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Giant resonant enhancement of optical binding of dielectric particles
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Optical coupling of two identical dielectric particles gives rise to bonding and antibonding resonances. The
latter is featured by significant narrowing of the resonant width and strong enhancement of the Q factor for
the high-index micron-size particles in subwavelength range. We consider particles shaped as spheres and disks
under coaxial illumination of dual incoherent counterpropagating Bessel beams. In the case of spheres we derive
analytical expressions for the optical binding (OB) force which decays and displays two periods of oscillations.
For close distances the OB force enormously increases in the resonant regime. The case of two coaxial disks is
featured by extremal enhancement of the Q factor owing to the twofold variation over the distance between disks
and the aspect ratio of each disk compared to the case of two spheres. In that case we demonstrate enhancement
of the OB force up to several tens of nanonewtons. We show that the magnitude and sign of the OB force strongly
depend on the longitudinal wave vector of the Bessel beams.
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I. INTRODUCTION

The response of a microscopic dielectric object to a light
field can profoundly affect its motion. A classical example
of this influence is an optical trap, which can hold a parti-
cle in a tightly focused light beam [1]. When two or more
particles are present, the multiple scattering between the ob-
jects can, under certain conditions, lead to optically bound
states. This peculiar manifestation of optical forces is often
referred to as optical binding (OB). It was first considered by
Thirunamachandran [2] (see also Refs. [3,4]) and observed
by Burns et al. in 1989 in a system of two plastic spheres
in water [5]. This peculiar manifestation of optical forces
is often referred to as optical binding (OB) forces. The OB
belongs to an interesting type of mechanical light-matter in-
teraction between particles at microscale mediated by the
light scattered by illuminated particles. Depending on parti-
cle separation, the OB leads to attractive or repulsive forces
between the particles and, thus, contributes to the formation
of stable configurations of particles. The phenomenon of OB
can be realized, for example, in dual counterpropagating beam
configurations [6–12]. Equilibrium positions of particles are
created by a very weak balance between the optical forces
from the incident fields and from the scattered fields generated
by the particles. Many researchers have analyzed OB force
quantitatively in theory. Chaumet and Nieto-Vesperinas [13]
and Ng et al. [14] calculated the OB force under illumination
of two counterpropagating plane waves. Čižmár et al. [15] pre-
sented the first theoretical and experimental study of dielectric
submicron particle behavior and their binding in an optical
field generated by the interference of two counterpropagating
Bessel beams. Also, Thanopulos et al. [12,16] numerically
evaluated the OB force as a function of distance between
spheres and frequency.

It is clear that excitation of the resonant modes with high-Q
factor in dielectric structures results in large enhancement

of near electromagnetic (EM) fields and respectively in ex-
tremely large EM forces proportional to squared EM fields.
First, sharp features in the force spectrum, causing mutual
attraction or repulsion between successive photonic crystal
layers of dielectric spheres under the illumination of a plane
wave has been shown by Antonoyiannakis and Pendry [17].
Because of the periodicity of the structure, each layer is spec-
ified by extremely narrow resonances which transform into the
bonding and antiboding resonances for close approaching of
the layers. The normal force acting on each layer as well as the
total force acting on both layers including the optical binding
force follow these resonances. The lower frequency bonding
resonance forces push the two layers together and the higher
frequency antibonding resonance pulls them apart. Later these
disclosures were reported for coupled photonic crystal slabs
[18] and two planar dielectric photonic metamaterials [19] due
to the existence of resonant states with infinite Q factor (bound
states in the continuum).

However, in practice we have arrays of a finite number
of dielectric particles which nevertheless show the Q factor
exceeding the Q factor of an individual particle by many
orders in magnitude [20–22] where the Q factor of the res-
onant state is given by the ratio of real and imaginary parts
of complex resonant eigenfrequency. What is remarkable is
that even two particles can demonstrate extremely high-Q res-
onant modes owing to avoided crossings. The vivid example
is avoided crossing of whispering-gallery modes (WGMs) in
coupled microresonators which results in an extremely high-Q
factor [23,24]. As a result, an enhancement of the OB force
of around hundreds of nanonewtons between coupled WGM
spherical resonators takes place in an applied power of 1 mW
[23]. However, the WGM modes with extremely high orbital
momenta can be excited only in spheres with large radii of
order 30 μm. Recently we offered a solution to the problem
of a large Q factor in the subwavelength regime by the use of
two coaxial silicon disks of micron sizes. Owing to twofold
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(over the aspect ratio and distance between disks) avoided
crossing of low-order resonances, the antibonding resonant
mode acquires a morphology of the higher order Mie resonant
mode of effective sphere with extremely small resonant width.
A comprehensive and detailed description of this phenomenon
is given in Ref. [25]. For the convenience of the reader, in
Sec. III in the present paper we resume with an example of
the formation of such Mie-like resonant mode of the high
order when for approaching of particles the resonant modes
of each particle are hybridized forming symmetrical (bonding)
and antisymmetrical (antibonding) resonant modes.

