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Isospectral and square-root Cholesky photonic lattices
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Cholesky factorization provides photonic lattices that are the isosectral partners or the square root of other
arrays of coupled waveguides. The procedure is similar to that used in supersymmetric quantum mechanics.
However, Cholesky decomposition requires initial positive-definite mode-coupling matrices and the resulting
supersymmetry is always broken. That is, the isospectral partner has the same range as that of the initial
mode-coupling matrix. It is possible to force a decomposition where the range of the partner is reduced but
the characteristic supersymmetric intertwining is lost. As an example, we construct a Cholesky isospectral
partner and the square root of a waveguide necklace with cyclic symmetry. We use experimental parameters
from the telecommunication C band to construct a finite-element model of these Cholesky photonic lattices to
good agreement with our analytic prediction.
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I. INTRODUCTION

The optical analogy of supersymmetric quantum mechan-
ics (SUSY QM) can be traced back to planar waveguides with
an elliptic transversal index profile, where the paraxial ap-
proximation provides exact SUSY that breaks for nonparaxial
fields [1]. Theoretical curiosity gave place to practical applica-
tions with the proposal to use SUSY as a tool for the synthesis
of optical structures with particular spectral properties in both
bulk and discrete optics [2]. In particular, discrete SUSY pho-
tonic lattices may serve in optical communications providing
multiplexing schemes [3], mode selection [4], optical inter-
sections [5], Bragg grating filters [6], and mode conversion
[7,8], to mention a few examples.

The analogy between the wave equation in the paraxial
approximation and the Schrödinger equation allows using
standard SUSY QM techniques [9], for example, the Darboux
transformation of an optical analog to the Hamiltonian Ĥ1 =
−(h̄2/2m)(d2/dx2) + V1(x) ≡ ÂÂ† to produce an isospectral
partner Ĥ2 = −(h̄2/2m)(d2/dx2) + V2(x) ≡ Â†Â. The effec-
tive potentials, proportional to the square of refractive index
distributions, are related by a superpotential W (x) that solves
Riccati equations V1(x) = W 2(x) + (h̄/

√
2m)W ′(x), V2(x) =

W 2(x) − (h̄/
√

2m)W ′(x), and allows writing the operators
Â = −(h̄/2m)(d2/dx2) + W (x) and Â† = (h̄/2m)(d2/dx2) +
W (x). This technique is commonly used to design optical
systems [6,10]. The analysis is done for an infinite-dimension
device that is cut off to a size large enough to see the desired
effects in real world applications [2–8,10–16]. On the other
hand, it is possible to work with finite-dimensional optical
devices and show SUSY with different Witten indices by the
addition of PT symmetry [17]. This has inspired the use of
optical lattices and their superpartners to design laser arrays
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by the addition of gain and loss following different seeding
patterns [12–15,18]. Factorization methods from linear alge-
bra are a practical tool in some of these designs [2,3,7,13–
15,18,19].

Our research program advocates the use of abstract
symmetries to optimize optical design processes [20]. For
example, it is possible to construct SUSY photonic lattices
partners that have a semi-infinite dimension using the special
unitary algebra su(1, 1) as the underlying symmetry [16,21].
While the closed-form analysis is done in infinite dimensions,
large arrays of the order of hundreds of elements follow the
analytic predictions. It is also possible to construct SUSY
partners for finite-dimensional lattices using, for example, an
underlying su(2) symmetry [22]. In discrete optical systems
described by coupled-mode theory, Cholesky factorization is
a helpful linear algebra tool to decompose the mode-coupling
matrix [2,7,19], and then use the particular modes as seeds to
design, for example, parity anomaly lasers [13].

