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Dynamical tunneling of a nanomechanical oscillator
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The study of the quantum to classical transition is of fundamental as well as technological importance, and
focuses on mesoscopic devices, with a size for which either classical physics or quantum physics can be brought
to dominate. A particularly diverse selection of such devices is available in cavity quantum optomechanics. We
show that these can be leveraged for the study of dynamical tunneling in a quantum chaotic system. This effect
probes the quantum to classical transition deeply, since tunneling rates sensitively depend on the ability of the
quantum system to resolve the underlying classical phase space. We show that the effective Planck’s constant,
which determines this phase space resolution, can be varied over orders of magnitude as a function of tunable
parameters in an optomechanical experiment. Specifically, we consider a membrane-in-the-middle configuration
of a mechanical oscillator within an optical cavity, where the intracavity field is modulated periodically by
the external laser source. We demonstrate that a mixed regular and chaotic phase space can be engineered in
one spatial dimension, through a significant quartic optomechanical interaction. For that case, we explore the
expected dynamical tunneling rates using Floquet theory and map out values of the effective Planck’s constant
that should be within practical reach.
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I. INTRODUCTION

Through achievements such as the cooling of ever more
macroscopic oscillators to the quantum-mechanical ground
state [1–6], quantum optomechanics [7–9] has established it-
self as a leading discipline for the exploration of the quantum
to classical transition [10,11]. At the heart of this progress
is the intricate control over light-matter interaction, which
also facilitates quantum information transfer between differ-
ent spectral realms [12–16], the generation of nonclassical
states of light [17,18] and oscillators [19–21], interfacing of
light, mechanics, and cold atoms in hybrid systems [22–27],
or state tomography [28–33]. Many of these applications and
others envisaged for the future hinge on a nonlinear coupling
of the mechanical motion to the light [34–40]. Designing de-
vices with ever larger nonlinear coupling strengths is hence
an intensively pursued activity in the field [41–44]. Here we
demonstrate that a strong quartic optomechanical interaction
also benefits engineering light-controlled nonlinear poten-
tials for a one-dimensional harmonic oscillator, which then
becomes a useful platform to explore quantum chaos [45].
Frequently, problems in quantum chaos involve a mixed phase
space containing regular as well as chaotic regions. A phase
space with one spatial dimension can only exhibit chaos if the
potential is anharmonic and the Hamiltonian time dependent.
We will show that anharmonicity can be provided by the
quartic optomechanical interaction and time dependence by
a modulation of the light field. Pushing the system across
the quantum-classical transition then requires the effective
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Planck’s constant heff that arises as a commutator between po-
sition and momentum operator in some suitably chosen scaled
units, to be widely tunable. Since heff controls the size of the
smallest structures in phase space that a quantum system can
resolve, as it is lowered, finer and finer details of phase space
may become relevant. We show that the wide range of devices
available in optomechanics [7–9] and control over them will
be an asset to facilitate a wide range of heff and to allow
tunability in a single experiment.

We specifically focus on a mechanical oscillator in
a membrane-in-the-middle (MIM) setup, as sketched in
Fig. 1(a), where a dielectric membrane is placed inside an
optical cavity precisely at the position of a node in the
field of the relevant cavity mode. It has been experimentally
demonstrated in Ref. [46] that through careful alignment of
the membrane and use of the transverse field structure of
cavity modes, a configuration can be found where the usual
quadratic coupling between the mechanical oscillator and the
light vanishes, and hence the quartic term becomes the leading
order of the relevant Taylor expansion. We further assume a
fairly lossy cavity, so that its light content can quickly adjust
to the power of the drive laser [37,38,40], and thus can be
periodically modulated in time. The scheme thus provides
a light controlled quartic potential for the membrane, based
on radiation pressure. Since this potential can then be driven
in time, we can introduce chaos even in a one-dimensional
system.

