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The recently identified possibility of ground-state cooling of a mechanical oscillator in the unresolved
sideband regime by combination of the dissipative and dispersive optomechanical coupling under the red
sideband excitation [Phys. Rev. A 88, 023850 (2013)] is currently viewed as a remarkable finding. We present a
comprehensive analysis of this protocol, which reveals its very high sensitivity to small imperfections such as an
additional dissipation, the inaccuracy of the optimized experimental settings, and the inaccuracy of the theoretical
framework adopted. The impact of these imperfections on the cooling limit is quantitatively assessed. A very
strong effect on the cooling limit is found from the internal cavity decay rate which, even being small compared
with the detection rate, may drastically push that limit up, questioning the possibility of the ground-state cooling.
Specifically, the internal loss can only be neglected if the ratio of the internal decay rate to the detection rate is
much smaller than the ratio of the cooling limit predicted by the protocol to the common dispersive-coupling
assisted sideband cooling limit. Moreover, we establish that the condition of applicability of theory of that
protocol is the requirement that the latter ratio is much smaller than one. A detailed comparison of the cooling
protocol in question with the dispersive-coupling-assisted protocols which use the red sideband excitation or
feedback is presented.
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I. INTRODUCTION

During the past decade the dissipative optomechanical
coupling introduced into optomechanics by Elste, Girvin,
and Clerk [1] attracted an appreciable attention of theorists
[2–18] and experimentalists [19–24]. For such a coupling,
in contrast to that dispersive, the mechanical oscillator mod-
ulates the decay rate of the cavity but not its resonance
frequency. The dissipative coupling has brought about some
new physics in optomechanics. For example, once this cou-
pling is involved, the theory predicts a generation of a stable
optical-spring effect, which is not-feedback-assisted [7], a vir-
tually full squeezing of the optical noise in a system exhibiting
no optomechanical instability [12], and not-feedback-assisted
cooling of a mechanical oscillator under the resonance excita-
tion [9]. Here the latter was also documented experimentally
[20].

Among the predictions for the dissipative-coupling-based
systems, the most promising is that on a very efficient laser
cooling [1,4]. It is a phenomenon of the weak-coupling regime
[25] where the light-pressure-induced contribution to the me-
chanical damping γopt is much smaller than the cavity decay
rate γ . In this regime for an appreciable cooling, the phonon
number can be viewed as originated from two contributions:
one is due to the quantum noise in the bandwidth of the
oscillator and the other is due to that in the bandwidth of
the optical cavity. The former scales as 1/γopt, it usually
dominates the cooling while the latter, scaling as 1/γ , can
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typically be neglected. In the system where both disper-
sive and dissipative coupling are active and under a proper
detuning, due to interference effects the first contribution “ac-
cidentally” vanishes [1,4]. As a result the second “small” term
dominates the story, leading to a record-low cooling limit as
was theoretically demonstrated by Weiss and Nunnenkamp
[4]. However, once the system is not ideal, e.g., because of
the presence of some internal cavity loss, such a limit will
be pushed up [1,4]. The same holds for the inaccuracy of
the optimized detuning �. Keeping in mind the situation
where the otherwise leading term “accidentally” vanishes, one
expects these nonideality effects to be anomalously strong.
We mean that, at γint/γ � 1 or/and δ�/� � 1 (here δ� is
for the deviation of � from its optimal value and γint is the
internal decay rate of the cavity), the idealized cooling limit
may be substantially affected. On the same lines, one may be
concerned about the impact of inaccuracy of the single-mode
Langevin equation used for the calculations [1,4]. The point is
that, in terms of more precise calculations, the contribution in
question may stay nonzero at any settings. There also exists
an additional limitation for the applicability of the results
by Weiss and Nunnenkamp [4]: when these are applied one
should check that (i) it is the weak-coupling regime and (ii)
the cold friction does not make the mechanical oscillator
overdamped.