In the following, we review Cholesky factorization of
positive-definite real symmetric matrices and its relation with
the properties expected from standard SUSY QM with a
Witten index two [23–27]. We show that this approach pro-
vides us with isospectral and square-root partners with an
underlying symmetry defined by the supersymmetric algebra
[28] (Sec. II). Then, we use waveguide necklaces with an
underlying cyclic group ZN symmetry as the original partner
to construct practical examples of broken SUSY partners. In
particular, we provide an analytic isospectral partner for a
two-waveguide necklace and a square-root partner for a four-
waveguide necklace. We compare our theoretic predictions
with a numeric finite-element modeling simulation based
on experimental parameters from laser-inscribed realizations
(Sec. III). In Sec. IV, we discuss the fact that it is possible
to force a pseudo-zero-energy mode. The result is a viable
optical system that shows the spectral characteristics but is
not exact SUSY as the intertwining relation breaks. We close
with a summary and our conclusion in Sec. V.
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II. CHOLESKY LATTICES

Coupled-mode theory simplifies the description of electro-
magnetic field modes propagating though arrays of coupled
waveguides [29]. Instead of describing polarized localized
spatial field modes at each waveguide, Ej = E j�(r)ε̂, it pro-
vides an approximation,

i∂zE = ME, (1)

for the dynamics of the complex field amplitudes summa-
rized in the amplitude vector with a jth component E j =
E j . The diagonal terms of the mode-coupling matrix pro-
vide information about the propagation constant of localized
field modes, Mii = βi > 0, and the off-diagonal ones of the
coupling strength between modes localized in pairs of waveg-
uides, Mi j = Mji = gi j > 0. Usually, nearest neighbors are
the strongest coupled and a standard approximation is to
neglect high-order neighbors. In the optical and telecommu-
nication regimes, the propagation constants are at least three
orders of magnitude larger than the coupling strengths. Under
these circumstances, the mode-coupling matrix is positive
definite.

Cholesky factorization decomposes a positive-definite Her-
mitian matrix,

M = A A†, (2)

into the product of a positive-definite lower triangular ma-
trix A and its conjugate transpose A†; herein, we call these
Cholesky matrices. This suggests the use of SUSY QM ideas
to construct the isospectral partner of our mode-coupling ma-
trix. Let us define a new pair of extended Cholesky matrices,

Q =
(

0 1

0 0

)
⊗ A and Q† =

(
0 0

1 0

)
⊗ A†, (3)

that are nilpotent by construction, Q2 = Q†2 = 0. In conse-
quence, these two matrices commute,

[H, Q] = [H, Q†] = 0, (4)

with a new block-diagonal matrix,

H = Q Q† + Q† Q =
(

M 0

0 P

)
, (5)

that has our mode-coupling matrix M and a new matrix,

P = A† A, (6)

that we call its partner, in the main diagonal. It is straightfor-
ward to show a matrix intertwining relation,

Q† HM = HP Q†, (7)

where we define expanded mode-coupling and partner matri-
ces, HM = Q Q† and HP = Q† Q, in that order. It is possible
to construct the normal modes of the extended partner matrix
starting from those of the extended coupling matrix,

HM m j = μ j m j, (8)

and multiply them by Q† from the left,

Q† HM m j = μ j Q† m j, (9)

to use the matrix intertwining relation,

HP Q† m j = μ j Q† m j, (10)

and obtain the extended partner matrix normal modes,

HP p j = μ jp j, with p j = Q† m j . (11)

The extended matrix has identical spectrum as long as
Q†m j �= 0. Cholesky factorization provides positive-definite
extended matrices. In consequence, this method always pro-
vides isospectral partners.

We keep borrowing from SUSY QM and construct a pair
of Hermitian matrices,

HX = Q† + Q, and HY = −i
(
Q† − Q

)
, (12)

that are the square root of the previous diagonal matrix,

H2
X = H2

Y = H, (13)

and share normal modes with it,

HX x j = x j x j, and H x j = x2
j x j . (14)

These modes are doubly degenerate for the diagonal matrix H
as we can define some general mode,

v j = HY x j, (15)

and realize that it is also an eigenvalue of the new matrix,

HX v j = −x jv j, (16)

where we used the fact that {HX , HY } = HX HY + HY HX =
0 leads to the relation HX HY = −HY HX . This eigenvalue
equation implies that the spectrum of the block-diagonal
matrix H is doubly degenerate and the spectrum of the block-
antidiagonal matrix HX has paired eigenvalues ±x j .