As a target problem in quantum chaos, we focus in this
article on the phenomenon of dynamical tunneling. While
conventional quantum tunneling refers to dynamics that is
forbidden in classical physics for energetic reasons, dynami-
cal tunneling refers to dynamics forbidden by symmetry.
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FIG. 1. (a) Membrane-in-the-middle within a cavity as a quan-
tum harmonic oscillator with tunable, light-driven anharmonicity of
the potential V (x, t ). The typical modulation range of the oscilla-
tor potential is sketched below. A fairly large cavity decay-rate γc

makes sure cavity dynamics follows the external drive modulation.
(b) Stroboscopic Poincaré section of this system with contours of the
Husimi function of a Floquet state (magenta, cyan, orange) involved
in dynamical tunneling for decreasing effective Planck’s constant heff
as shown.

The phenomenon was first discovered in molecular
physics [47] and has since been investigated also with light in
optical cavities [48–50], cold atoms [51–55], microwave
resonators [56,57], or electrons in quantum dots [58].
Dynamical tunneling rates sensitively depend on the degree
to which the quantum system can resolve the classical phase
space [59,60], which manifests itself for example through
changes of these rates by orders of magnitude as the system
becomes sensitive to the presence of higher-order resonance
island chains [50,61]. To explore such features on a single
experimental platform, being able to tune the importance
of quantum effects via some effective Planck’s constant heff

through appropriate choice of scales in the system is essential.
For the optomechanical setup discussed above, we suggest

a suitable choice of these scales and explore in detail how
widely heff can then be varied. Prior to that, we explore the
variation of the classical phase space for the driven anhar-
monic oscillator as a function of driving parameters, and
demonstrate with a few examples how dynamical tunneling
would be manifest and tunable in such a system.

Alternative routes to quantum chaos in an optomechanics
context are turning to the effectively two-dimensional quan-
tum harmonic oscillator that is provided by one light and
one mechanical mode [62,63]. Our work instead explores the
1 + 1-dimensional system provided by driving the mechan-
ical potential obtained after eliminating the light degrees of
freedom.

This article is organized as follows: Section II presents
our model system, and explores the quantum-classical phase
space correspondence for it. Section III shows exemplary
simulations of dynamical tunneling in the optomechanical

setup. We then demonstrate how the required initial states
for dynamical tunneling could be practically approximated
in Sec. IV and then show our main results in Sec. V, where
we survey to what extent the effective Planck’s constant h̄eff

can be tuned in the proposed setting. Finally, Sec. VI gives a
conclusion and outlook.

II. NANOMECHANICAL OSCILLATOR WITH DRIVEN
ANHARMONICITY

We consider a nanomechanical oscillator (membrane) sus-
pended inside a laser-driven optical cavity, shown in Fig. 1(a).
A mechanical mode with frequency ωm of the oscillator is
coupled only quartically to a cavity mode with frequency ωc,
i.e., the cavity mode frequency depends quartically on the
displacement of the membrane. This is possible only under
specific design conditions such as discussed in Ref. [46],
involving a tilt in the membrane through a few milliradians
at a node or antinode of the cavity field.

The Hamiltonian describing this system is

Ĥsys = Ĥc + Ĥm + Ĥint. (1)

Here the Hamiltonian of the driven cavity field is

Ĥc = h̄ωcâ†â + ih̄ζ (â†e−iω�t − H.c.), (2)

where â† (â) is the bosonic creation (annihilation) operator of
a cavity mode photon, and the cavity is externally driven by
a laser field of frequency ω� and amplitude ζ = √

2P�γc/h̄ω�.
In the latter, P� is the laser power and γc is the cavity decay
rate. The Hamiltonian of the mechanical oscillator of effective
mass m is

Ĥm = p̂2

2m
+ 1

2
mω2

mx̂2, (3)

where the position operator x̂ and momentum operator p̂ sat-
isfy [x̂, p̂] = ih̄ as usual, and the second term describes the
harmonic potential arising from the mechanical support of the
membrane. Most importantly,

Ĥint = h̄g(4)â†â x̂4 (4)

is the optomechanical interaction Hamiltonian, where g(4) =
(1/4!)∂4ωc/∂x4 denotes the quartic dispersive optomechani-
cal coupling strength as discussed in [46].