From the above it becomes clear that the experimen-
tal implementation of the promising result by Weiss and
Nunnenkamp [4], not speaking about practical technical is-
sues, may be more demanding than just the fulfillment of
the optimized settings found in Refs. [1,4]. This justifies the
need to specify the range of applicability of this result and

2469-9926/2020/102(4)/043520(8) 043520-1 ©2020 American Physical Society

https://orcid.org/0000-0002-7547-3078
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.043520&domain=pdf&date_stamp=2020-10-21
https://doi.org/10.1103/PhysRevA.88.023850
https://doi.org/10.1103/PhysRevA.102.043520


ALEXANDER K. TAGANTSEV PHYSICAL REVIEW A 102, 043520 (2020)

formulate additional conditions for its practical implemen-
tation. This job is the main subject of the present paper,
which is organized as follows: In Sec. II, the result by Weiss
and Nunnenkamp is reproduced, presented in a simple form,
and an explicit criterion for its applicability is given. In
Sec. III, the impact of the internal cavity loss is evaluated.
Section IV is devoted to the impact of the inaccuracy of the
optimal settings. In Sec. V, effects beyond the single-mode
Langevin-equation accuracy are addressed. Section VI dis-
cusses the dissipative-coupling-assisted protocol versus those
dispersive-coupling-assisted. Section VII gives a brief resume
of the paper.

II. THE RESULT BY WEISS AND NUNNENKAMP
AND CRITERION FOR ITS APPLICABILITY

A one-sided optomechanical cavity enabled with the
dispersive and dissipative optomechanical couplings is con-
sidered, the coupling constants being denoted as gω and gγ ,
respectively. The system is pumped with a strong monochro-
matic light (the frequency is ωL, the photon-flux-normalized
complex amplitude is A0). The fluctuations of the cavity field
are described with the photon ladder Bose operator a while
the fluctuations of the mechanical variable are described with
the phonon ladder Bose operator b. These operators satisfy the
following equations [1]:

∂a
∂t

+ {γ /2 − i�}a

= √
γ Ain + [igωa0 + gγ (a0 − A0/

√
γ )](b† + b),

a0 = √
γ A0/(γ /2 − i�), (1)

∂b
∂t

+
(γm

2
+ iωm

)
b = √

γmbin + i
xzpf

h̄
F, xzpf =

√
h̄

2mωm
,

(2)

where � = ωL − ωc is the detuning and the operator of the
backaction force has the following form:

xzpf

h̄
F = gωa∗

0a + i
gγ√
γ

[(a∗
0Ain − A∗

0a)] + H.c., (3)

where h̄ is the Planck constant, ωc and γ are the resonance
frequency and the decay rate of the cavity, while m, ωm, and
γm are the effective mass, resonance frequency, and decay rate
of the mechanical oscillator, respectively. Here H.c. stands
for Hermitian conjugate. Operator Ain describes the vacuum
noise:

[Ain(t ), A†
in(t ′)] = δ(t − t ′), [Ain(t ), Ain(t ′)] = 0,

〈Ain(t )Ain(t ′)〉 = 〈A†
in(t )Ain(t ′)〉 = 0, (4)

while bin describes the mechanical thermal noise (nth stands
from the number of thermally excited phonons):

[bin(t ), b†
in(t ′)] = δ(t − t ′), [bin(t ), bin(t ′)] = 0,

(5)〈bin(t )bin(t ′)〉 = 0, 〈b†
in(t )bin(t ′)〉 = nthδ(t − t ′),

with 〈. . .〉 and [. . . , . . .] denoting the ensemble averaging and
the commutator, respectively.

The goal is to find the phonon occupation number. This is
a linear problem, which, in the Fourier domain, can be solved
exactly [3,4]. However, according to Ref. [4], an approximate
solution, keeping a fair accuracy, provides informative analyt-
ical results.