Before moving forward to practical examples, we want
to stress that the Cholesky decomposition of Hermitian
positive-definite mode-coupling matrices M provides isospec-
tral partners P. Thus, the block-diagonal matrix H has a
doubly degenerate spectrum and its square-root matrix HX has
a paired spectrum. Owing to the fact that the mode-coupling
matrix diagonal terms are larger than the off-diagonal terms,
we can find a sequence of isospectral partners and square-root
matrices just by decomposing,

M = α1 + Mα. (17)

As long as the new effective mode-coupling matrix Mα is
positive definite, we can find isospectral and square-root ma-
trices of Mα for each parameter α that might or might not be
experimentally viable.

III. WAVEGUIDE NECKLACES

In order to provide a working example, we study a so-
called waveguide necklace composed by N identical cores
equidistantly distributed on a circle of radius r. The spec-
trum of these arrays is straightforward to calculate including
couplings of all orders [30]. We assume a weakly coupled
necklace described by the mode-coupling matrix,

[M(β0, g)]i, j = β0δi, j + g(δi, j+1 + δi+1, j ), (18)

where the propagation constant of the localized modes at each
waveguide is β0, the coupling strength between first neighbors
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is g, and the addition in Kronecker delta subindices is modu-
lus N such that N + k ≡ modN (N + k) = k. The spectrum is
positive definite,

β j = β0 + g

⎧⎪⎨
⎪⎩

(−1) j−1, N = 2,

2 cos ( j−1)
m π, N = 2m,

2 cos 2( j−1)
2m+1 π, N = 2m + 1,

(19)

and has m duplicated elements with one (two) nonduplicated
values for odd (even) dimension. The spectrum elements with
a minimum value,

βmin = β0 − g

⎧⎨
⎩

1, N = 2,

2, N = 2m,

2 cos 2m
2m+1π, N = 2m + 1,

(20)

suggest the decomposition,

M(β0, g) = (β0 − ε)1 + M(ε, g), ε > β0 − βmin, (21)

to construct any given Cholesky isospectral and square-root
matrices by focusing on just the positive-definite reduced
coupled-mode matrix M(ε, g).

A. Isospectral partner example

Let us start from the simplest analytically solvable exam-
ple, two waveguides with a reduced coupled-mode matrix,

M(ε, g) =
(
ε g
g ε

)
, ε > g, (22)

with eigenvalues

λ1 = ε − g and λ2 = ε + g, (23)

and Cholesky decomposition

A =
(√

ε 0
g√
ε

√
ε2−g2

ε

)
, (24)

yielding a partner mode-coupling matrix,

P(ε, g) =

⎛
⎜⎝

ε2+g2

ε
g
√

ε2−g2

ε2

g
√

ε2−g2

ε2
ε2−g2

ε

⎞
⎟⎠, (25)

isospectral to the original matrix M(ε, g) with a different
experimental arrangement. The diagonal elements point to a
2g2/ε difference between the propagation constants of the
localized modes in the waveguides and their coupling con-
stant is smaller than the original partner. We introduce the
propagation constant difference into our design by controlling
the transverse area or the refractive index of the waveguide
cores and the smaller coupling constant by separating the
waveguides.

As a practical example, we use two cylindrical waveg-
uides of radius r = 4.5 μm, with core and cladding refractive
indices nco = 1.4479 and ncl = 1.444, respectively, and sep-
aration between core centers of 3 r. In the telecomm C band,
λ = 1550 nm, these lead to localized mode propagation con-
stants and coupling strength β = 5.876 42 × 106 rad/m and
g = 416.193 rad/m, in that order. We propose a value of
ε = 1.1g to construct a partner mode-coupling matrix. This

(b)

(c) (d)

01− 1

0

r4−

r4 ( )( )

(a)

0

r4−

r4

r4r4− 0 r4r4− 0

FIG. 1. Finite-element modeling of normal modes (a), (b) of
a two-waveguide necklace and (c), (d) its isospectral partner.
The propagation constant is (a)–(c) βa = 5.876 48 × 106 rad/m for
asymmetric and (b)–(d) βs = 5.877 31 × 106 rad/m for symmetric
modes; see text for more details.

implies a difference between the effective localized propaga-
tion constants of 
β = 756.715 rad/m and coupling strength
g = 173.385 rad/m. The difference in propagation constants
corresponds to an increment of 7.496 × 10−3% in the re-
fractive index of one of the waveguides that is reasonable
with changes in the writing speed for laser-inscribed setups
[31–36]. The new coupling strength implies a separation of
3.606 060r between the waveguide cores (Fig. 1). The ana-
lytic effective propagation constants for the asymmetric and
symmetric normal modes are βa = 5.876 003 × 106 rad/m
and βs = 5.876 835 × 106 rad/m and the finite-element
model simulation provides βa = 5.859 239 × 106 rad/m and
βs = 5.860 186 × 106 rad/m for M, and βa = 5.859 626 ×
106 rad/m and βs = 5.860 143 × 106 rad/m for P, that are
within 0.3% of the predicted values.