In addition to disks we consider silicon spheres which
are subject to only one-parameter avoided crossing (the dis-
tance between spheres). As a result the spheres do not show
extremely high-Q factors and respectively giant OB forces
but have an advantage of analytical consideration of the
OB forces under the illumination of dual counterpropagating
Bessel beams. We show that two spheres demonstrate the
same features of the OB force which are inherent in the two
disks. The optical forces for a single sphere were explicitly
derived by Barton et al. [26] in a general case that allows
one to consider the OB force analytically for the present case
of two spheres. The consideration is significantly simplified
when the spherical particles are subject to beams such as
Gaussian or Bessel if they preserve axial symmetry. Then the
binding force depends on the distance between the spheres
only [8,14,27–30]. That allows us to derive analytical expres-
sions for the OB force which decreases as 1/L2 for exact axial
symmetry and 1/L otherwise for large distances L between
spheres and displays two periods of oscillations as was first
revealed by Karásek et al. [28] numerically. When the spheres
are close to each other the OB force enormously increases
if the frequency of Bessel beams follows to the bonding or
antibonding resonances. We show also that a magnitude, and
what is more interesting, the sign of the OB force, strongly
depend on the wave number of the Bessel beams that opens
additional options to arrange high-index particles optically.

II. OPTICAL BINDING FORCE OF TWO SPHERES

In order to stabilize the spheres across the beam we use the
results by Milne et al. [31] that the Bessel beams strongly trap
spherical particles at the symmetry axis, i.e., at r = 0 (stable
zero-force points). That justifies the calculation of the OB as
dependent on the distance between the spheres positioned at
the symmetry axis. We consider the Bessel beams with TE
polarization in the simplest form with zero azimuthal index
m = 0 [28]

Einc(r, φ, z) = E0eφ exp(ikzz)J1(krr), (1)

where J1 is a Bessel function, kz and kr are the longitudinal
and transverse wave numbers, with the frequency ω/c = k =√

k2
r + k2

z and r, φ, and z are the cylindrical coordinates, and
eφ is the unit vector of the polarization. In order to consider
the OB force we use the approach in which two counterprop-
agating mutually incoherent Bessel beams were applied [6,8]
which are schematically shown in Fig. 1(a).

The electromagnetic (EM) force is defined by the stress
tensor Tαβ integrated over the surface elements dSβ outside

FIG. 1. Two silicon spheres (a) and disks (b) under illumination
of two counterpropagating mutually incoherent Bessel beams with
zero azimuthal index m = 0. L is the distance between centers of
particles.

the particle [32,33]:

Fα =
∫

TαβdSβ,

Tαβ = 1

4π
EαE∗

β − 1

8π
δαβ |E|2 + 1

4π
HαH∗

β − 1

8π
δαβ |H|2.

This problem allows analytical treatment owing to a series of
the Bessel beam and scattered fields both over the vectorial
spherical harmonics. Such an approach was used to find the
optical forces for the case of the isolated sphere [34–38].
In the case of two spheres, multiple scattering theory was
used to define the OB forces and calculate them numerically
[8,14,27–30]. By using this theory we performed numerical
simulations of the complex resonant frequencies and binding
force of two coupled spheres with a focus on the dependence
of the OB force on the intrinsic parameters such as the dis-
tance between spheres and external parameters such as the
frequency and wave number of the dual Bessel beams.

The results of the calculations are presented in Figs. 2
and 3 for two values kza = 1/2 and kza = 1 of the Bessel
beam (1). The parameters of spheres—radius a = 0.5 μm,
permittivity ε = 15, and the intensity of the Bessel beams
1 mW/μm2—are preserved through all calculations. We show
the binding force FOB = (F1z − F2z )/2 where the indices 1
and 2 denote the spheres where the Bessel beam is incident
at the left. Owing to an incoherence of the Bessel beam
illuminated from the right we have the same expression for
FOB = −FOB. As a result we obtain a doubled value for the OB
force FOB = F1z − F2z. Strong resonant forces above 10 pN
by absolute value in Figs. 2 and 3 are saturated by intense
red (attractive) or blue (repulsive). As was expected, the OB
force shows vivid resonant behavior near the Mie resonances
of the individual sphere labeled by orbital index n because
of resonant enhancement of scattered fields. However, for
variation of the distance between spheres, we see a number of
peculiarities. The first one is oscillations when the repulsive
OB force is alternated by the attractive one. Respectively, the
equilibrium distances shown in Figs. 2 and 3 by solid lines
basically follow a law (k + kz )L = 2π l + φ0, l = 1, 2, 3, . . .

