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Line-shape analysis of double-quantum multidimensional coherent spectra
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Double-quantum two-dimensional (2D) coherent spectroscopy (MDCS) is a powerful optical method that is
used to study the optical properties of atomic and complex molecular systems and semiconductor materials.
Double-quantum 2D spectra and particularly the peak line shapes on the spectra can also provide information
about many-body interactions. We model 2D spectra by solving the optical Bloch equations and show the effects
of correlation between coupled resonances, which also explains the discrepancies between the experimental
results reported by multiple groups.
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I. INTRODUCTION

In the past two decades multidimensional coherent spec-
troscopy (MDCS) [1,2] has become a powerful and routine
technique for studying the optical properties and ultrafast dy-
namics of atomic and molecular samples and semiconductor
materials [2–9]. MDCS is the only optical method that can
simultaneously measure homogeneous and inhomogeneous
linewidths, identify coupling between the excited states, track
energy redistribution in complex systems (in real time), and
probe the many-body interactions. MDCS is based on con-
cepts of nuclear magnetic resonance experiments that are
widely used for determining the molecular structure [10].
A simplified schematic diagram of multidimensional coher-
ent spectroscopy is shown in Fig. 1(a). A sequence of three
pulses (A, B,C) incident on the sample of interest generates
a four-wave mixing (FWM) signal which is then heterodyne
detected, using a local oscillator pulse, as a function of the
delays between the excitation pulses. The recorded time do-
main interferogram is then Fourier transformed with respect
to the time delays between the incident pulses and over the
time period during which the signal is emitted to generate a
multidimensional coherent spectrum.

In MDCS, a multidimensional coherent spectrum gener-
ated by different pulse orderings provides different spectro-
scopic information. For example, one can use the photon
echo excitation scheme [11] shown in Fig. 1(a) [where
the first pulse is the phase-conjugated pulse (A∗, B,C)] to
measure the homogeneous linewidth of imhomogeneously
broadened systems. In this excitation scheme pulse A∗ creates
a coherence between the ground and excited states which
then evolves in time. Pulse B converts the coherence into
the population state and then pulse C converts it back to
the coherence between the ground and excited states which
emits a four-wave-mixing (FWM) signal. A multidimensional
spectrum is then generated by taking the Fourier transforms
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of the FWM signal with respect to t-emission and τ -evolution
times. This spectrum is also referred to as a rephasing single-
quantum two-dimensional (2D) spectrum (phase evolution
during t-emission and τ -evolution times are opposite and
hence the resonances will recombine and rephase). A rephas-
ing spectrum is shown in Fig. 1(b) which provides both the
homogeneous and inhomogeneous linewidths of the sample
and they can be extracted simultaneously [12]. In addition,
line shapes on a single-quantum two-dimensional spectrum
can also provide extremely valuable information. For ex-
ample, one can investigate spectral diffusion (related to a
correlation function [13,14]) by measuring the elipticity of
the elongated peaks (along the diagonal) on a single-quantum
two-dimensional spectrum as a function of the time delay
between B and C excitation pulses [14,15]. Over the years
several methods have been developed to interpret line shapes
of single-quantum multidimensional coherent spectra [12,14–
16].

On the other hand, if the complex phase-conjugated pulse
arrives last (B,C, A∗), then the corresponding 2D spectrum
shown in Fig. 1(c) (also referred to as a double-quantum 2D
spectrum) can probe weak many-body interactions, for exam-
ple, long-range dipole-dipole interactions [17–21]. Pictorially,
the generation of a FWM signal in a simple three-level system
is shown in Fig. 2(a). The first pulse excites a coherence
between the ground and singly excited states and then the
same pulse (or different pulse if three pulses are used) excites
the coherence between the ground state and the doubly excited
state (also referred to as a double-quantum coherence). The
last pulse then puts the system either back into the coher-
ence between the ground and the singly excited states or into
the coherence between the singly excited and doubly excited
states. The final coherence then radiates the FWM signal that
is detected. From this diagram it is clear that double-quantum
MDCS is used to probe doubly excited states in the sample,
however, it can provide even more important information if
applied to samples that do not have double excited states (or
they are outside the bandwidth of the laser pulses). In that case
the generation of a FWM signal can be described by com-
bining two, two-level systems as shown in Fig. 2(b), which
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FIG. 1. (a) Schematic diagram of multidimensional coherent spectroscopy. In the figure the photon echo excitation sequence is displayed.
Pulse A∗ creates a coherence between the ground and excited states. Pulse B converts the coherence into the population state and then pulse
C converts it back to the coherence between the ground and excited states which emits a four-wave-mixing (FWM) signal. The signal is
detected with a local oscillator pulse. |g〉 and |e〉 correspond to ground and excited states, respectively. (b) Magnitude of a single-quantum
two-dimensional spectrum. The evolution frequency is negative to reflect the negative phase evolution during the evolution period in the photon
echo excitation sequence. The black dotted line shows the diagonal line. White and red arrows indicate homogeneous and inhomogeneous
linewidths. (c) Magnitude of a double-quantum two-dimensional spectrum. The peak is elongated along the diagonal line (black dotted line).
ωref is the arbitrary optical frequency.

