
emission spectrum, the unabsorbed pump light at 933 nm is
first eliminated by using a low-pass filter cutting light at λ <

950 nm. The emitted beam is concentrated onto a Fabry-Perot
(FP) etalon (FSR = 30 GHz, finesse F = 30 at 1030 nm) with
a microscope objective with numerical aperture NA = 0.2.
A set of sharp circular interference fringes corresponding to
the matching of the resonance condition of the FP etalon
can be observed on a charge-coupled device camera placed
at the focal plane of an f = 70-mm lens. In the broken PT-
symmetry region, where competing polarization states could
be observed, the dual-polarization operation appeared as a
splitting in the frequency emission; then, the compensator and
the analyzer are adjusted to select only one of the two eigen-
modes. The timing of the trigger of the capture is adjusted
such that the chosen mode was emitted during the capture
window, which generally last 20 μs. At the exceptional point,
the two polarization states merge together, while inside the
unbroken-symmetry region, only one state can oscillate, the
other one being suppressed by the difference of intracavity
loss between them.
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IV. RESULTS

The calculated magnitude and phase of the eigenvalues are
shown in Fig. 1(a) as a function of α for our experimental
parameters. In the unbroken PT-symmetry region, |α| < αEP,
eigenvalues are pure real numbers; one polarization state
suffers higher losses than the other and is expected to be
suppressed in laser operation when the saturation of the active
medium takes place. In the broken PT-symmetry region, |α| >

αEP, eigenvalues are complex conjugates, which suggests that
dual-polarization emission will take place. The magnitude of
the eigenvalue is smaller than that of the preferred polarization
state in the unbroken PT-symmetry region, which implies that
a lower threshold of laser oscillation should take place in the
latter.

This is indeed what is experimentally found when mea-
suring the threshold pump power for laser oscillation, as a
function of α, Fig. 1(b). There are two regions of unbroken
symmetry corresponding to the fast axes of the quarter-wave
plates parallel or orthogonal. The oscillation threshold is
found to be constant in the broken PT-symmetry region and
sharply drops inside the PT-symmetric region, in accordance
with the magnitude of the calculated eigenvalues.

The calculated eigenvectors of the two modes inside the
resonators are shown in Fig. 2(a) as (x, y, z) coordinates on

FIG. 1. (a) Calculated magnitude (top) and phase (bottom) of the
eigenvalues of the Jones matrix of the round-trip. The square-root
dependence of the phase in the neighborhood of the exceptional point
is shown in the inset. (b) Experimental threshold of laser oscillation
as a function of α. A sharp drop in threshold is noticed at α = αEP ≈
±5◦ and also when one mirror is rotated by 90◦ in agreement with
the larger magnitude of the eigenvalues in the region of unbroken PT
symmetry.

the Poincaré sphere. The polarization states remain rectilinear
(z = 0) in the unbroken PT-symmetry region and their planes
of polarization rotate towards each other as |α| increases; then,
they merge together at the EP to form a single, degenerate
diagonal polarization state (x = 0, y = 1, z = 0); afterwards,
they split again in the broken-symmetry region to approach
circular left and right (z = ±1) at larger α values.

We analyzed the polarization states of the emitted beam
by seeking extinction with a compensator and an analyzer.
As expected, only one polarization state of the emitted beam
was observed in the PT-symmetric region because of the gain
saturation, while the emission randomly hopped between both
eigenpolarization states in the broken PT-symmetry region, al-
lowing for the characterization of each polarization state. The
experimental data, shown in Fig. 2(b), are in good agreement
with the theory and clearly show the coalescence of both states
at the exceptional point located near α = ±5◦.

The visibility of the interference pattern for each mode, as
calculated from the magnitude of the Hermitian scalar product
of the CP waves of each mode, is shown in Fig. 3 as a function
of α. The corresponding trajectories of the eigenvectors of
the counterpropagating waves of one mode are shown on the
Poincaré sphere in the inset of Fig. 3. The CP waves of each
eigenmode, initially parallel at α = 0, become increasingly
orthogonal as |α| increases; at the EP, the CP waves become
perfectly orthogonal and remain so throughout the broken
PT-symmetry region. The significance of this result is that
spatial hole burning [8–12,22,26,27] can be suppressed in
the broken PT-symmetry region. Therefore, the EP appears to
be a privileged operating condition where single longitudinal
emission in a single polarization state can be achieved.