In a frame rotating at the drive laser frequency ω�, the total
Hamiltonian becomes

Ĥsys = h̄δcâ†â+ p̂2

2m
+ 1

2
mω2

mx̂2 + h̄g(4)â†â x̂4+ih̄ζ (â† − â),

(5)

where δc = ωc − ω� is the cavity-laser detuning.
For the simplest case, in which the cavity decay-rate

γc is large compared to all other relevant scales, the cav-
ity field simply adiabatically follows the external drive, see
Appendix A 1. Expressing the photon operators via â(t ) =
α(t ) + δâ(t ) as their mean field α(t ) ∈ C and fluctuations
δâ(t ) around the mean value, and for now neglecting fluctua-
tions, (5) then simply turns into

Ĥsys = p̂2

2m
+ 1

2
mω2

mx̂2 + h̄g(4)|α(t )|2x̂4, (6)
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which describes an anharmonic oscillator. Here the anhar-
monicity is not intrinsic to the oscillator, but instead caused by
its interaction with the optical field. Through this, the quartic
part of the potential can be externally modulated. We assume
the form

|α(t )|2 = |α0|2 + |A|2 cos(	t ), (7)

where α0 is the mean cavity field amplitude, see Eq. (A5), A is
the modulation amplitude, and 	 is the modulation frequency.

Inserting (7) into (6), the resultant overall mechani-
cal potential becomes V (x, t ) = mω2

mx2/2 + h̄g(4)|α0|2x4 +
h̄g(4)|A|2 cos(	t )x4, the modulation of which between the ex-
trema is illustrated in Fig. 1(a).

We now define a timescale τ = 	−1 and a length scale

L = (σ
√

8g(4)|α0|2/ωm)
−1

for the problem, which render the
time-dependent Schrödinger equation that follows from (6)
dimensionless. As shown in Appendix B, the corresponding
effective Hamiltonian is then

Ĥ = p̂2

2
+ κ

x̂2

2
+ κ[1 + ε cos(t )]

x̂4

4
, (8)

where

κ = ω2
m

	2
and ε = |A|2

|α0|2
(9)

are dimensionless parameters that describe the strength
of the quadratic plus quartic potential and the strength
of its modulation, and σ = √

h̄/2mωm is the zero-point
fluctuation amplitude of the mechanical oscillator. The
driven anharmonic oscillator potential V (x, t ) = κx2/2 +
κ[1 + ε cos(t )]x4/4 in (8) is sketched in Fig. 1(a) for ε = 0.7.

Now x̂ and p̂ are new dimensionless position and momen-
tum operators for the membrane expressed at the new scales
L, τ , satisfying

[x̂, p̂] ≡ ih̄eff = i
16σ 4g(4)|α0|2

	
, (10)

where h̄eff is the effective Planck constant. Importantly, since
Eq. (8) constitutes a one-dimensional, anharmonic, driven
Hamiltonian, it remains relatively simple while still being able
to exhibit quantum chaotic behavior.

For cases where κ and ε are of order unity, it is clear that the
main features in the phase space for (8) will also arise around
x, p ∼ O(1). Since (10) controls Heisenberg’s uncertainty re-
lation at the new scales, h̄eff will govern the effective coarse
graining of this phase space imposed by quantum mechanics.
By lowering h̄eff through tuning the parameters in (10), more
and more resolution can be obtained.

Note, that at this point the choice of τ and L and hence
resultant expressions for h̄eff are fairly arbitrary, many other
choices are possible. Whether a given selection is of practical
utility then hinges on whether it is experimentally feasible
to initiate and interrogate quantum dynamics in the resultant
interesting parts of phase space at the scales chosen.

