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Quantum mechanical formulation of the Busch theorem
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Due to the conservation of the canonical angular momentum, charged particle beams which are generated
inside a solenoid field acquire a kinetic angular momentum outside of the solenoid field. The relation of kinetic
orbital angular momentum to the field strength and the beam size on the cathode is called the Busch theorem.
We formulate the Busch theorem in quantum mechanical form and discuss the generation of quantized vortex
beams, i.e., beams carrying a quantized orbital angular momentum. Immersing a cathode in a solenoid field
presents an efficient and flexible method for the generation of electron vortex beams, while, e.g., vortex ions
can be generated by immersing a charge stripping foil in a solenoid field. Both techniques are utilized at
accelerators for the production of nonquantized vortex beams. As a highly relevant use case we discuss in detail
the conditions for the generation of quantized vortex beams from an immersed cathode in an electron microscope.
General possibilities of this technique for the production of vortex beams of other charged particles are
pointed out.
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I. INTRODUCTION

The generation of vortex beams as twisted photons [1],
vortex neutrons [2], or vortex electrons has inspired versatile
theoretical studies and interesting experiments or proposals
to unveil the basic properties of such beams and of effects
of quantum interference and coherence in particle collisions,
inaccessible with ordinary beams [3–9]. Quantized vortex
electrons—i.e., electron beams carrying a quantized orbital
angular momentum (OAM)—generated in electron micro-
scopes [10–12] can be applied as probes for the study of chiral
[13] or magnetic structures [14] and enable magnetic mapping
with atomic resolution [15].

The electron microscope community devised several meth-
ods to produce and analyze electron vortex beams (for a
review see Ref. [5]), e.g., by means of spiral phase plates [10],
holographic diffraction gratings [11], or the interaction with
a magnetic needle, which mimics an approximate magnetic
monopole [16]. The low efficiency and the limited flexibility
of these methods hampers, however, the broad application
of vortex beams for explorations of the atomic structure of
matter and of fundamental interactions beyond a plane-wave
approximation [3–9].

Modern accelerators also make use of beams carrying a
nonquantized orbital angular momentum, predominantly for
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the manipulation of the phase space of a beam [17–20], with
the aim to redistribute the phase space volume between trans-
verse degrees of freedom. The prevailing technique for the
generation of vortex electron beams applied in accelerators
makes use of a cathode which is immersed in a solenoid
field. This immersion of the cathode changes the dynamics of
charged particle beams in a very fundamental way. While the
angular momentum, which a solenoid imparts onto a beam, is
canceled exactly when the beam travels through the complete
solenoid, this is not the case when the beam is generated
inside the field. In simple words, the beam sees only half
of a solenoid in the second case and thus a freely propa-
gating beam with intrinsic angular momentum is generated.
The relation between the solenoid field strength and the beam
size on the cathode and the angular momentum of the freely
propagating beam outside of the solenoid is described by the
so-called Busch theorem [21]. The beams created with the use
of an immersed cathode carry typically a large average an-
gular momentum with a broad spectral distribution, or OAM
bandwidth.

Importantly, this technique can be adapted to the genera-
tion of vortex beams of all kinds of charged particles. Besides
electron vortex beams, ion beams carrying a nonquantized
OAM have, for example, already been produced [22].

Here we formulate the Busch theorem in quantum mechan-
ical form and discuss the generation of vortex beams with a
quantized OAM in an electron microscope. While applications
in a microscope do not necessarily require the generation of
pure modes with a well-defined angular momentum and a
vanishing OAM quantum uncertainty (OAM bandwidth), the
discussion concentrates on this operation mode to point out
the most stringent requirements.

General possibilities of this technique for the production of
vortex beams of other charged particles are highlighted.
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II. CLASSICAL PARTICLE IN A SOLENOID

Solenoid fields can—like any rotational symmetric elec-
tromagnetic field—be developed in the form of a polynomial
series as

Bz(z, r) = Bz,0 − r2

4
B′′

z + r4

64
B′′′′

z · · ·,

Br (z, r) = − r

2
B′
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16
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384
B′′′′′

z · · ·, (1)

Bθ = 0.

Here, Bz, Br , and Bθ are the field components in a cylindrical
system with the coordinates {r, θ, z}, Bz,0 denotes the on-axis
field, and a prime indicates a derivative with respect to the
longitudinal axis z.

The transverse fields of solenoids installed in electron mi-
croscopes and accelerators have to be linear within the radius
of the total beam size, so as to preserve the beam quality. The
discussion will thus concentrate in the following on the first
terms of Eq. (1).