The emission spectrum obtained at different α values using
a high finesse Fabry-Perot etalon are shown in Fig. 4. When
multilongitudinal mode operation took place, the frequency
interval was equal to the FSR (≈6 GHz), or to integral num-
ber of FSR. The transition between the multimode emission
in the unbroken PT-symmetric region to nearly single lon-
gitudinal mode operation in the broken-symmetry region is
clearly visible. In the broken-symmetry region (α = −15◦),
each polarization state can be detected separately with our
polarization analyzer but each polarization state was almost
single mode. At α = 0◦, the emission spectrum is highly mul-
timode but only one polarization state could be observed. Near
the exceptional point (α ≈ 5◦), the emission only shows one
polarization state and only two longitudinal modes could be
detected.

V. DISCUSSION AND CONCLUDING REMARKS

In summary, we have shown theoretically and exper-
imentally that PT-symmetry breaking of the polarization
eigenstates can be achieved with a twisted-laser resonator
made of anisotropic mirrors having both a π -phase shift be-
tween principal axes of each mirrors and diattenuation. The
torsion angle between the two mirrors is a versatile control
parameter that enables one to probe the transition between
unbroken and broken PT symmetry near the exceptional point
and control the properties of laser emission. Dual-polarization
oscillation is suppressed in the unbroken PT-symmetry
region, while multiple longitudinal mode emission is
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FIG. 2. (a) Calculated x,y,z coordinates on the Poincaré sphere of the two eigenpolarization states (solid blue and dashed red) inside the
resonator for the waves heading towards the output coupler. The two eigenstates merge at the exceptional point near ±5◦ (points B and D).
The corresponding trajectory of the modes on the Poincaré sphere is shown on the right. (b) Experimental (dots) and calculated (lines) x,y,z
coordinates on the Poincaré sphere of the two eigenpolarization states (solid and dashed lines) of the emitted radiation outside the resonator.
The two eigenstates merge at the exceptional point near ±5◦ where the polarization state is circular.

suppressed in the broken PT-symmetry region. Single-mode
laser operation can be achieved at the exceptional point by

FIG. 3. Contrast of the standing wave, identical for each eigen-
modes, as a function of the angle α. The counterpropagating waves
become orthogonal at α = αEP and remain so at larger α values. The
corresponding trajectories of the counterpropagating waves (red: the
wave going towards the output coupler) for mode 1 on the Poincaré
sphere is shown on the right.

suppressing dual-polarization emission and axial spatial hole
burning.

However, we experimentally found that the transition from
multimode to single longitudinal mode operation is not as
sharp as one would expect. Three factors may explain this.
First, the presence of intracavity elements makes the resonator
rather long (L = 2.5 cm, for a free spectral range of 6 GHz).
As a result, the tiny frequency spacing between neighbor-
ing modes promotes their competition, which materializes
as mode hopping by thermal instabilities. The second factor
is the imperfections of the optical elements, especially the
λ/4-wave plates. The third factor is thermally induced bire-
fringence inside the active medium.

Earlier results with twisted-mode lasers indicate that using
millimeter-long microchip lasers will eliminate the issue [27].
This will require the use of anisotropic thin-film mirrors or
nanofabrication techniques in order to get rid of the intracavity
elements we are currently using. Existing technologies such as
glancing angle deposition (GLAD) [28] or diffractive optical
elements etched into a dielectric multilayer such as circular
gratings [29], resonant gratings [30], or photonic crystals
[31,32] could be harnessed to realize such mirrors.
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FIG. 4. Frequency content of the emitted beam for the broken PT-symmetric at α = −15◦ (top two panels) for both polarization eigenstates,
near the EP at α = −5◦ (third panel) and in the unbroken symmetric region at α = 0◦ (lower panel). The corresponding interference patterns
are shown on the right.

We investigated by numerical simulations the effect of a
small phase shift ϕ between diagonal entries of the Jones
matrix: (|r11| 0

0 |r12| exp (iϕ)

)
xy

. (18)

It turns out that the PT-symmetric behavior can adversely
be affected by a small ϕ value. This is illustrated in Figs. 5(a)
and 5(b) for a phase shift of 2π /300, corresponding to the
specifications (λ/4±λ/300) of our quarter-wave plates, and
otherwise for our experimental conditions. The transition at

the exceptional point is smoothened, the degeneracy of the
eigenvalues and eigenvectors is lifted, and the counterprop-
agating waves of each mode are not perfectly orthogonal
beyond the EP anymore. Hence, an error on the required
π -phase shift between orthogonal axes of only 2π /300 is
sufficient to lift the degeneracy at the EP and to deteriorate
the uniformity of the standing wave. However, we also noted
that using mirrors having opposite phase shifts, such as(|r11| 0