A. Classical phase space

To demonstrate the utility of the above system for explo-
ration of the quantum to classical transition, let us begin by
mapping out the phase space of the Hamiltonian (8) when

FIG. 2. Varying phase space of the classical version of Hamil-
tonian (8) with the potential strength κ and modulation amplitude ε

chosen as (a) κ = 0.2, ε = 0.7, (b) κ = 0.2, ε = 0.9, (c) κ = 1.2,
ε = 0.7, and (d) κ = 1.2, ε = 0.9. Labels �± mark period one is-
lands of stability. All panels show a stroboscopic Poincaré section as
discussed in the text.

viewed classically. The classical equations of motion corre-
sponding to this Hamiltonian system are

ẋ = p, (11)

ṗ = −κx − κ[1 + ε cos(t )]x3. (12)

To visualize phase space, we look at its stroboscopic Poincaré
sections as sketched in Fig. 1(b) and shown in Fig. 2. In these
figures, solutions of Eqs. (11) and (12) from a large range of
initial conditions of x and p are plotted stroboscopically, i.e.,
at times t = 2sπ , where s ∈ N and 2π is the periodicity of the
Hamiltonian.

When ε = 0 in Hamiltonian (8), the system is integrable
and hence gives rise to a regular phase space, where all trajec-
tories reside on equal energy surfaces. According to the KAM
(Kolmogorov-Arnol’d-Moser) theorem [45], regular features
remain in the phase space even when one introduces small
integrability breaking perturbation, parametrized by ε. The
persistence of regular features is shown in the left panels
of Fig. 2. These features gradually get destroyed when ε

is increased, and replaced by chaotic trajectories, as we see
when comparing the left and the right panels of Fig. 2. A
phase space containing chaotic regions with embedded regular
islands is known as mixed-phase space.

The key feature of phase space for the present work are
two large period-one islands of regular motion or KAM tori
situated symmetrically around (x, p) = (±x0, 0) for some x0.
These islands are tagged with �± in Fig. 2(d). On trajectories
within the islands, the mechanical oscillator roughly com-
pletes one oscillation when the external modulation completes
one, so that on each stroboscopic snapshot the trajectory is
found at a similar location. A region of chaotic motion sur-
rounds these islands.
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The KAM theorem [45] states that a classical trajectory
situated in one of the islands �± classically cannot cross
into the other island. However, quantum mechanically this
statement does not hold, as we shall review nextly.

B. Quantum chaos

We now move to a quantum description of the dynam-
ics arising from Hamiltonian (8). Since the Hamiltonian is
periodic in time, Ĥ (t + T ) = Ĥ (t ), we can apply Floquet
theory [45]. According to the Floquet theorem, a basis set in
the Hilbert space can be found at any given time as

|χn(t )〉 = exp(−iEnt/h̄eff )|�n(t )〉, (13)

where |�n(t )〉 is a Floquet state, which is periodic with the
same period as the Hamiltonian: |�n(t + T )〉 = |�n(t )〉. En ∈
R is referred to as quasienergy. Let us define Ĥ(t ) = Ĥ (t ) −
ih̄eff∂/∂t . One finds that

Ĥ(t )|�n(t )〉 = En|�n(t )〉. (14)

This shows that |�n(t )〉 is an eigenstate of the operator Ĥ(t )
with eigenvalue En. Floquet theory allows one to expand the
time-evolving state of the system in terms of Floquet states as

|�(t )〉 =
∑

n

cn exp(−iEnt/h̄eff )|�n(t )〉, (15)

where the coefficients cn are set by the initial conditions of the
system, akin to the situation for a time-independent Hamilto-
nian, via cn = 〈�n(0)|�(0)〉.