The transverse canonical momenta in Cartesian coordi-
nates {x, y, z} are defined as

p̃x = px + qAx
∼= px − qBz,0

2
y,

(2)
p̃y = py + qAy

∼= py + qBz,0

2
x,

where the charge q can be of arbitrary sign, px and py denote
the mechanical momenta of a particle, and Ax and Ay stand for
the vector potential of the field, which is in linear approxima-
tion Aθ

∼= r
2 Bz,0 [cf. Eq. (1)].

The canonical angular momentum follows as:

L̃ = x p̃y − yp̃x

= r p
θ
+ qrAθ ≈ xpy − ypx + qBz

2
(x2 + y2). (3)

The canonical angular momentum is a conserved quantity
of motion [23]. Note that Eq. (3) is defined with respect
to the axis of the solenoid field, which is not the axis of
the spiral motion of a particle in an electron microscope or
accelerator configuration. Particles entering a solenoid with
negligible transverse momentum components and transverse
offset r relative to the solenoid axis will build up an azimuthal
momentum in the fringe field of the solenoid such that they
rotate with the radius r/2 around an axis, which has an offset
of r/2 to the solenoid axis. Thus all particles will cross the
axis of the solenoid after half a period and the beam is being
focused.

The vector potential is related to the magnetic flux in a
circle of the radius r by

Aθ = 1

2π

∮
Aθdl = 1

2π

∫
(∇ × A)ds

(4)
= 1

2π

∫
Bds = �

2π
,

where the integrals cover the circumference and the area of
the circle described by r. Thus

L̃ = r pθ + q�

2π
. (5)

In this form, the conservation of the canonical angular mo-
mentum is called the Busch theorem [21,24].

The Busch theorem implies the conservation of the me-
chanical angular momentum L for the complete passage
through a solenoid, because outside of a solenoid L̃ = L =
xpy − ypx holds; i.e., if L = 0 when the beam enters the
solenoid, it will exit also with L = 0. However, when, for
example, a cathode is immersed in a solenoid field, electrons
starting with L = 0 on the cathode carry the canonical angular
momentum of L̃ = q�

2π
, which turns into the kinetic angular

momentum r pθ = q�

2π
in the field-free region.

This transfer is entirely due to the Lorentz force of the ra-
dial field components. In the idealized case of a long constant
solenoid field and no additional forces, the particles would
move on straight lines parallel to the solenoid field lines until
the fringe field region is reached. Neither in the case of the
immersed cathode nor in the case of the nonimmersed cathode
does the beam trajectory encircle the area which enters the
integrals in Eq. (4).

III. QUANTUM PARTICLE IN A SOLENOID

Let us now consider the quantum wave packet of a charged
particle which is created inside a solenoid field with a van-
ishing kinetic angular momentum. Following Dirac [25], its
canonical angular momentum is quantized with an integer
quantum number � as

L̃ = �h̄ = q

2
Bz,0〈r2〉 = q〈�〉

2π
(6)

and so is the mean flux of the magnetic field, which reads as

〈�〉 =
〈 ∮

Adl
〉

= 4π

|q| h̄
〈r2〉
r2

H

, (7)

where 〈· · · 〉 denotes a quantum mechanical averaging and
r2

H = 4h̄/|q|Bz,0.
Thus, the particle packet acquires a quantized orbital angu-

lar momentum when leaving the solenoid field. Equations (6)
and (7) represent a quantum counterpart of the classical Busch
theorem. Due to similarities of the fringe fields of the solenoid
and those of a tip of a magnetic needle, the effect is somewhat
analogous to that arising from the interaction with an effective
magnetic monopole [16]—the particle’s wave function gets an
Aharonov-Bohm phase,

� → � exp

{
iθ

q

2π h̄

〈 ∮
Adl

〉}
= � ei�θ . (8)

As can be seen, the sign of the resultant angular momentum �

is correlated with the sign of the particle’s charge and with the
sign of the magnetic flux.

For a particle with charge |q| = |eZ|, a convenient estimate
of the intrinsic angular momentum acquired by the particle is
given by

|�| ≈ 1.5 × 10−3 |Z|〈r2〉[nm2] |Bz,0|[T], (9)

where r is measured in nanometers and the magnetic field Bz,0

is measured in Tesla. Formally, the estimate (9) coincides with
its classical counterpart [20] but r is the rms width of a single-
particle wave packet now, not that of a classical beam of many
particles.
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IV. CASE EXAMPLE: VORTEX ELECTRONS

In accelerator physics, beams with angular momentum are
generally not desirable, because the angular momentum leads
to an additional beam divergence and thus the beam quality is
degraded. In many particle sources it is, however, necessary to
place the first focusing solenoid lens so close to the cathode
that the fringe field extends up to and behind the cathode.
These sources are equipped with a so-called bucking coil, i.e.,
a solenoid behind the cathode plane which is excited with
opposite polarity to the focusing lens in order to compensate
the longitudinal field component on the cathode. In such a
configuration the angular momentum of the beam can be
easily modified by adjusting the current in the bucking coil.