and undergo abrupt changes near the Mie resonances kn.
However there are also long-range oscillations given by the
inverse wave number 1/(k − kz ). This period will be derived
below asymptotically for large L and was first predicted by
Karásek et al. [28]. Also in Figs. 2 and 3 we show the resonant
frequencies of two spheres [even (odd) relative to z → −z or
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FIG. 2. The binding force vs the frequency and distance between two spheres with radius a = 0.5 μm and permittivity ε = 15 under
illumination of the dual counterpropagating Bessel beams of TE polarization and power 1 mW/μm2 and kza = 1/2. (b) and (c) are zoomed
versions. The red corresponds to attractive forces and the blue corresponds to repulsive OB force. Black solid (dashed) lines show stable
(unstable) configuration of spheres. Light-green solid (dashed) lines show symmetric (antisymmetric) resonant frequencies of two spheres vs
the distance between. Crosses mark the Mie TE resonances in an isolated dielectric sphere.

bonding (antibonding)] versus the distance between spheres,
which will be analyzed below by the use of multiple scattering
theory. The second peculiarity is the decrease of the resonant
OB force with the order of the Mie resonance n that will be
considered below.

As was said above, the case of two spheres enables analyt-
ical treatment of the OB force in the resonant approximation.
Owing to the axial symmetry of the total system of two
spheres and applied Bessel beam, we can take m = 0 with
only three components of the EM field, Eφ, Hr, and Hθ ,
for TE polarization in the spherical system. Then outside
the spheres the EM fields scattered by the spheres can be
presented as a series in the vectorial spherical harmonics as
follows [39]:

E(r) =
∑

n

∑
j=1,2

b( j)
n M(3)

n0 (r − rj), (2)

where r j are positions of centers of spheres,

M(3)
n0 (r) = Xn0(θ, φ)hn(kr), (3)

where Xn0(θ, φ) are the vector spherical harmonics [40] and
hn(z) are the Hankel functions. Here and below the angular
index m = 0 in b( j)

n0 is omitted. For the case of the single sphere
the optical forces were explicitly derived by Barton et al. [26]
in the general case. For the present particular case m = 0 the
zth component of optical force acting on the first sphere equals

F (1)
z = −F0Im

∑
n

fn
[
2b(1)

n+1b(1)∗
n + b(1)

n+1B(1)∗
n + b(1)∗

n B(1)
n+1

]
,

(4)
where b(1)

n are the coefficients of series (2), F0 = a4k2E2
0

4π
, fn =

n(n+1)(n+2)√
(2n+1)(2n+3)

, and

b( j)
n = Sn(k)B( j)

n , j = 1, 2, (5)

where the so-called Lorenz-Mie coefficients are given by

Sn(k) = jn(
√

εka)[r jn(kr)]′r=a − jn(ka)[r jn(
√

εkr)]′r=a

hn(ka)[r jn(
√

εkr)]′r=a − jn(
√

εka)[rhn(kr)]′r=a

,

(6)
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FIG. 3. The same as in Fig. 2 but for kza = 1.

and jn(x) are the spherical Bessel functions. The case of
two spheres was developed by Thanopulos et al. [16]. In
contrast to Ref. [16] we reveal that the OB force is basically
focused around the Mie resonances for high-index particles.
That prompts one to use the resonant approximation which
substantially simplifies analysis because of the elimination of
the sum over the orbital indices n. Thus, we can truncate the
series in Eq. (4) with a preservation of the only resonant term
given by the Lorenz-Mie coefficient Sn(k) around the nth Mie
resonance. We have for the optical force acting on the jth
sphere

F ( j)
zn

F0
≈

∑
σ=±1

(−1)(1+σ )/2 fn+(σ−1)/2Im
[
Sn(k)∗B( j)

n+σ B( j)∗
n

]
,

σ = ±1. (7)

The incident fields radiating the first sphere are superposed
of the incident Bessel beam and the field scattered by the
second sphere:

B(1)
n = B(inc)

n + B(21)
n,n (L)b(2)

n ,

B(1)
n+σ = B(inc)

n+σ + B(21)
n,n+σ (L)b(2)

n . (8)

Due to the addition theorem [40,41], we can write the contri-
bution of the second sphere as follows:

B(21)
n,n (L) = 4π

2n∑
p=0,2,4,...