clearly shows a doubly excited state. In Fig. 2(c) we show
the double-sided Feynman diagrams of the pathways that are
contributing in the generation of the FWM signal. However, if
there is no interaction between these two, two-level systems,
then the contributions have the same emission frequency, the
same strength, and the opposite sign (I-IV positive, II-III neg-
ative) and hence they cancel each other. The picture changes if

we include many-body interactions (for example, long-range
dipole-dipole interactions between two, two-level atoms). In
this case, singly and doubly excited states experience slight
energy shifts or changes in the line-width [Fig. 2(d)]. The
changes break the symmetry between the contributions in
Fig. 2(c) which leads to the generation of a FWM signal. We
note that the FWM signal is only due to the interactions (even

FIG. 2. (a) Double-quantum excitation scheme. (b) Energy-level diagram of two combined two-level systems without interaction.
(c) Double-sided Feynman diagrams contributing to the generation of the FWM signal. (d) Energy-level diagram of two combined two-level
systems with interaction. �1 and �2 energy shifts due to interaction. Dotted lines show the shifted energy states. (e) Energy-level diagram
of two combined V-type systems which is also represented as a superposition of states created by two-level systems (1)–(4). |g〉, |e〉, and | f 〉
correspond to ground, excited, and doubly excited states, respectively.
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a small interaction strength is enough to break the symmetry
between the contributions) and hence double-quantum MDCS
is a very sensitive and powerful tool for probing many-body
interactions. We also note that experimentally, the separation
of the FWM and linear signals is performed either utilizing a
“box” geometry configuration [22] or a colinear geometry and
phase-cycling schemes [23,24].

Similar to single-quantum two-dimensional spectra, the
peak line shapes on double-quantum spectra can also provide
critical information, for example, the underlying physics of
the many-body interactions. However, the literature is not
consistent about peak line shapes (elongation) on double-
quantum coherent spectra. In double-quantum 2D spectra the
elongation of the peaks along the diagonal [for example, the
one shown in Fig. 1(c)] suggests that there is a correlation
between excitation and emission frequencies. However, the-
oretically it has been shown that peaks are expected to be
elongated and no correlation parameter was included in the
calculation [21]. Furthermore, there were several 2D experi-
ments performed both on semiconductor materials and atomic
samples that did not show any peak elongation but instead they
were vertically tilted [17,21,25–27]. There were also experi-
ments performed on atomic and molecular samples where the
elongated peaks were observed [20,28].

In Ref. [20] we briefly explained the experimental results
using a simple model. In this paper we show the full theoreti-
cal model, which could also shed light on the inconsistencies
between the results mentioned above. This simple model will
help interpret experimental 2D spectra. In the next section we
will show our model and the results of our simulation and in
Sec. III we will conclude our observation.