A combination of a focusing lens and the bucking coil
was also the basis for the intensive experimental pro-
gram on vortex beams at the Fermi National Accelerator
Laboratory (FNAL) photoinjector [20,26–28]. The experi-
ments demonstrated the generation of angular-momentum-
dominated beams and the repartitioning of the beam emittance
in a so-called flat-beam adapter [29]. A comparison of this
beam adapter to the mode converter known for laser beams is
discussed in Ref. [30].

In a photoinjector, the cathode consists of a photoemissive
material. Electrons are released by directing a laser beam onto
the cathode. Usually a uniform emission within a specified
radius is aimed for, which can be described as a superposi-
tion of Laguerre-Gaussian beams [31]. Thus a corresponding
broad spectrum of angular momenta is generated. In the ex-
periments at FNAL, average angular momenta of ∼100 neV s
have been measured [20], corresponding to ∼108h̄. The rms
beam size on the cathode in these experiments was in the
millimeter range and a solenoid field of about 0.1 T was
applied on the cathode, in accordance with Eq. (9). Beams
with such a high angular momentum could hardly be handled
in an electron microscope and the observation of quantum
effects, e.g., discontinuous quantum steps, are rather unlikely
at too high values of the OAM. Thus, a pure mode with a
much lower quantum number is desirable for experimental
conditions under which quantization can be observed.

According to the corresponding uncertainty relations [32],
the generation of a pure mode requires emission from a ring,
centered to the axis of the solenoid, as illustrated in Fig. 1.
This can be realized, e.g., by directing a Laguerre-Gauss mode
laser onto the photocathode immersed in the solenoid field.
In the case of a mode with a radial mode number n = 0,
the mode consists of a single ring with a nearly Gaussian
cross section of the ring. Electrons would thus naturally be
emitted into the transverse distribution of a Laguerre-Gauss
mode. Alternatively, a microstructured photocathode with a
ring-shaped emissive area on a nonemissive background could
be envisaged. Also field emission, for example, from a ring
of field emitting tips, is not excluded. In the latter cases
the emission would not match the transverse distribution of
a Laguerre-Gauss ring; however, it is conceivable to realize
even smaller structures than by means of a focused laser beam.

Besides the spatial transverse distribution, the uncorre-
lated transverse beam momentum distribution also needs to
be matched to the phase space of a Laguerre-Gauss mode.
The uncorrelated momentum spread of a Laguerre-Gauss

z

solenoid

cathode

free vortex
state

Bz

FIG. 1. Illustration of the immersed cathode technique. Electrons
with a ring-shaped probability density are released from a cathode
which is immersed in a solenoid field. When the electrons leave the
solenoid field an orbital angular momentum is imparted and a free
vortex state is generated.

mode increases with the increasing angular momentum as
σpx = h̄ |�|+1

2σx
, where σx is the transverse rms beam size and

|�| + 1 corresponds to the beam quality factor. This momen-
tum spread should be large in comparison to the natural
momentum spread of the electrons, which is at the cathode
in the range of 0.2–0.4 keV/c for the typical kinetic emission
energies of 0.2–0.5 eV [33]. Photoemitted electrons (∼0.5 eV
kinetic energy) are worse by a factor of 2–3 compared to
field-emitted electrons for typical photocathodes, but pho-
toemission offers a much higher flexibility for shaping the
transverse distribution and the size of the emitting area than
field emission (the higher brightness of field-emitted electron
beams is primarily due to the small emission size). Lower
transverse momenta can be reached by cryogenically cooled
cathodes and by special photocathode materials such as GaAs
[34], which would also offer the possibility to produce spin-
polarized electrons.

If the transverse rms beam size of a ring-shaped laser beam
on the photocathode were in the micrometer range, |�| would
still need to be larger than 103 to increase the divergence of
the Laguerre-Gauss mode over the natural divergence of the
electrons. According to Eq. (9), the required magnetic field
on the cathode would be in the range of 1 T in this case.
The conditions of a pure mode, i.e., the momentum spread of
the mode is larger than the natural momentum spread of the
electrons, can be easier realized with lower magnetic fields
and larger ring radii, if larger OAM values are acceptable.
Deviations from the pure mode conditions due to a mismatch
of the transverse shape or momentum lead, however, only
to a population of neighboring modes; a beam with angular
momentum is created in any case.