The approximate procedure is as follows: In the Fourier
domain, Eq. (1) can be solved with respect to a. Inserting a
into Eq. (2), its b-dependent part leads to a renormalization of
the mechanical susceptibility, which can be written as follows:

χ (ω) = 1

�M (ω)/2 − i[ω − 	M (ω)]
. (6)

The other part yields the stochastic backaction force, Fsb(t ).
If we neglect frequency dependent renormalization of γ and
� due to the optomechanical coupling, the spectral power
density of Fsb(t ), which is defined as

SFF(ω) =
∫

dteiωt 〈F(t )F(0)〉, (7)

reads [1]

SFF(ω) = |a0|2g2
γ

γ (xzpf/h̄)2

(ω + ωh)2

(γ /2)2 + (ω + �)2 , (8)

where

ωh ≡ 2� + γ gω/gγ . (9)

The mechanical spectrum, which is defined as

Sbb(ω) =
∫

dteiωt 〈b†(t )b(0)〉, (10)

can be expressed in terms of SFF(ω) and χ (ω) as follows [4]:

Sbb(ω) = |χ (−ω)|2[γmnth + (xzpf/h̄)2SFF(ω)]. (11)

The relation

n = 〈b†b〉 =
∫

Sbb(ω)dω/2π (12)

can be used to find the number of phonons in the system,
which is denoted as n.

Using explicit expressions for �M (ω) and 	M (ω) as well as
Eqs. (6), (11), (8), and (12), one can numerically evaluate the
cooling of the mechanical oscillator. Commonly, to advance
analytically, in the expression for χ (ω), one replaces [26]
	M (ω) with ωM , which satisfy the equation 	M (ω) = ω while
�M (ω) is replaced with γM = �M (ωM ).

In this approximation [4],

n = γm

γM
nth + |a0|2g2

γ γ −1

(γ + γM )2/4 + (ωM − �)2

×
[

(ωh − ωM )2

γM
+ (ωh − �)2

γ
+ γ + γM

4

]
. (13)

This way calculated γM can also be obtained using the
following result of the quantum noise approach for the light-
pressure-induced mechanical decay rate [25]

γopt ≡ γM − γm = (xzpf/h̄)2[SFF(ωM ) − SFF(−ωM )]. (14)

The above approximate treatment is valid if the renormal-
ized mechanical oscillator is weakly damped, i.e.,

γM � ωM, (15)
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while the optomechanical system is in the weak-coupling
regime [25], where

γopt � γ , (16)

which also practically implies

γM � γ . (17)

Obviously, the neglect of the renormalization of γ and �, cru-
cial for the calculations, is justified only in the weak-coupling
regime. Thus, Eqs. (16) and (15) validate the whole theory.

Equation (13) can be rationalized: the first term in the
brackets is the contribution of the quantum noise in the band-
width of the mechanical oscillator whereas the second and
third are conditioned by the noise in the bandwidth of the
optical cavity. In the weak-coupling regime addressed, the first
contribution is expected to be dominant unless some special
cancellation take place.

In the case of the purely dispersive coupling, i.e., at gγ →
0 and gω 
= 0, in Eqs. (13), indeed only the first term in the
brackets is to be kept. This leads to a well-known result for the
phonon occupation number, which, for the optimal detuning
� = −ωM , reads

n = nth + ndispV

1 + V
, V ≡ |a0|2g2

ω

(γ /2)2 + 4ω2
M

16ω2
M

γ γm
, (18)

where

ndisp = γ 2

16ω2
M

(19)

is the minimal phonon occupation that can be reached for the
dispersive-coupling-assisted sideband cooling [25,27] under
red-sideband excitation.

If the both optomechanical couplings are active, there
appears the possibility of breaking through in the minimal
phonon occupation number. Specifically, at ωh = ωM , i.e., at

2� = ωM − γ gω/gγ , (20)

the contribution of the quantum noise in the bandwidth of the
mechanical oscillator vanishes due to the Fano effect [1]. As a
result the minimal phonon number is controlled by the “small”
second and third terms in the brackets in Eq. (13). For such a
detuning, one finds [4]

n = γm

γM
nth + U, (21)

where

U ≡ |a0|2
g2

γ

γ 2
(22)

is proportional to the laser power and

γM = γm + UγmG, G = G0

1 + (3ωM/γ − gω/gγ )2 ,

G0 = 16ω2
M

γ γm
. (23)

Equation (21) can be also rewritten as follows:

n = nth

1 + GU
+ U . (24)