gnnpipG(n0; n0; p)Y 0
p (1)hp(kL),

B(21)
n,n+1(L) = 4π

√
n

(n + 2)

2n+σ∑
p=1,3,5,...

gn,n+1,pip

×G(n0; n + 1, 0; p)̂Y 0
p (1)hp(kL), (9)

where the argument 1 of Legandre polynomials is related to
the direction of the scattered field. Substituting the specific
expressions for the spherical Bessel functions into Eq. (9) with
account of coefficients g and G tabulated in Ref. [40], we find
for kL � 1

B(21)
n,n (L) ≈ −cn,n

eikL

(kL)2
, B(21)

n,n+σ (L) ≈ −icn,n+σ

eikL

(kL)2
,

(10)

where c1,1 = 3, c2,2 = 15, c1,2 = 6.708, c2,3 = 25.1, . . . are
real coefficients.
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For the large kL we can rewrite Eq. (8) as follows:

B(1)
n ≈ B(inc)

n

[
1 + B(21)

n,n (L)Sn(k)eikzL
]
,

B(1)
n+σ ≈ B(inc)

n+σ + B(21)
n,n+σ (L)Sn(k)B(inc)

n eikzL, (11)

where we took into account that the Bessel beam (1) accumu-
lates the phase factor eikzL when it reaches the second sphere.
Substituting here asymptotes (10) and using an inequality
|B(inc)

n | � |B(21)
n,n (L)b(2)

n | we can approximate

B(1)
n ≈ B(inc)

n

[
1 − Sn(k)

(kL)2
cn,nei(kz+k)L

]
,

B(1)
n+σ ≈ B(inc)

n+σ − iSn(k)

(kL)2
cn,n+σ B(inc)

n ei(kz+k)L. (12)

As a result we obtain the following expression for the optical
force (7) onto the first sphere:

F (1)
zn ≈ F0

∑
σ=±1

(−1)(1+σ )/2 fn+(σ−1)/2

[
Im

(
S∗

nB(inc)∗
n B(inc)

n+σ

)

− cn,n

(kL)2

∣∣S2
nB(inc)

n B(inc)
n+σ

∣∣ sin[(k + kz )L + φn+σ ]

− cn,n+σ

(kL)2

∣∣B(inc)
n Sn

∣∣2
cos(k + kz )L

]
, (13)

where φn+σ = arg(B(i)
n B(inc)∗

n+σ Sn(k)2). Similarly, we have for
the second sphere

B(2)
n = B(inc)

n eikzL + B(12)
n,n (L)b(1)

n ,

B(2)
n+σ = B(inc)

n+σ eikzL − B(12)
n,n+σ (L)b(1)

n . (14)

By use of identities

B(21)
n,n = B(12)

n,n , B(21)
n,n+σ = −B(12)

n,n+σ (15)

and Eq. (10) we can rewrite Eq. (14) as follows:

B(2)
n = B(inc)

n

[
eikzL − cn,n

(kL)2
SneikL

]
,

B(2)
n+σ = B(inc)

n+σ eikzL + icn,n+σ

(kL)2
SnB(inc)

n eikL. (16)

As a result we have for the force acting on the second sphere

F (2)
zn ≈ F0

∑
σ=±1

(−1)(1+σ )/2 fn+(σ−1)/2

{
Im

(
S∗

nB(inc)∗
n B(inc)

n+σ

)

+ cn,n

(kL)2

∣∣S2
nB(inc)

n B(inc)
n+σ

∣∣ sin[(k − kz )L − φn+σ ]

+ cn,n+σ

(kL)2

∣∣B(inc)
n Sn

∣∣2
cos(k − kz )L

}
, (17)

i.e.,

F (2)
zn (kz ) = −F (1)

zn (−kz ). (18)

Therefore, the asymptotes at kL � 1 for OB force owing to
the dual Bessel beams propagating along the z axis equal

FOB(L) = F (1)
zn (kz ) − F (2)

zn (kz ) ≈ F0

∑
σ=±1

(−1)(1+σ )/2 fn+(σ−1)/2

×
{

cn,n

(kL)2

[∣∣S2
nB(inc)

n B(inc)
n+σ

∣∣ sin[(k + kz )L + φn+σ ]

+ sin[(k − kz )L + φn+σ ]
]

+ cn,n+σ

(kL)2

∣∣B(inc)
n Sn

∣∣2
[cos(k + kz )L + cos(k−kz )L]

}
.