The periodicity of Floquet states implies that |χn(t )〉 is
reformed after the period T , up to some phase. Thus, one
obtains �n(t = 0) as eigenstate of the unitary time evolution
operator over one period T , with complex eigenvalue ξn =
exp(−iEnT/h̄eff ). To construct the evolution operator, we uti-
lize a complete set of symmetric and antisymmetric position
eigenstates as initial states of the system. The symmetry in
the Hamiltonian automatically decouples the symmetric and
antisymmetric subspaces. We then evolve each eigenstate over
one period T according to the time-dependent Schrödinger
equation that follows from (8):

ih̄eff
∂�

∂t
=

[
− h̄2

eff

2

∂2

∂x2
+ κ

x2

2
+ κ[1 + ε cos(t )]

x4

4

]
�.

(16)
Diagonalization of the resultant time-evolution operator in
matrix form, yields the Floquet states {|�n〉} as eigenvectors
and the corresponding quasienergies {En} from eigenvalues
{ξn}. Figure 3 shows the evolution of two selected Floquet
states for κ = 1.2, ε = 0.9, and h̄eff = 0.5 over one period
of the potential modulation. The required numerical solutions
of (16) and subsequent ones later in this article are using the
high-level code generator XMDS [64,65].

Now to relate Floquet state to the classical phase spaces in
Fig. 2(d), we use Husimi (or Q) distribution defined as

Q(x, p) = 1

2π h̄eff
|〈αcoh|�〉|2, (17)

where |αcoh〉 is a coherent state of the harmonic oscilla-
tor centered at position x and momentum p. Due to the

FIG. 3. Examples of the evolution of Floquet states (a) n = 2
and (b) n = 8 of the Hamiltonian (8) over one period T = 2π for
κ = 1.2, ε = 0.9, and h̄eff = 0.5. The indices n order Floquet states
by increasing quasienergy. The color map represents position-space
density ρn(x, t ) = |〈x|�n(t )〉|2.

Heisenberg uncertainty principle, each Floquet state |�n〉
must be spread over a finite region of phase space; the ex-
tent of which is indicated by the support of Q. For κ = 1.2,
ε = 0.9, and h̄eff = 0.5, we show the Husimi distribution of
selected Floquet states and the classical phase space in Fig. 4,
illustrating that Floquet states arrange themselves according
to the classical distribution of regular and chaotic regions in
phase space. However also note, that for the chosen h̄eff most
Floquet states have significant overlap with both regular and
chaotic regions. The distinctions become sharper as h̄eff is
reduced [66].

FIG. 4. The support regions of the Husimi distribution of se-
lected Floquet states (b)–(f) for κ = 1.2, ε = 0.9, h̄eff = 0.5 align
themselves with features of the classical phase space shown in
(a) [identical to Fig. 2(d)]. (b)–(f) Q(x, p) from (17) as color shade.
These Floquet states are associated with regular (b)–(d) and chaotic
(e) and (f) regions of phase space. (d) A tunneling state defined in the
next section.
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FIG. 5. The probability density in the tunneling state |�+〉 at
t = 0 for κ = 1.2, ε = 0.9, and (a) h̄eff = 0.5, (c) h̄eff = 0.05. (b) and
(d) Demonstration of dynamical tunneling by considering the stro-
boscopic evolution of the initial states in (a) and (c) in position
space. We show the probability density ρ(x, sT ) = |〈x|�+(sT )〉|2
after an integer s of modulation periods T , for the parameters as in
the corresponding left panel.