Minimization of Eq. (24) with respect to the intensity of the
pumping light yields the following minimal phonon number:

ndiss = nth

(
2√
Gnth

− 1

Gnth

)
, (25)

which is reached at

U = U0 ≡
√

nthG − 1

G
. (26)

Next, since we are interested in the situation where ndiss �
nth, Eqs. (25) and (26) can be rewritten as follows:

ndiss = 2

√
nth

G
(27)

and

U0 = ndiss

2
. (28)

Further optimization is possible by manipulating with the
ratio of the optomechanical coupling constants [4], specifi-
cally, by setting

γ gω/gγ = 3ωM, (29)

we maximize G up to G0. Note that Eq. (29) also implies

� = −ωM . (30)

This brings us to the following minimal phonon number that
can be reached in the presence of the dissipative and dispersive
coupling:

ndiss = 1

2

√
nth

Q

γ

ωM
, (31)

where Q = ωM/γm is the quality factor of the decoupled me-
chanical oscillator. Hereafter, when referring to this result, we
will use “dissipative-coupling-assisted limit” as shorthand.

This cooling limit is reached at the following photon cavity
occupation:

|a0|2 = ndiss

2

(
γ

gγ

)2

. (32)

One readily notices that, in the bad-cavity limit, i.e., at
γ � ωM , and if the system is dominated by the dissipative
coupling, i.e., at gω/gγ � 1, G is always close G0 such that
Eq. (31) is valid without satisfying condition (29), while the
detuning is different from that given by Eq. (30).

One can readily find the range of applicability of the cool-
ing limit given by Eq. (31). Combining (14), (23), (19), and
(28), one finds

γopt

γ
= ndiss

2ndisp
. (33)

Thus, for the validity of Eq. (31), condition (16) requires that

ndiss � 2ndisp, (34)

while condition (15) yields

ndiss � 2ndisp
ωM

γ
. (35)

In other words, the validity of the cooling limit pre-
dicted in Ref. [4] requires that that limit must be appreciably
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deeper than the dispersive-coupling-assisted limit for the red-
sideband excitation (19).

III. IMPACT OF THE INTERNAL LOSS

The impact of the internal cavity loss on the Fano effect in
question was discussed earlier [1,4]. Specifically, in Ref. [4],
it was pointed out that, depending on the ratio of γint/γ ,
the quantum noise interference becomes less perfect and, ul-
timately, if γint/γ � 1, the force spectrum is a Lorentzian.
However, as was stated in the introduction, in view of the
specifics of the system, one can expect a strong impact of the
internal cavity loss on the cooling limit already at γint/γ � 1.

Let us show this. The internal loss entails an additional
contribution to the spectral power density of the backaction
force, which can be approximated as follows: [4]

SFF,int (ω) = Uγint

(xzpf/h̄)2

(γ /2)2 + (� + γ gω/gγ )2

(γ /2)2 + (ω + �)2 . (36)

To be exact, in this expression, one should replace γ with
the total cavity decay rate γ + γint. In what follows, being
interested in the situation where γ � γint, we will ignore this
replacement.

One readily checks that this contribution leads to a gener-
alization of Eq. (24) to find

n = nth + HU

1 + GU
+ U, H = γint

γm

(γ /2)2 + (� + γ gω/gγ )2

(γ /2)2 + (ωM − �)2 .

(37)
For the optimized regime given by Eqs. (29) and (30), the con-
tribution of the internal loss to the minimal phonon number
via Eq. (37) reads

nint = H

G0
= γint

γ
ndispβ, β = (γ /2)2 + 16ω2

M

(γ /2)2 + 4ω2
M

. (38)

Next, the requirement nint � ndiss brings us to the conclusion
that the impact of the internal loss can be neglected if

γint

γ
� 1

β

ndiss

ndisp
= ndiss

8

β

(
ωM

γ

)2

. (39)

One readily checks that an identical estimate follows for the
requirement

HU0 � nth. (40)

Using Eq. (33), Eq. (39) can be also rewritten as follows:

γint � 2

β
γopt. (41)

This result implies, that, roughly, to neglect the impact of
the internal loss on cooling, the internal loss decay rate should
be much smaller than the light-pressure-induced mechanical
damping. Such a requirement is much more demanding than
γint � γ , which one might expect.