The generation of pure modes with a low quantum number
from an immersed cathode is challenging and would likely re-
quire a cryogenically cooled, structured photocathode, which
delivers electrons with transverse momentum spread well be-
low 0.2 keV/c and ideally small, high field solenoids (Bz,0 >

1 T), as can be generated by superconducting coils. Note
that the high field values are only required in a very small
volume with a transverse size of the order of the wave packet’s
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width, so that the generation of significant fields is conceiv-
able with reasonable effort. GaAs photocathodes would offer
an additional opportunity to produce spin-polarized electrons;
however, with regard to surface preparation and vacuum con-
ditions, the material is quite demanding. The generation of
mixed modes with a large OAM bandwidth on the other hand
is straightforward. Beams with a large OAM bandwidth can be
useful for studying quantum entanglement, as discussed, for
instance, in Ref. [35], and they appear also to be acceptable
for some of the proposed applications of angular momentum
beams. Some electron microscopes are already equipped with
a photocathode laser, so that only the cathode geometry needs
to be adapted and a solenoid needs to be installed.

A big advantage of the immersed cathode technique—
besides its high efficiency—is its high flexibility. For a fixed
geometry of the ring-shaped emission only the magnetic field
has to be controlled. The angular momentum can be freely
adjusted according to Eq. (9) and it can easily be reversed,
which is mandatory for some of the proposed applications.

Above, the conditions at the cathode were discussed, while
one would rather like to reach the ideal matching conditions
in the fringe field region, where the angular momentum is
imparted onto the beam. Optical imaging of the cathode plane
into the plane of the fringe field might be necessary. Neither
acceleration nor a magnification of the cathode image will
change the conditions concerning the uncorrelated transverse
momenta, as discussed above. Thus, the use of the cathode in
the solenoid field opens a simple route for the generation and
manipulation of electron vortex beams with quantized angular
momentum in electron microscopes.

V. OTHER CHARGED PARTICLES

The extension of the immersed cathode technique to
other charged particles sources is—disregarding technical
limitations—straightforward. For example, it is conceivable
to place the production target for positrons, antiprotons, or
other exotic particles into a solenoid. The poor beam quality
of these particle sources will in general limit this approach to
the generation of beams with broad OAM bandwidth. Better
conditions are reached with Penning traps, where ultracold
particles can be prepared, or with ion sources. In electron
cyclotron resonance (ECR) ion sources, particles are, for
example, ionized inside a solenoid field; the extracted ions
carry thus naturally an OAM [36]. ECR sources are able to
produce singly charged or multicharged ion beams and even

radioactive [36] beams with high intensity. But the solenoid
field strength is in this case fixed by the resonance condition
and thus it is not a free parameter.

A flexible approach is to immerse a charge stripping
medium, e.g., a stripping foil, into a solenoid [22,37]. It is
common practice in ion accelerators to increase the charge
state of the ions by passing them through a stripping medium.
When the medium is immersed in a solenoid field the canoni-
cal angular momentum changes as [cf. Eq. (6)]

L̃ = �h̄ = e
Zout − Zin

2
Bz,0〈r2〉 (10)

due to the stripping process. When the canonical angular mo-
mentum of the incoming state is zero, Eq. (10) yields directly
the kinetic angular momentum of the outgoing state.

In order to keep the degradation of the beam quality due
to scattering in the stripping medium under control, the beam
has to be sufficiently focused, so that the incoming transverse
momenta are increased [22,38]. Thus a better beam quality
of the incoming beam will require a smaller beam size in the
stripping medium and correspondingly higher fields to create
a certain angular momentum. A large variation of the charge
state �Z = Zout − Zin on the other hand leads to relaxed re-
quirements of the solenoid field strength.

VI. SUMMARY

The quantum mechanical formulation of the Busch the-
orem is presented and its application for the generation of
quantized charged vortex beams is discussed. The generation
of beams with broad OAM bandwidth is straightforward and
requires only a solenoid field of modest strength around the
cathode—for electrons—or a charge stripping medium for the
production of ions. In order to produce a pure mode with small
OAM bandwidth in a microscope application a ring-shaped
cathode of small diameter and a high solenoid field is required
in a small volume around the cathode.

The basic simplicity, the high efficiency, and the great flex-
ibility of the immersed source technique make it an attractive
solution for the generation of quantized charged vortex beams
of various charged particles from electrons to ions and exotic
particles.
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