III. DYNAMICAL TUNNELING

As discussed before, a phenomenon that crucially involves
several aspects of quantum chaos is dynamical tunneling [47].
Recall that motion passing from one of the islands of stability,
marked �± in Fig. 2(d), to the other is classically forbidden by
the KAM theorem. Quantum mechanically, this is no longer
true. The period-one regular islands of stability are repre-
sented in the Floquet spectrum discussed in Sec. II B by a
pair of states covering both islands, with odd or even sym-
metry under the transformation x ↔ −x and slightly different
quasienergies. We name those odd (|�u〉) and even (|�v〉)
tunneling states and identify them as those having maximum
overlap with a coherent state centered on the islands. The odd
state is shown as example in Fig. 4(d). In order to realize a
quantum state situated on a single island, we form a linear
combination of the tunneling states

|�±(0)〉 = 1√
2

[|�u(0)〉 ± |�v (0)〉], (18)

where the upper sign locates the state on the right or �+
island. Using the property of Floquet states: |�u,v (sT )〉 =
exp(−iEu,v sT/h̄eff )|�u,v (0)〉, the time evolution of the initial
state |�±(0)〉 is

|�±(sT )〉 = e−iEusT/h̄eff [|�u(0)〉 ± ei(Eu−Ev )sT/h̄eff |�v (0)〉].
(19)

The periodic change in the sign of the second term results in
transitions between |�+〉 and |�−〉, which represent dynami-
cal tunneling.

We demonstrate this in a direct numerical solution of (16),
starting from |�+(0)〉, shown in Fig. 5, for two different
values of h̄eff. The time evolution of the probability density

FIG. 6. Variations in dimensionless quasienergy splitting �E =
Eu − Ev with changed effective Planck’s constant h̄eff (blue dotted)
for κ = 1.2 and ε = 0.9 (left axis, blue). The red axis shows the
minimal oscillator Q factor required for the oscillator lifetime to
exceed the dynamical tunneling period τm > Ttun, see text.

|�(x, t = 2sπ )|2 is again extracted stroboscopically, only af-
ter integer modulation periods, at t = sT . We see that, unlike
the classical case in which the trajectories of the oscillator
are confined to their respective islands because of the KAM
theorem, the quantum treatment allows population exchange
between the symmetry-related islands in a periodic man-
ner. Thus, the Hamiltonian system (8) can show dynamical
tunneling.

The period of dynamical tunneling follows from (19), and
is controlled by the quasienergy difference between |�u〉 and
|�v〉:

Ttun = 2π h̄eff

|Eu − Ev| . (20)

Ttun is sensitive to the tunable parameters κ and ε, see [51]. It
increases by orders of magnitude when h̄eff is reduced as illus-
trated in Fig. 5 and discussed, e.g., in [60,67], reflecting the
fact that in the classical limit h̄eff → 0 there is no tunneling.

However, for intermediate h̄eff the tunneling period can
be an interesting probe of the phase-space structure, as we
illustrate in Fig. 6. There we show the quasienergy difference
obtained from Floquet theory as a function of h̄eff. We see
order of magnitude changes that directly affect the dynamical
tunneling period according to Eq. (20), and can be used to
test quantum-chaos theories. It has for example been shown
that a significant overlap of |�u,v〉 with the classically chaotic
region can again reduce the tunneling period in a phenomenon
called chaos-assisted tunneling [59,60,68]. Here the transition
of the system from one island of stability to the other can
exploit classical transport through the chaotic part of phase
space. For an experiment to monitor these changes, we assume
that it has to record at least one dynamical tunneling period,
which become very large for smaller h̄eff. In order for decay
of the mechanical oscillator not to obstruct the measurement,
its Q-factor Q = ωm/γm, where γm is the oscillator decay rate,
has to be large enough. We thus also show in Fig. 6 the range
of Q factors that permit τm > Ttun, where τm = γ −1

m is the
oscillator lifetime, as red shades. While challenging for the
smaller h̄eff, there have been devices reported with enough
quality.
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FIG. 7. (a) The Husimi distribution (17) of the initial tunneling
state (blue) and two simpler approximations (red, magenta) for h̄eff =
0.5, overlayed as FWHM contour on the classical phase space for the
same parameters as in Fig. 2(d). The approximations correspond to
the ground state in a modified initial harmonic potential as discussed
in the text, with κini = 1.2 (red dashed) and κini = 150.0 (magenta
dotted). The stroboscopic evolution from the approximate initial
tunneling states is shown in (b) for κini = 1.2 and (c) for κini = 150.0.