IV. IMPACT OF INACCURACY OF THE OPTIMAL
SETTINGS

The cooling limit given by Eq. (31) was obtained as a
result of three conditions satisfied: (i) an optimal detuning

[Eq. (20)], (ii) an optimal laser power [Eq. (26)], and (iii) an
optimal ratio of the coupling constants [Eq. (29)].

The impact of the inaccuracy of the optimal detuning
can readily be evaluated by using Eq. (13) to find that a
small deviation of the detuning � from the optimal value of
(ωM − γ gω/gγ )/2 by δ� will lead to an additional number of
phonons

n� = Uγ 2

(γ /2)2 + (ωM − �)2

4δ�2

γ γM
, (42)

which, for the optimal settings (29) and (30), can be rewritten
as follows:

n� = δ�2

�2

(γ /2)2

(γ /2)2 + 4ω2
M

. (43)

Next, the requirement n� � ndiss brings us to the conclusion
that the impact of inaccuracy of the detuning δ� on the
phonon number can be neglected if

δ�

�
�

√
ndiss

(γ /2)2 + 4ω2
M

(γ /2)2 . (44)

Equation (24) readily implies that the impact of the inac-
curacy of the optimal laser power on the cooling limit can be
neglected if

δU

U0
� 1, (45)

where δU is the deviation of U from its optimal value U0.
Equations (27) and (23) enable the evaluation of the in-

crease of ndiss caused by a small violation of the condition
γ gω/gγ = 3ωM , which reads

ng = ndiss

2

(
δ

3ωM

γ

)2

, (46)

where δ ≡ (γ gω/gγ − 3ωM )/(3ωM ), implying that the inac-
curacy associated with this condition can be neglected if

δ �
√

2

3

γ

ωM
. (47)

Conditions (44), (45), and (47) suggest that, in the unre-
solved sideband regime, only the requirement from the tuning
inaccuracy may be stringent in the case of very deep cooling
(at ndiss � 1), i.e., the condition δ�

�
� 1 does not guarantee

a negligible correction to the idealized cooling limit. As for
the resolved sideband regime, the requirements for both the
coupling-constant ratio and detuning may be demanding.

V. BEYOND THE SINGLE-MODE LANGEVIN EQUATION

The key element of the theory discussed is the Fano-effect-
driven cancellation of the contribution to the phonon number
from the quantum noise in the bandwidth of the mechanical
oscillator. Such a cancellation is the result of the single-mode
quantum Langevin-equation approximation. Evidently, one
cannot exclude that, in terms of more precise calculations,
this contribution may stay nonzero at any settings. This issue
can be elucidated for the case of the Michelson-Sagnac inter-
ferometer [10,20], which nowadays is a good candidate for
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an experimental implementation of the dissipative-coupling-
assisted ground-state cooling. A virtually exact treatment of
this system is available [9] on the lines of the so-called “input-
output relations” [28] approach [14,29,30], a method widely
employed in the gravitational-wave community. The result
obtained in Ref. [9] for the spectral power density of the
stochastic backaction force in the signal-recycled Michelson-
Sagnac interferometer can be rewritten in terms of a one-sided
cavity controlled by a common action of the dissipative and
dispersive coupling (see the Appendix) to find

SFF(ω) = |a0|2g2
γ

γ (xzpf/h̄)2

(ω + ωh)2 + (πωhω/ωFSR)2

(γ /2)2 + (ω + �)2 , (48)

cf. Eq. (8), where ωFSR is the cavity free spectral range. With
such a modification, the condition ωh = ωM does not lead
any more to the cancellation in question. Thus, beyond the
Langevin-equation approximation, by using Eq. (48) at the
optimized settings, we find the following additional contribu-
tion to the phonon number

nL =
(3π

2

ωM

ωFSR

)2 (γ /2)2

(γ /2)2 + 4ω2
M

, (49)

implying that this contribution can be neglected if

ωM

ωFSR
� 2

3π

√
ndiss

(γ /2)2 + 4ω2
M

(γ /2)2 . (50)

It is seen that this condition may be more stringent than the
criterion of applicability of the single-mode Langevin equa-
tion, ωM

ωFSR
� 1. The presence of ωFSR in Eq. (49) suggests that

this contribution may be attributed to the multimode nature of
the interferometer.