II. SIMULATION AND RESULTS

To study the peak behavior of double-quantum 2D spec-
tra we solved the optical Bloch equations for two coupled
three-level V-type systems. The energy-level diagram of two
combined V-type systems (without interaction) is shown in
Fig. 2(e) which can also be described as a superposition of
the states created by coupled two-level systems shown in
Figs. 2(e)(1)–2(e)(4). In our simulation we used infinitely
short pulses (delta-function pulses) E (t ) ≈ E0eiωtδ(t ) and all
of the excitation pulses were copolarized. At first we treated
the systems to be homogeneously broadened. Under these
conditions the third-order polarization (one of the pathways)
for Fig. 2(e)(1) created by the sequence of MDCS pulses

[Fig. 2(a)] is

P(t, τ ) = (−i/h̄)3E3
0 μ4

ge exp[iωt t − iωττ − γt t − γτ τ ], (1)

where E0 is the magnitude of the excitation pulses (assumed
to be the same for all three pulses), μge is the transition
dipole strength, ωτ is a double-quantum frequency, and ωτ =
ωt + ωA, where ωt is the emission frequency and ωA is the
resonant frequency of the phase conjugated pulse. γt and γτ

are the dephasing rates of the single- and double-quantum
coherences, respectively. We note that in the model γt and γτ

describe the overall dephasing rates and we do not distinguish
dephasing rates caused by spontaneous decay, power broaden-
ing, collision broadening, etc. In our model γτ = 2γt , but one
can model many-body interactions by including additional
dephasing rates that distinguish single- and double-quantum
coherences [21]. In our simulation we modeled the interac-
tions between the systems by including the energy shifts �1

and �2 (described below) for the single and double excited
states [Fig. 2(d)].

To model a real system, inhomogeneous broadening was
incorporated into the simulation by integrating the polariza-
tion over a generalized two-dimensional Gaussian function
[29],

f (x, y) = 1

2πσxσy

√
1 − ρ2

e
− ( x−νx

σx )2−2ρ( x−νx
σx )(

y−νy
σy )+(

y−νy
σy )2

2(1−ρ2 ) . (2)

Here, νx, νy, σx, σy correspond to the centers and widths of
two interacting inhomogeneously broadened resonances and
ρ is a correlation parameter. ρ = 1, ρ = 0, and ρ = −1 imply
that the resonances are perfectly correlated, uncorrelated, and
anticorrelated, respectively.

The integration yields

P(t, τ ) = (−i/h̄)3E3
0 μ4

ge exp
[
iωt t − iωττ − γt t − 2γtτ

− 1
2

[
τ 2

(
σ 2

A + σ 2
t + 2ρσAσt

)

− 2tτ
(
ρσAσt + σ 2

t

) + t2σ 2
t

]]
. (3)

If we assume that σA = σt ≡ σ and include the energy
shifts due to interactions ωt = ωge ± �1 and ωτ = 2ωge + �2

(where ωge is the transition frequency between the ground
and the excited states), then all the polarization terms that
are contributing in the generation of the FWM signal for the
system shown in Fig. 2(e)(1) are

PI(t, τ ) = (−i/h̄)3E3
0 μ4

ge exp
[
i(ωge + �1)t − i(2ωge + �2)τ − γt t − 2γtτ

− 1
2 [2τ 2σ 2(1 + ρ) − 2tτσ 2(ρ + 1) + t2σ 2]

]
,

PII(t, τ ) = −(−i/h̄)3E3
0 μ4

ge exp
[
i(ωge + �1 + �2)t − i(2ωge + �2)τ − γt t − 2γtτ

− 1
2 [2τ 2σ 2(1 + ρ) − 2tτσ 2(ρ + 1) + t2σ 2]

]
,

PIII(t, τ ) = (−i/h̄)3E3
0 μ4

ge exp
[
i(ωge − �1)t − i(2ωge + �2)τ − γt t − 2γtτ

− 1
2 [2τ 2σ 2(1 + ρ) − 2tτσ 2(ρ + 1) + t2σ 2]

]
,

PIV(t, τ ) = −(−i/h̄)3E3
0 μ4

ge exp
[
i(ωge + �2 − �1)t − i(2ωge + �2)τ − γt t − 2γtτ

− 1
2 [2τ 2σ 2(1 + ρ) − 2tτσ 2(ρ + 1) + t2σ 2]

]
. (4)
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FIG. 3. Simulation results. (a) ρ = −0.9, (b) ρ = −0.6, (c) ρ = 0.0, (d) ρ = 0.6, (e) ρ = 0.9, (f) ρ = 0.75, and increased decay rate. ωref

is the arbitrary optical frequency. The color scale shows the normalized signal magnitude.