IV. CREATING THE INITIAL TUNNELING STATE

An exploration of dynamical tunneling in an optomechan-
ical system will only be possible if the system can at least
approximately be brought into the initial tunneling state in
Eq. (18). As discussed in [67,69], this preparation could pro-
ceed as follows: We first fit the initial tunneling state with a
coherent state of the harmonic oscillator, having initial posi-
tion x0, initial momentum p0, and initial width σini. Since a
coherent state is just an oscillator ground state with an initial
kick or position shift, one can create this state by cooling
an oscillator to its quantum-mechanical ground state [1–6],
and then mechanically offsetting its equilibrium position, or
kicking it through the radiation pressure force. The resultant
state may then be covering an initial island of stability and
furnishes an experimentally accessible approximation of the
target Floquet state, as shown in Fig. 7(a).

We demonstrate in Fig. 7 how dynamical tunneling pro-
ceeds from an initial coherent state that is assumed to be
the result of the procedure just described. We prepared the
approximate initial tunneling states in Fig. 7(a) by finding
the ground state in an initially modified potential Vini(x) =
κinix2/2 without quartic term or modulation for distinct κini

and h̄eff = 0.5. Note that while during ground-state creation
the modulation of the quartic term is off-course disabled,
one nonetheless can already use the modulation frequency 	

that will be employed in subsequent time evolution to define
timescale τ and thence h̄eff.

We see in the stroboscopic evolution shown in Figs. 7(b)
and 7(c), which follows from these approximate initial island
states, that clearly recognizable dynamical tunneling persists
akin to the clean scenario shown in Fig. 5(b). Similar results
are shown in Ref. [67] in the context of dynamical tunneling
in a Bose-Einstein condensate.

FIG. 8. The Husimi distribution of the odd tunneling state |�u〉
at t = 0 for κ = 1.2, ε = 0.9, and (a) h̄eff = 0.5, (b) h̄eff = 0.05.

Keeping in mind the scheme above, a central limitation
for an experiment will be, whether or not one can provide
an initialization potential Vini sufficiently tight, such that the
oscillator will settle into a ground state with its width match-
ing the width of the Floquet state. One possibility to perform
this initial task in the optomechanical setup shown in Fig. 1(a)
is to set the membrane tilt initially different from the one
assumed so far, such that the quadratic coupling between
light and membrane is nonzero. Then, one varies the light
intensity accordingly to adjust σini. κini in this case can take
the form κini = κ (1 + ε(2) ), where the dimensionless parame-
ter ε(2) involves the quadratic optomechanical interaction and
intracavity light field amplitude.

V. TUNABLE PHASE SPACE RESOLUTION

A crucial requirement for exploring the quantum-classical
boundary in a quantum chaotic system is to be able to con-
tinuously vary Hamiltonian parameters such as κ and ε to
generate different phase-space structures, and then also to be
able to reduce h̄eff and thus turning the system from one with
stronger quantum features to one that behaves more classical.
Figure 8 depicts this process in phase space, by showing the
odd tunneling state for κ = 1.2, ε = 0.9, and two different
h̄eff. It is clear from the figure that a smaller h̄eff leads to the
more localized quantum state, and thus, allows the system to
recognize smaller phase space features, as evident from the
rescaled Heisenberg uncertainty relation Eq. (10).