VI. COMPARISON WITH THE
DISPERSIVE-COUPLING-ASSISTED PROTOCOLS

A. Sideband cooling

An important result of Sec. III is that the theory of Weiss
and Nunnenkamp [4] predicts a cooling limit that is always
lower than that for the dispersive coupling at the red-sideband
excitation. This is an exact analytical result, which is consis-
tent with the results of numerical simulations from Ref. [4].
However, the application of this conclusion to a real situa-
tion should be done with a reservation for the limitations of
the applicability of this theory, which were presented above.
Among these limitations, the most stringent is related to the
internal cavity loss, which, even being relatively small, i.e.,
at γint � γ , can essentially push up the cooling limit (31) to
the value given by Eq. (38). At the same time, remarkably, in
the regime dominated by the internal loss but at γint � γ , the
dissipative-coupling-assisted cooling still yields the minimum
phonon number a factor of βγint/γ , with 1 < β < 4, smaller
than the dispersive-coupling-assisted cooling limit.

The cooling limit of a protocol is not its only merit. The
in-cavity photon number needed to approach the limit also
matters. To characterize the dispersive-coupling-assisted cool-
ing, one can use the phonon number corresponding to the
phonon occupancy 2ndisp, i.e., twice the dissipative-coupling-
assisted limit. Using Eq. (18), the photon number in question

reads

|a0|2 = nth

Q

ωM

γ

(γ /2)2 + 4ω2
M

γ 2

(
γ

gω

)2

. (51)

Equation (51) is to be compared with Eq. (32), which gives
the in-cavity photon number needed to reach the cooling limit
(31). To have a reference point, we set gω

∼= gγ . For such a
setting, comparing Eq. (51) with Eqs. (32) and (31), one may
conclude that, for typical experimental parameters, Eq. (32)
requires a much larger photon number. Thus, for the lower
dissipative-coupling-assisted limit, the price of a higher in-
cavity field has to be paid. This may question the advantage of
the dissipative-coupling-assisted protocol. However, for a bal-
anced judgment, one can compare Eq. (51) with the in-cavity
photon number needed to reach the level of 2ndisp phonons
via the other protocol. Taking into account that ndisp must be
much larger than ndiss and using Eq. (24), the aforementioned
in-cavity photon number can be evaluated as follows:

|a0|2 ≈ nth

2Q

ωM

γ

(
γ

gγ

)2

. (52)

Comparing Eq. (51) with Eq. (52), one concludes that, in
the sideband-resolved regime where the dispersive-coupling-
assisted protocol is commonly viewed as the ultimate tool, the
other protocol may require a much a smaller in-cavity photon
number for the same cooling level. For gω

∼= gγ , the gain is
about 8(ωM/γ )2.

Thus, in many aspects, the dispersive-coupling-assisted
protocol looks advantageous for sideband cooling.

B. Feedback-assisted cooling

As is commonly recognized [1,4,31], the principle ad-
vantage of the dissipative-coupling-assisted protocol is the
possibility of ground-state cooling in the unresolved-sideband
regime. Another cooling protocol that enables ground-state
cooling in that regime is feedback-assisted cooling via com-
mon dispersive coupling. Let us compare these protocols. For
the latter, using a well-known result [32], ground-state cooling
is possible with a phonon number that can be approximated as
follows:

nfb = ndet + 4√
ηdet

nthnimp, (53)

where ndet = 0.5(
√

1/ηdet − 1) is the detector-controlled
limit,

nimp = γ γm

64|a0|2g2
ω

(54)

is the number of imperfection noise quanta, and ηdet is the
detector efficiency. Equation (53) is to be compared with the
result by Weiss and Nunnenkamp [4]

ndiss = 1

2

√
nth

Q

γ

ωM
. (55)

Upon comparing these two cooling protocols, one may no-
tice that the

√
nth-versus-nth difference between Eqs. (55) and

(53) makes the dissipative-coupling-assisted protocol more
robust against a temperature increase.
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To illustrate the competitivity of these protocols, we
consider a situation where, in a real experimental setup, ex-
ploiting the feedback protocol, instead of using the feedback
loop, one hypothetically satisfies the optimal conditions for
the dissipative-coupling-assisted protocol. We take a recent
experimental paper [32] reporting a record-deep feedback-
assisted cooling, the experimental parameters of which read

nth
∼= 105, Q = 109, γ /ωM = 16, ηdet = 0.77.