B. Square-root example

A waveguide necklace with four elements N = 4 described
by the following real symmetric, positive-definite reduced
coupled-mode matrix,

M(ε, g) =

⎛
⎜⎝

ε g 0 g
g ε g 0
0 g ε g
g 0 g ε

⎞
⎟⎠, (26)

with the restriction ε > 2g has a real positive spec-
trum {ε − 2g, ε, ε, ε + 2g} with corresponding orthonor-
mal modes m1 = (−1, 1,−1, 1)/2, m2 = (0,−1, 0, 1)/

√
2,

m3 = (−1, 0, 1, 0)/
√

2, and m4 = (1, 1, 1, 1)/2 independent
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FIG. 2. Sketch of (a) the square-root Cholesky lattice associated
to a four-element necklace (note the negative coupling), and (b) its
nine-waveguide realization; see text for more details.

of the system parameters {ε, g}. Its associated Cholesky
matrix,

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
ε 0 0 0

g√
ε

√
ε2−g2

ε
0 0

0 g
√

ε
ε2−g2

√
ε(ε2−2g2 )

ε2−g2 0

g√
ε

−g2√
ε(ε2−g2 )

gε2√
2g4ε−3g2ε3+ε5

√
ε(ε2−4g2 )
ε2−2g2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(27)

has one negative element. This is not an issue as it is possible
to falsify negative couplings using additional elements [37].

Our square-root lattice requires an array of eight coupled
waveguides with one negative coupling [Fig. 2(a)]. We
falsify it using nine waveguides [Fig. 2(b)] that share an
effective core radius r = 4.5 μm and cladding material
with a refractive index ncl = 1.444 as before. In order
to falsify the negative coupling provided by Cholesky
decomposition, we add an auxiliary value and optimize its
refractive index and those of sites four and six to obtain
nE = 1.448 094 and n4 = n6 = 1.447 901. The rest of the
cores share the index ni = 1.447 900 with i = 1, 2, 3, 5, 7, 8.
The distances di j between the ith and jth waveguides are
{d15, d25, d26, d36, d37, d45, d47, d4E , d6E , d18} = {5.00224,

5.5, 5.10528, 5.39646, 5.14751, 5.5, 5.14751,4, 4,9.79616} r

m
)

/
ra

d
6

(1
0

j
β

1

9
1 9

1

0

k

j

(b)
875.5

870.5

865.5

860.5

1 9
j

(a)

FIG. 3. (a) Propagation constant β j obtained from the analytic
Cholesky square-root array with negative coupling strength (tri-
angles), its analytic nine-waveguide realization (circles), and its
finite-element model simulation using COMSOL (diamonds) and our
in-house Mathematica routines (squares). (b) Fidelity overlap be-
tween analytic and numerical normal modes, F j,k = |a∗

j · nk |.

with corresponding coupling strengths {g15, g25, g26, g36, g37,

g45, g47, g4E , g6E , g18} = {24.1136, 12.0568, 20.883, 13.922,

19.6887, 12.0568, 19.6887, 98.8544, 98.8544, 0.0341018}
rad/m. These parameters are within experimentally
reported values [33,36] and allow us to falsify the required
coupled-mode matrix.