0 |r12| exp (iϕ)

)
xy

(19)
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FIG. 5. (a) Effect of a small error on the mirror phase shift
between orthogonal directions on the eigenvalue spectrum of the
round-trip Jones matrix near the transition between unbroken and
broken PT symmetry, for the perfect case discussed in the paper, for
an identical 2π /300 phase shift and for opposite phase-shift values
on both mirrors. (b) Effect on the contrast of the standing wave for
the same conditions as shown in (a).

and (|r21| exp (iϕ) 0
0 |r22|

)
xy

, (20)

has almost no detrimental effect on the eigenvalues, eigenvec-
tors, and the contrast of the standing-wave pattern, and are
therefore a good approximation of PT-symmetric matrices, cf.
Fig. 5. Using a shorter resonator will also relax tolerances
on the mirrors’ optical properties because the requirement for
a uniform axial intensity pattern is not necessary to achieve
single-mode operation, provided the gain difference between
neighboring modes is sufficient [22].

Thermally induced birefringence was also ignored in our
calculations and it is worth asking whether this was justified.
This phenomenon arises from the heat deposited into the
active material by the absorbed pump light. The inhomoge-
neous temperature profile produced by heat diffusion induces
thermal strain inside the active material, which in turn, causes
a spatially inhomogeneous thermally induced birefringence
by the photoelastic effect [33]. This modifies the state of
polarization of light passing through the active medium in an
inhomogeneous manner. We did witness some depolarization
of the emitted beam by measuring the extinction ratio of each
eigenmode with our polarization analyzer. We expected the
phenomenon to worsen at higher pump power, but the oppo-
site trend was observed. In the broken PT-symmetry region,

the polarization extinction ratio (PER) was measured to be
around 100 just above the oscillation threshold and improved
steadily at higher pump power to reach 200 at a pump power
of 1.5 times the oscillation threshold. In the unbroken PT-
symmetric region, the measured PER value near α = 0◦ was
on the order of 1000 just above the oscillation threshold and
increased to more than 3000 at three times the threshold pump
power. That the PER was much higher in the unbroken region
can be explained by the observation, made by Clarkson [34],
that placing a λ/4 plate on one side of the resonator and a
polarizer aligned with one axis of the λ/4-wave plate on the
other side reduces depolarization losses by orders of magni-
tude. The mechanism is as follows: Depolarization losses for
horizontally polarized incident light are generally zero at 0◦
and 90◦ azimuthal locations around the pump axis because
these positions have their principal axes of the thermally in-
duced birefringence aligned with the horizontal and vertical
directions; conversely, the depolarization losses are usually
highest in the diagonal azimuthal locations (i.e., ±45◦ with
respect to the polarizer axes). However, at those azimuthal
locations, the incoming vertically polarized beam splits into
equal amount of diagonal components that undergo different
amounts of phase shift, but these components are exchanged
by rotation of the plane of polarization by 90◦ when traveling
back and forth through the λ/4 and the phase shifts are also
exchanged when passing through the active medium in the re-
turn trip, resulting in negligible depolarization losses at ±45◦
and ±135◦ as well. This scenario takes place here too near
α = 0 because the eigenvector at 0◦ is vertically polarized
due to the presence of the Brewster plate, which acts as a
polarizer. As α increases, the polarization states rotate (Fig. 2)
and this scheme becomes not as effective; this explains why
the depolarization losses are higher in the broken region. Why
the PER improves at higher pump power is not understood
at this time; nevertheless, the fact that the PER was high,
combined with our experimental findings of a sharp transi-
tion at α ≈ ±5◦, and excellent agreement of the measured
and the calculated polarization states for any α value support
both the neglect of depolarization by thermal birefringence
and our model of eigenpolarization state based on our linear
model.
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APPENDIX: THE PT-SYMMETRIC JONES MATRIX AND
THE CONTROL PARAMETER OF NON-HERMITICITY

We present a derivation of the general PT-symmetric ma-
trix [Eq. (8)] and the control parameter χ [Eq. (10)]. We define
a matrix J as PT symmetric if it satisfies the commutation
relation [1]:

(PT )J − J (PT ) = 0, (A1)

where P is the parity operator and T is the time-reversal opera-
tor, defined here as taking the complex conjugate, ∗. Equation
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(A1) is equivalent to

PJ∗ = JP. (A2)

Now, we want to derive a general form of a PT-symmetric
Jones matrix J that can be expressed in any orthogonal basis of
Jones vectors. First, we try a particular form of the P matrix:

P =
(1 0

0 −1

)
. (A3)