(19)

This expression shows two properties of the OB for long
distances between spheres: the long-distance and short-range
modulation of the binding force 2π

k−kz
and 2π

k+kz
that was re-

ported by Karásek et al. [28] numerically by use of a coupled
dipole method. It is worthy to note that the oscillatory behav-
ior of the OB was observed already by Burns et al. [5] that was
used for separation of 1.43 μm polystyrene particles in water.
An asymptotical decline 1/L2 of the OB force can be also
understood if we consider the scattered field from the second
sphere positioned at the z axis at the distance L is given by the
vector spherical function [40]

Mn0(r − ezL) = −eφhn(kL)
dP0

n (cos θ )

dθ
. (20)

For integration over the first sphere positioned at z = 0 the
contribution of the second sphere is proportional to sin θ =
a/L. As a result, together with the asymptotic of the Bessel
function hn(kL) ∼ eikL

kL we obtain the total asymptotic 1/L2.
We notice that this asymptotic agrees with the result derived
by Thirunamachandran using a different method of quan-
tum electrodynamics when the polarization of the beam is
directed along the x axis [Eq. (16) of Ref. [2]]. However,
this asymptotic is justified only for exact coaxial illumination
of spheres by the Bessel beams which do not carry angular
momentum. As soon as the direction of the Bessel beam is
tilted to the z axis or carries the angular momentum, we obtain
typical asymptotic 1/L that again coincides with the results by
Thirunamachandran [Eq. (19) of Ref. [2]].

The behavior of OB at the close vicinity of spheres L →
2a is more dramatic as Fig. 4 demonstrates. In order to
analytically evaluate this behavior we employ the multiple
scattering theory which reduces the Maxwell equations into
the linear algebraic equations for the amplitudes bn in ex-
pansions of EM fields over vectorial spherical harmonics (2)
given by the index n and m = 0 which can be written as matrix
equation

L̂(k) 	ψ = 	ψinc, (21)

where the non-Hermitian, nonsymmetric matrix L̂(k) is de-
termined by a specific structure of dielectric particles. The
incident state 	ψinc is the column of amplitudes B(inc)

n in this
representation. The resonances are given by the solutions of
the homogeneous equation

L̂(k) 	ψ = 0 (22)

for complex eigenvalues k whose real parts are shown by
solid and dashed lines in Figs. 2(b) and 2(c). For the present
problem it is important to note that the matrix L̂(k) can be
defined in the basis of left and right eigenvectors

	yλL̂(k) = λ	yλ, L̂(k)	xλ = λ	xλ, (23)
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FIG. 4. The binding force between two spheres vs the wave-
length and distance for (a) kza = 1/2 and (b) kza = 1.

where 	yλ	xλ′ = δλ,λ′ . By using the condition of completeness∑
λ

	xλ	yλ = 1, (24)

we write the following equalities:

L̂(k) =
∑

λ

λ	xλ	yλ, L̂−1(k) =
∑

λ

	xλ	yλ

λ
, (25)

as well as for the solution of Eq. (21),

	ψ =
∑

λ

Wλ

λ
	xλ, (26)

where

Wλ = 	yλ 	ψinc (27)

are the coupling coefficients of the incident wave with the
eigenmodes of the open system. For the case of high refractive
index of dielectric sphere the index λ can be related to those
resonant terms which have the smallest λn in the vicinity of
the resonant frequency k ≈ Re(kn). That allows one to write,
in the vicinity of the nth Mie resonant frequency Re(kn), the
eigenvalue as

λn = qn(k − kn). (28)

For the case of identical high-index particles resonant
modes can be presented as symmetric (bonding) and antisym-
metric (antibonding) modes [42]

En ≈ E0Wn,s

(k − kn,s)
En,s + E0Wn,a

(k − kn,a)
En,a, (29)

1 2 3 4 5
0

0.1

0.2

0.3
k

z
a=1/2

k
z
a=1

FIG. 5. The coupling coefficient Wn(k, kz ) vs the order of Mie
resonance n.

where the factors 1/qn are absorbed by the coupling constants
Wn,s,a,

En,s,a(r) ≈ 1√
2

[
Mn0

(
r − L

2
ez

)
± Mn0

(
r + L

2
ez

)]
. (30)

E0 is the amplitude of the Bessel beam. The coupling constant
of incident Bessel beam (1) with the symmetric or antisym-
metric resonant modes (30) can, according to the definition
(27), be presented as (see also [43])

Wn,s,a ≈ Wn(k, kz )

{
cos kzL/2

i sin kzL/2
, (31)

where Wn(k, kz ) is the coupling constant of the Bessel beam
with the nth Mie resonant mode. One can perform analyt-
ical calculations of the constant by the use of a great deal
of algebra presented in Refs. [37,38,44,45]. However, it is
simpler to find the coupling constants numerically because
their values are independent on the distance. The results are
presented in Fig. 5 for kza = 0.5, 1 and show that the OB
force decreases with n. Thus, although the Q factor rapidly
grows with the order of the Mie resonances [46], the coupling
of the corresponding resonant mode with the Bessel beams
decays even more to result in a weakening of the OB forces
with n.