Figure 3(a) compares the propagation constants obtained
from the eight-waveguide array with a negative coupling pro-
vided by the analytic Cholesky factorization in triangles, its
nine-waveguide array realization where all coupling strengths
are positive in circles, the numeric result from finite-element
modeling using COMSOL in diamonds, and those produced by
our in-house Mathematica routines in squares. The average
relative error between the coupled-mode theory analytic re-
sults for the nine- and eight-waveguide arrays is of the order
of (3.747 ± 8.570) × 10−5% while that between COMSOL and
analytic results is of the order (2.855 ± 0.044) × 10−1%. The
relative error between COMSOL and our Mathematica results is
of the order (3.33 ± 4.83) × 10−3%. In addition, we use the
fidelity overlap,

F = |a∗
j · n j |, (28)

to compare the analytic a j and numeric n j normal modes of
the nine-waveguide realization in Fig. 3(b). A fidelity value of
one points to identical vectors, while a zero value to orthog-
onal vectors. The mean average value for the fidelities in our
example is 0.913 ± 0.059, which points to good agreement
that can be improved between our analytic and finite-element
models. We want to emphasize that the lowest fidelities arise
from the two pairs of normal modes with a shared effective
propagation constant. This points to the fact that it may be
possible to construct a linear superposition for each of these
pairs that has a better overlap with the closed-form analytic
modes.

IV. FORCING ZERO-ENERGY MODES

It is straightforward to realize that the limit case,

ε → β0 − βmin, (29)

forces a pseudo-zero-energy mode in the mode-coupling ma-
trix partner. Doing so invalidates the Cholesky decomposition
SUSY results as the reduced mode-coupling matrix arising
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FIG. 4. Propagation constant α j for the effective matrix M(ε, g),
its partner P, and its Cholesky square-root array HX for (a) broken
SUSY, ε > 0, and (b) forcing a pseudo-zero-energy mode, ε = 0.

from this choice is not positive definite. Still, the Cholesky
lower A and upper A† triangular pair reconstructs the original
coupled-mode matrix M and provides a partner P that has
two pseudo-zero-energy modes. One of these modes is an
isolated localized mode uncoupled to the array and the other is
a normal mode of the array. However, the algebraic properties
that sustain the SUSY analogy are not fulfilled; for example,
the intertwining relations are no longer valid.

As a practical example, let us discuss the Cholesky arrays
for a four-waveguide necklace. The simplest way to force a
pseudo-zero-energy mode is by choosing the decomposition
parameter ε = 2g [13]. This produces a null fourth column in
the Cholesky matrix A. Physically, this means that the SUSY
partner is a three-waveguide array that has identical normal
modes to the original mode-coupling matrix but for the one
corresponding to the lowest propagation constant; compare
the first two columns in Figs. 4(a) and 4(b). In the square-root
lattice, this means that the eighth waveguide decouples from
the fourth waveguide [Fig. 2(b)]. Thus, instead of the original
broken SUSY without a pseudo-zero-energy mode [the third
column in Fig. 4(a)], we do not account for the mode localized
in the decoupled waveguide and obtain a spectrum with a null
effective propagation parameter mode [the third column in
Fig. 4(b)]. Formally, the arrays constructed in this manner do
not fulfill SUSY QM. For example, the pseudo-zero-energy

mode does not arise from SUSY considerations but for the fact
that we have an effective odd-dimensional, real symmetric,
traceless mode-coupling matrix. Nevertheless, this pseudo-
zero-energy mode is a normal mode of a pseudochirality
operator that induces a π phase on the fields inside the first
half of the waveguides and leaves the rest unchanged and may
be used to design robust lasers [13,38,39].

V. CONCLUSION

We showed that Cholesky factorization is a reliable method
to construct broken SUSY isospectral and square-root part-
ners of photonic lattices described by coupled-mode theory.
The mode-coupling matrices designed in this form fulfill all
characteristics from SUSY QM with a Witten index two.

We constructed the isospectral and square-root partner of
waveguide necklaces that may be experimentally realized
using femtosecond laser-writing techniques. Broken SUSY
square-root partners are interesting because negative coupling
strengths arise for necklaces of dimension four or more. We
used an additional waveguide to simulate such processes. A
comparison of our analytic predictions with numeric finite-
element model simulations shows good agreement in both
cases.

It is possible to force a spectrum with a reduced range that
points to exact SUSY using reduced mode-coupled matrices
with a null main diagonal. Although these are not positive
definite as required by Cholesky factorization, the resulting
Cholesky matrices provide feasible partner photonic lattices.
These partners do not correspond to exact SUSY as the inter-
twining relations are not fulfilled.
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