This choice is justified by the generally accepted properties
of a parity operator: it is Hermitian, unitary, and it is an
involution (i.e., it is its own inverse). If we write

J =
(a b

c d

)
, (A4)

where a, b, c, and d coefficients are complex in general, then
condition of PT symmetry, Eq. (A2), implies that a and d be
real, and b and c be imaginary. Hence, we write

J =
(
η iβ
iδ γ

)
, (A5)

where η, β, γ and δ are all real. Now, one is free to express
J in any basis of one’s choice. An orthogonal basis of Jones
vectors can be parametrized as

u1 =
( cos θ/2

sin θ/2 exp (iϕ)

)
(A6a)

and

u2 =
( − sin θ/2

cos θ/2 exp (iϕ)

)
, (A6b)

where angles θ (0 � θ < π ) and ϕ (0 � ϕ < 2π ) uniquely
determine any polarization state. Hence, the corresponding
unitary transformation is

R =
( cos θ/2 − sin θ/2

sin (θ/2) exp(iϕ) cos θ/2 exp(iϕ)

)
, (A7)

and we have

J ′(θ, ϕ) = RJR−1 =
( cos θ/2 − sin θ/2

sin (θ/2) exp(iϕ) cos θ/2 exp(iϕ)

)(
η iβ
iδ γ

)( cos θ/2 sin (θ/2) exp(−iϕ)
− sin θ/2 cos θ/2 exp(−iϕ)

)
. (A8)

A cumbersome but straightforward calculation of Eq. (A8) gives

J =
( A + B cos θ − iC sin θ (B sin θ + iC cos θ + iD) exp (−iϕ)

(B sin θ + iC cos θ − iD) exp (iϕ) A − B cos θ + iC sin θ

)
, (A9)

where

A = η + γ

2
, (A10a)

B = η − γ

2
, (A10b)

C = β + δ

2
, (A10c)

and

D = β − δ

2
. (A10d)

Note that A, B, C, and D can take any real value. The P
matrix also changes form when using a different basis. Let P′
be the P matrix in the new basis. The commutation operation
Eq. (A2) implies that

PR−1∗J∗R∗ = R−1JRP, (A11a)

which in turn implies

RPR−1∗J ′∗ = J ′RPR−1∗. (A11b)

By comparing Eq. (A2) with Eq. (A11b), we find

P′ = RPR−1∗. (A12)

With the chosen unitary operation R, P′ becomes

P′ = RPR−1∗ =
( cos θ sin θ exp(iϕ)

sin θ exp(iϕ) − cos θ exp(2iϕ)

)
. (A13)

It is noteworthy that the general form of P is neither unitary,
nor Hermitian, nor an involution. Now, the unbroken PT sym-
metry corresponds to the conditions for the PT operator and
J to share a common set of eigenvectors. In order to identify
the constraints on the A, B, C, D parameters for the unbroken
symmetry to be valid, it is convenient to choose a specific
unitary transformation: that is with θ = 0 and ϕ = π/2 in
Eqs. (A9). One obtains

J ′ =
( A + B C + D
−C + D A − B

)
, (A14)

i.e., the four entries are real without further restrictions and
the corresponding P operator is

P′ =
(1 0

0 1

)
, (A15)

which is the identity matrix. The eigenvectors of the P’T oper-
ator are then just those of T, the complex conjugate operator.
Hence, the entries of the P′T eigenvectors are any pair of
coefficients with the same phase, or equivalently, any pair of
real entries with a common global phase factor. Now, it is easy
to show that the condition for the eigenvectors to J′ to also
have pure real eigenvectors is that their eigenvalues be real.
This condition is ensured by forcing the discriminant of the
characteristic equation∣∣∣A + B − λ C + D

−C + D A − B − λ

∣∣∣
= 0 ⇔ λ2 − 2Aλ + A2 − B2 + C2 − D2

= 0 (A16)
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to be positive, i.e.,

B2 − C2 + D2 > 0. (A17)

Defining the χ parameter as

χ ≡ C2/(B2 + D2) (A18)

from which the condition for real eigenvalues

χ � 1 (A19)

directly arises. This is the general condition for the unbro-
ken PT symmetry, since the eigenvalues are invariant by a
similarity transformation. Matrix J becomes defective when
C2 = B2 + D2 and this corresponds to the exceptional points
discussed in the main text. One could argue that, with the def-
inition (A13), PT is hardly a parity-time reflection symmetry
operator. However, the important thing here is the condition
of the existence of pure real eigenvalues and the spontaneous
breaking of “PT” symmetry at some value of the control
parameter (χ = 1).
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