The resonant frequencies in the two-level approximation
can be written as follows [42]:

kn,s,a = Re(kn,s,a) − iγn,s,a ≈ kn ± vn

L2
ei(knL−θn ). (32)

Figure 6 shows that the resonant frequencies (32) well de-
scribe numerically calculated dipole resonances n = 1 with
fitting parameters v1 = 0.15 and θ1 = 1.25. As seen from
Figs. 2 and 3, at close distances between spheres the bond-
ing and antibonding resonances are well separated which
allows us to consider them independently. In what follows
we consider in detail the antibonding dipole resonance n = 1
for which the OB noticeably exceeds the case of the bond-
ing resonance as Fig. 4(a) shows. The reason is related to
the denominators in Eq. (29) which equal the imaginary
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5 10 15
0.74

0.76

0.78

0.8 (a)

5 10 15
0

0.01

0.02

0.03

0.04

0.05
(b)

FIG. 6. The dipole n = 1 resonant frequencies of two coupled
spheres, real (a) and imaginary (b), vs the distance calculated from
Eq. (22) (thick blue) and compared to two-level approximation
(32) (thin red) and presented with fitting parameters in figures.
Solid (dashed) lines show the frequencies of bonding (antibonding)
resonances.

parts of the resonances Im(kn,s,a) at k = Re(kn,s,a). In other
words, the near fields are proportional to the quality factors
Qn,s,a = −Re(kn,s,a)/2Im(kn,s,a). For the dipole case reso-
nances with n = 1 the Q1,s → 10 while Q1,a → 56 at L →
2a. The response of the scattered field around the antibonding
resonance becomes strong compared to the incident Bessel
beam. Therefore the incident field can be neglected. Fig-
ure 7(a) demonstrates that the scattered field indeed slightly
differs from the antisymmetric mode 	En,a given by Eq. (30).
That directly correlates with the behavior of the resonant
width vs L shown in Fig. 6(b). One can see that Im(k1,a)
has a minimum at L ≈ 2a, while Fig. 7(b) shows that the
Bessel beam contributes significantly into the scattered field
when k ≈ k1,s and therefore cannot be disregarded. That is a
consequence of the resonant width of the antibonding dipole
resonant mode 1, s. One can see from Fig. 6(b) that the reso-
nant width of the bonding dipole resonant mode 1, s reaches
maximum for L → 2a.

A comparison of Eq. (29) with Eq. (5) gives us

b( j)
n = (−1) j−1E0dn, j = 1, 2, (33)

FIG. 7. Numerically computed scattered field (the component
Eφ) at the closest distance L = 2a for frequencies around the dipole
Mie resonance k1: (a) k = Re(k1,a) (antibonding resonant mode),
(b) k = Re(k1,s ) (bonding resonant mode). The Bessel beam with
kza = 0.5 illuminates spheres from the bottom.
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FIG. 8. The OB vs the distance between spheres at the vicinity of
the dipole antibonding (a) resonance k = Re[k1,a(L)] and (b) bond-
ing resonance k = Re[k1,s(L)]. The solid line shows numerics and
the dashed line shows approximated formulas. Wave number of the
Bessel beam kza = 1/2.

where dn = Wn,a√
2qγn,a

sin(kzL/2). Owing to Eqs. (5) and (8) we

have

B(1)
n ≈ dn

( 1

Sn(kn)
− B(21)

n,n (L)
)
,

B(1)
n+1 ≈ B(21)

n,n+1(L)b(2)
n = −dnB(21)

n,n+1(L). (34)

According to Eq. (4) we obtain for the force acting onto
the first sphere around the antibonding dipole resonance k ≈
Re(k1,a)

F (1)
z1

F0
≈ −Im

(
S∗

1B(1)∗
1 B(1)

2

)
≈ −|d1|2

{
Im

[
1 − S1B(21)∗

1,2 (L)
][

1 + B(21)∗
1,1 (L)

]}
,

(35)

where

B(21)
1,1 (L) = h0(kL) + h2(kL),

B(21)
1,2 (L) = −1.3416[h1(kL) + h3(kL)]

owing to Eq. (9). Taking into account relations (15) we obtain
the OB at L � 2a

FOB

F0
= 2

F (1)
z1

F0
= 1.3416 f1|W1|2 sin2(kzL/2)

γ 2
1,a(L)

Im{[1− S∗
1 (k1,a)]