This paper also documents the value of nimp = 5.8 × 10−8,
which is three orders of magnitude smaller than previously re-
ported values. For the laser power used, the estimate (53) was
dominated by the detector-controlled limit nfb = 0.07 while
the minimal number of phonons measured experimentally was
about 0.3.

At the same time, for the experimental parameters from
this paper, the dissipative-coupling-assisted cooling proto-
col predicts ndiss = 0.02 as a cooling limit, which is lower
than ndet = 0.07 and close to the value of the second term
in Eq. (53). Thus, the dissipative-coupling-assisted protocol
looks competitive, if the conditions for its implementation are
met. One readily checks that the requirement of sufficiently
low internal loss [Eq. (41)] is the most demanding. For the
above parameters, via Eqs. (33) and (19), it implies

γint

γ
� ndiss

2ndisp
≈ 0.6 × 10−3. (56)

Clearly, it is a very demanding requirement, which probably
makes it impossible to reach the cooling given by Eq. (31) for
the system parameters from Ref. [32]. If this requirement is
not met, the cooling limit will be given by Eq. (38) such that
the ground-state cooling becomes problematic. In addition,
one should realize that the implementation of the dissipative-
coupling-assisted protocol may require an unrealistically high
number of in-cavity photons.

VII. CONCLUSIONS

It was shown that the advanced dissipative-coupling-
assisted cooling limit ndiss, Eq. (31), derived in Ref. [4] is valid
if it is lower than the dispersive-coupling-assisted limit under
the red-sideband excitation ndisp, Eq. (19). Strictly speaking,
the range of applicability of this result is given by Eqs. (16)
and (17), which can also be rewritten as follows:

nth

Q
� 1

16

( γ

ωM

)3
and

nth

Q
� 1

16

γ

ωM
. (57)

Otherwise, the light-pressure effect makes the mechanical
oscillator overdamped while the weak-coupling regime does
not take place such that the theory goes out of its range of
applicability and its results do not hold any more.

As expected, the situation with the Fano-effect-driven
cancellation of the otherwise leading contribution results in
stringent requirements from the accuracy of satisfying the
conditions needed to reach the predicted idealized cooling
limit.

The internal cavity loss, ignored by the original theory,
may affect the cooling limit already when the associated decay
rate γint is much smaller than the external cavity decay rate γ :
the internal cavity loss becomes relevant when γint is about

FIG. 1. Schematic of Michelson-Sagnac interferometer. The part
marked with a dashed-line rectangle can be considered as an effective
input mirror with x-dependent parameters such that the system can
be viewed as a one-sided cavity.

the light-pressure-induced mechanical decay rate, which is
much smaller than γ . Alternatively, the condition providing
to neglect the internal loss can be written as follows:

γint

γ
� ndiss

2ndisp
. (58)

A similar situation takes place with the accuracy of
satisfying the optimized conditions for the detuning and
coupling-constant ratio. Such an inaccuracy may essentially
affect the idealized cooling limit already in the regimes where
the relative inaccuracy of these parameters is small.

It was also shown that the aforementioned Fano-effect-
driven cancellation is lifted in terms of more precise
calculations. As a result, in reality, the idealized cooling limit
may be substantially affected.

An instructive conclusion of the paper states that, in
the sideband-resolved regime where the dispersive-coupling-
assisted protocol is commonly viewed as the ultimate tool,
the dissipative-coupling-assisted protocol may require a much
smaller in-cavity photon number for the same cooling level.