Clearly, without interactions the polarization terms cancel
each other. Similar equations can be obtained for the systems
shown in Figs. 2(e)(2)–2(e)(4) as well. A two-dimensional
spectrum is then generated by summing all the polarization
terms and taking a two-dimensional Fourier transform with
respect to t and τ . In our calculation we used σ = 600 MHz
(corresponding to Doppler-broadened atomic samples) and
γt = 6 MHz.

In Fig. 3 we show the results. ρ = 0.0 corresponds to
uncorrelated systems, ρ = 0.9 to near perfectly correlated
systems, and ρ = −0.9 to near perfectly anticorrelated sys-
tems, respectively. ρ = −0.6 and ρ = 0.6 correspond to
partially anticorrelated and correlated systems, respectively.
The peaks in each figure are diagonally elongated and the
effects of correlation are obvious. To give quantitative infor-
mation, we measured the ellipticity of the peaks

E = a2 − b2

a2 + b2
, (5)

where a and b are the sizes of the ellipse along the major and
minor axes, shown in the figure. The measurements showed
that for ρ = 0.0 the ellipticity is 0.5 and it approaches to 0
and 1 for ρ = −1.0 and ρ = 1.0, respectively. It is important
to note that the correlation parameter gives insight into the
many-body interactions. For example, for Doppler-broadened
atomic systems, near-perfect correlation implies that the gen-
erated FWM is due to the coupling of resonances between
two atoms that have near zero relative velocity. On the other
hand, ρ = 0.0 and ρ = −1.0 correspond to coupling of the
resonances of the atoms that have any relative velocity and op-
posite velocity, respectively. Experimentally, a high degree of
correlation (elongated peaks) ρ = 0.75 has been observed in
Ref. [20]. One can understand the results by comparing them
to the runners in a sprint relay where two runners have the
highest chance of transferring the baton if they have similar
velocities.

We also note there have been MDCS experiments per-
formed on Doppler-broadened atomic samples that showed
that the peaks were not elongated along the diagonal line
(the elongation was obscured and the peaks were elongated
more along the vertical line) [17,25]. But in the experiments

an argon (Ar) buffer gas was introduced into the gas cell to
artificially broaden (collisional broadening) the resonances
to match the spectrometer resolution. To model the case we
increased the decay rates (by a factor of 20 which is similar
to the values of their experimental parameters) in our simu-
lation. The results that are plotted in Fig. 3(f) show that even
with the high degree of correlation (ρ = 0.75), peaks now are
elongated along the vertical line, which is similar to the results
observed in Refs. [17,25].

Our model can be extended to semiconductor materials as
well. For quantum wells (and quantum dots) ρ is expected
to be close to zero (or partially correlated). This is because
in semiconductor materials a double-quantum FWM signal
is due to the coupling of the excitons that are located in
nearby quantum wells and the thicknesses of wells are most
likely random. In this case the peaks are expected to be
elongated along the diagonal (ellipticity = 0.5) but the exper-
iments showed that the peaks are tilted toward the vertical axis
[26,27]. This can be explained by the fact that unlike atomic
systems, the excitons experience additional dephasing due to
exciton-exciton and exciton–free-carrier scattering (which is
a strong function of the temperature) reported in Ref. [21].
This scattering causes the 2D peaks to be tilted similarly to
the results that we showed for atomic systems in Fig. 3(f).

III. CONCLUSION

In this paper we theoretically investigated the line shapes of
double-quantum two-dimensional coherent spectra. We stud-
ied two coupled V-type systems and simulated the spectra by
solving the optical Bloch equations. We showed that peak line
shapes describe how the resonances (from each system) are
correlated and give insight into the mechanism of many-body
interactions. We applied our model to Doppler-broadened
atomic samples and explained the discrepancies between the
experimental results reported in Refs. [17,20,25]. We also dis-
cussed the expected peak line shapes (and correlation) of 2D
spectra generated in semiconductor materials and explained
the difference between our theoretical results and the exper-
imental results reported in Refs. [21,26]. We hope that the

043514-4



LINE-SHAPE ANALYSIS OF DOUBLE-QUANTUM … PHYSICAL REVIEW A 102, 043514 (2020)

MDCS community will benefit with this simple method when
interpreting double-quantum correlation coherent spectra. We
also hope that the model will help the MDCS community

understand the many-body interactions better, particularly the
dipole-dipole interaction that plays the crucial role for photo-
synthesis and the formation of complex molecules.
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