× [h∗
0(kL) + h∗

2(kL)][h1(kL) + h3(kL)]}. (36)

Figure 8(a) shows the asymptotic formula (36) perfectly
describes the numerically computed OB force for the dipole
antibonding resonance. A similar asymptotic formula can
be written for the bonding resonance by simple substitution
a → s. However, Fig. 8(b) shows a strong discrepancy be-
tween the numerics and asymptotic formula. The discrepancy
is related to that as seen from Fig. 6(b); the bonding resonant
width reaches maximum at L → 2a. As a result, enhancement
of the scattered EM field at the bonding resonance roughly
four times yields to the case of antibonding resonance. There-
fore for calculation of the optical forces we cannot neglect
the incident fields as distinct from the dipole antibonding
resonance.
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FIG. 9. The OB vs distance between spheres and the longitudinal wave number of the Bessel beam at the vicinity of the TE Mie resonances.
(a) ka = 0.735 around the bonding dipole resonance n = 1, (b) ka = 0.82 around the antibonding dipole resonance n = 1, (c) ka = 1.0947
around the bonding quadrupole resonance n = 2, and (d) ka = 1.1783 around the antibonding quadrupole resonance at L = 2a. The solid line
shows the equilibrium positions of spheres.

Next, with growth of the order of the Mie TE resonances
n in the dielectric sphere the resonant width exponentially
decreases [46,47]. Therefore one could expect the fast growth
of the OB force. However, by the same reason of reduction of
radiation losses with n decrease of the coupling of the Mie
resonant modes with the Bessel beam occurs which Fig. 5
demonstrates.

Moreover two parameters, the frequency and by wave
vector kz along the propagation axis z, define the Bessel
beam (1). Figures 2 and 3 show that indeed these parame-
ters noticeably affect the equilibrium distances between the
spheres. Equation (36) predicts simple dependence of the
OB on the longitudinal wave number kz of the Bessel beam
in the form of sin2 kzL/2 but rather complicated depen-
dence on the distance L through the Hankel functions for
the antibonding dipole resonance. This conclusion is illus-
trated in Fig. 9 which shows strong dependence of the OB
force on kz and L for frequencies tuned to the dipole and
quadrupole antibonding frequencies Re(k1,a) and Re(k2,a),
respectively. One can see that these results provide a poten-
tially useful way to manipulate the distance between particles
by variation of the longitudinal wave number of the Bessel
beams.

III. OPTICAL BINDING FORCE BETWEEN
TWO COAXIAL DISKS

Distinct to the case of two spheres, two disks have two pa-
rameters to vary: the aspect ratio and distance between disks.
Even in an isolated dielectric disk the high-Q resonances can
be achieved by avoided crossing of the TE resonances of
the same symmetry relative to inversion of the disk’s axis
under variation of the aspect ratio around a/h = 0.71 as was
reported by Rybin et al. [48] and illustrated in Figs. 10(a)
and 10(b). While the resonances of the opposite symmetry
in an isolated disk plotted by solid and dashed lines cannot
be coupled in a single disk. An example of this crossing is
highlighted by the circle in Fig. 10(a). However, the presence
of the second disk lifts this symmetry restriction giving rise
to a new series of avoided crossings of resonances shown in
Fig. 10(c) [25]. In view of the OB force the most important
is the antibonding resonance which achieves a high-Q factor
of around 18 000 as shown in Fig. 10(d). The reason for such
an extreme value is related to the fact that the antibonding
resonant mode is close to the Mie resonant mode with an ex-
tremely large orbital index (n = 6) of an effective sphere with
the volume equal to π (h + L)a2 shown in the right bottom
inset of Fig. 10(c) [25]. That refers also to the bonding reso-
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FIG. 10. (a) Avoided crossing of two TE resonances whose modes are symmetric relative to z → −z for traversing over distance and
(b) their Q factors versus the aspect ratio a/h in an isolated silicon disk. (c) Behavior of hybridized resonances and (d) the Q factor vs distance
between centers of disks for a/h = 1.003. Insets show the profiles of tangential components of electric field Eφ .

nant mode which is close to the Mie resonant mode with n = 5
shown in the left bottom inset in Fig. 10(c). Respectively, we
expect around the aspect ratio a/h = 1 extremal enhancement
of OB, especially for the antibonding resonant mode similar
to Refs. [17–19]. These effective spheres are shown by white
lines in the bottom insets.