The material of the present paper clearly suggests that the
dissipative-coupling-assisted cooling protocol is competitive
once it is perfectly implemented, which, however, may be
challenging. Here the stringent limitations on the realization
of the idealized scenario, which were addressed in this paper,
may be essential.
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APPENDIX: STOCHASTIC BACKACTION FORCE
IN MICHELSON-SAGNAC INTERFEROMETER

The Michelson-Sagnac interferometer (MSI) is schemati-
cally depicted in Fig. 1. In this setup, the beam splitter (BS)
and the membrane, shown with a wiggled line, are character-
ized by following scatting matrices:(T −R

R T

)
and

(−r t
t r

)
, (A1)
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where all coefficients of the matrices are real and positive, and
t and T stand for the transmission coefficients. All mirrors im-
pose a π phase shift at reflection. The membrane is displaced
to the left from its symmetric position by the distance x. The
BS-M1 and BS-M2 distances equal La. The M1-M2 distance
equals 2l . The end-mirror-BS distance equals ls. The part of
MSI marked with the dashed rectangle can be considered as an
effective mirror. The whole MSI can be treated as an optome-
chanical Fabry-Perot cavity of a fixed length L = La + l + ls
with the input mirror, the scattering matrix of which reads [9]

M =
(
ρ τ

τ −ρ∗
)
, ρ = |ρ|eiμ, (A2)

ρ = −2RT t − (R2 − T 2)r cos 2kx + ir sin 2kx, (A3)

τ = t (T 2 − R2) + 2RTr cos 2kx, (A4)

where τ stands for the transmission coefficient. Equations
(A3) and (A4) are written for a wave with wave vector k. The
interferometer decay rate γ and resonance frequencies ωc can
be written as

γ = τ 2c

2L
, (A5)

ωc = c

2L
(2πN − μ), (A6)

where N is integer and c is the light velocity.
Since, at resonance ωc = ck, in view of a k dependence of

μ, Eq. (A6) is an equation for ωc. However, if the membrane
displacement x is much smaller than L, the dispersive coupling
constant can be calculated by neglecting the k dependence of
μ to find

gω = −dωc

dx
xzpf = dμ

dx

c

2L
xzpf, (A7)

gγ = −1

2

dγ

dx
xzpf = −τ

dτ

dx

c

2L
xzpf, (A8)

where
dτ

dx
= −4krRT sin 2kx,

dμ

dx
= −2kr[2tRT cos 2kx − r(T 2 − R2)]. (A9)

Reference [9] addresses the linear optomechanics of such
an interferometer when it is under a strong monochromatic
excitation with a frequency ωL. In our notation, the spectral
power density calculated for the stochastic backaction force
acting on the membrane reads

SFF(ω) =
( h̄ωL|a0|

L

)2 r

γ

|N (ω)|2
|1 − e2i(ωL+ω)L/c+iμ|2 , (A10)

N (ω) = α1(1 + e2iLω/c) + α2e2ikL + α∗
2e−2iLωL/c, (A11)

α1 = 2tRT cos 2kx − r(T 2 − R2), (A12)

α2 = cos 2kx + i(T 2 − R2) sin 2kx, (A13)

We are interested in the lowest-order terms in ω = ck − ωL,
detuning � = ωL − ωc, and |τ |.

Thus, keeping in mind the resonance condition

e2iLωc/c+iμ = 1, (A14)

we approximate

e2iLkL/c ≈ e−iμ(1 + 2i�L/c),

e2ikL ≈ e−iμ[1 + 2i(� + ω)L/c] (A15)

to present Eq. (A11) as

N (ω) = 2(α1+ Re[α̃2])(1 + iLω/c) − 2Im[α̃2](2� + ω)L/c,

α̃2 = e−iμα2. (A16)

Next, taking into account that, in the accepted approximation,

α1 = − c|ρ|2
2ωLr

∂μ

∂x
, α̃2 = − α1

|ρ| + i
c

2ωLr|ρ|τ
∂τ

∂x
, (A17)

we can write

N (ω) =
(2L

c

)2 1

xzpf

cγ

2ωLr

[
gω(1 + iLω/c) + gγ

2� + ω

γ

]
.

(A18)

Finally, Eqs. (A10) and (A18) bring us to Eq. (48) from the
main text.
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