First, we consider a stability of single disk at r = 0. Nu-
merical calculations of forces by the centered Bessel beam and
slightly shifted beam relative to axis r = 0 have shown that

the position of the disk is stable at the symmetry axis at the
vicinity of resonant frequencies. That considerably simplifies
the further calculation of the OB between two disks. The
results of calculations of the OB are presented in Figs. 11 and
12. Figure 12 demonstrates that indeed near the parameters of
extremely large peaks of the Q factor we observe, respectively,
giant OB of order 1 nN. For the reader’s convenience we
reproduce Fig. 11 as the surface in Fig. 12(a) where one can
see that giant OB is achieved around 30 nN at ka = 1.97, L =

FIG. 11. The binding force between two disks vs the frequency and distance between centers of disks for the Bessel beam with TE
polarization and kza = 1/2 where the disk with ε = 15 has the radius a = 0.5 μm. (b) Zoomed versions. Black solid (dashed) lines show
stable (unstable) configuration of disks. Light-green solid (dashed) lines show bonding (symmetric) and antibonding (antisymmetric) resonant
frequencies of two disks vs the distance between.

043518-9



BULGAKOV, PICHUGIN, AND SADREEV PHYSICAL REVIEW A 102, 043518 (2020)

FIG. 12. The OB vs distance between centers of disks at the vicinity of the antibonding resonance marked in Fig. 10(c) by closed circle
ka = 1.95: (a) kza = 0.5 and (b) kza = 1. Solid line underneath shows resonant frequency vs distance L highlighted in Fig. 11.

1.85a, h = 1.03a, and kza = 0.5. Figure 12(b) shows that
this giant peak is split for kza = 1. It is remarkable that the
equilibrium distances between disks are traversed close to the
antibonding resonance shown by a dotted line. That situation
was first reported for two dielectric slabs which can move
in a waveguide that is equivalent to a Fabry-Perot resonator
with high-Q resonances [49]. Figure 13 demonstrates that
these giant peaks are easily manipulated by small changes of
parameters of the Bessel beam: kza and frequency.

IV. SUMMARY AND CONCLUSIONS

In the present paper we consider OB of particles of micron
size by illumination of dual counterpropagating Bessel beams.
The case of two spheres owing to formulas derived by Barton
et al. [26] for electromagnetic force acting on the isolated
sphere gives an opportunity to derive analytical expressions
for the OB force in the resonant approximation. At large
distances the OB force decays as inverse squared distance and
has two periods of oscillations [Eq. (19)]. For near distances
the OB force can be considerably enhanced up to an order of
1 nN. One of the important and unexpected results of the OB
forces of spheres is their decrease with growth of the order
of the Mie resonances. That is a result of the competition of
two types of couplings. The first coupling of the Mie resonant

FIG. 13. (a) The OB vs distance between disks and longitudinal
wave vector of the Bessel beam kza at the vicinity of the anti-
bonding resonance marked in Fig. 10(c) by closed circle ka = 1.95.
(b) Zoomed version of (a).

modes of the sphere with the radiation continua given by the
vectorial spherical functions fast falls with growth of the order
of resonance giving rise to WGMs with extremal Q factors
[46,47]. However, the couplings of the Mie resonant modes
with the incident Bessel beams can decay even faster with the
growth of the order of the Mie resonant mode. Indeed, our
calculations presented in Fig. 4 show that the OB force is large
only for the dipole and quadrupole Mie resonances.

The case of coaxial disks brings a new aspect to the OB
force related to the extremely high-Q factor due to the two-
parametric avoided crossing of orthogonal resonances over
aspect ratio and distance between the disks [25]. For the case
of two coaxial silicon disks with micron diameter illuminated
by dual coaxial Bessel beams we demonstrate giant OB force
in few tens of nanonewtons in the vicinity of antibonding
resonances. The terminology “giant” means that the forces of
order of 1 nN exceed the van der Waals forces, at least, by
three orders and gravitational forces by five orders [17]. The
corresponding antibonding resonant mode of two disks turns
out to be close to the Mie resonant mode with high orbital
index n = 6 of an effective sphere of the volume πa2(h + L)
[25] with an extremely high-Q factor. That allows one to
achieve giant OB force around several tens of nanonewtons.

There are three important aspects of the OB force of two
high-index dielectric particles. The first is a giant value of
the force around 1 nN for two spheres and a few tens of
nanonewtons for two coaxial disks illuminated by dual Bessel
beams with power 1 mW/μm2. The second aspect is that the
giant OB forces are caused by resonant excitation of subwave-
lenth resonant modes of particles. A potentially easy way for
cardinal manipulation of the OB force by a cross section of
the Bessel beam constitutes the third aspect of the presented
results. The reader can easily find dimensional units instead
of dimensionless value x = ka via a = 0.5 μm. In terms of
the light wavelength we obtain that the characteristic resonant
features lie in the range of micron wavelengths.
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