Typically, practical constraints prohibit a too large vari-
ation of all of these parameters in a realistic system. For
our specific choice of scaling the variables in Sec. II, it
turns out the clearer obstacle arises when trying to reach
a large h̄eff. This is because h̄eff is proportional to the
strength of the quartic contribution to the oscillator po-
tential g(4), which in realistic optomechanical systems is
typically small. For instance, if we consider the parame-
ters given in Ref. [46], with effective oscillator mass m =
50 pg, frequency ωm/2π = 100 kHz, quartic coupling to
light g(4)/2π = 0.4 Hz nm−4, cavity drive laser wavelength
1064 nm, laser power P0 = 5 μW, we arrive at an effective
Planck’s constant of only h̄eff ≈ 6.7 × 10−15 for κ = 1.2 and
γc = 10ωm using Eqs. (B5) and (B6). However, since κ and
ε control the size of phase-space features, we need to reach
h̄eff ≈ 1 in order to genuinely explore the quantum-classical
transition and not just classical chaos.

Since the parameters, such as frequencies, masses, sizes,
quality factors, of available optomechanical devices can vary
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FIG. 9. Tunability of the effective Planck’s constant h̄eff. (a) As
a function of the input laser power P0 and oscillator frequency ωm,
while cavity decay rate γc and modulation frequency 	 are kept at
a fixed ratio with ωm, see (C3). Other parameters are held constant
at m = 1 pg, g(4)/2π = 1 kHz nm−4, laser wavelength = 1064 nm.
h̄eff ∈ [0.1, 0.001] on the blue line. (b) h̄eff as a function of the laser
field modulation frequency 	 and oscillator frequency ωm, while γc

is kept at a fixed ratio with ωm, see (C1). We use P0 = 0.5 mW and
other fixed parameters as in (a).

over many orders of magnitude [7,9], we cannot comprehen-
sively explore all available dynamical tunneling parameters
h̄eff, ε, and κ that can be realized in the field. Instead, we
take the device reported in Ref. [46] as a promising starting
point for which the parameters are quoted above. Where nec-
essary, we then tweak them in the direction required here. To
attain a substantial h̄eff, we then consider m = 1 pg, ωm/2π =
10 kHz, g(4)/2π = 1 kHz nm−4, laser wavelength = 1064 nm,
P0 = 0.5 mW, γc = 10ωm, and 	 ≈ 0.9ωm to keep κ = 1.2.
Altogether, these parameters combine to h̄eff ≈ 0.042, which
is much larger than the one calculated above. In particular, the
quartic coupling strength assumed here has been substantially
increased from the one of Ref. [46]. Since an increase of the
quartic coupling is widely pursued in the field, also for, e.g.,
quantum motional state tomography [41], we anticipate great
progress in this regard.

We further show the variation of h̄eff with two parameters
that can be relatively easily adjusted in a single experimental
setup in Fig. 9, these parameters being the laser power P0 and
its modulation frequency 	. All other parameters are kept
as discussed above. Additional parameter space slices with
all relevant equations, including those which are associated
with Fig. 9, are discussed in Appendix C. We see that the
practically interesting range of h̄eff ∈ (10−4, 1) can be covered
for example to a large extent on the blue dashed slice in
Fig. 9(a). While the estimates above on first sight seem to
imply that realizing smaller and smaller h̄eff is easy in the dis-
cussed setup, there are constraints in that direction as well. For
smaller h̄eff, the initialization of the oscillator in the tunneling
Floquet state, which has smaller and smaller real space width
as h̄eff is reduced, would become problematic. Apart from this,
smaller h̄eff would give rise to a larger tunneling period Ttun, as
seen in Figs. 5 and 6, which eventually becomes challenging
to observe.

Since we have neglected decay of the mechanical oscilla-
tor, a final limitation will be to have a sufficiently high Q factor
to also cover possibly lengthy dynamical tunneling periods
such as in Fig. 5(b).

VI. CONCLUSIONS AND OUTLOOK

We have explored the utility of a membrane in an opti-
cal cavity, which furnishes an anharmonic driven quantum
oscillator, as a platform for the study of quantum chaos by
passing through the quantum to classical transition. Specifi-
cally, we focused on the phenomenon of dynamical tunneling.
A necessary requirement for the realization of chaos in a
quantum system with only one spatial degree of freedom is
a time-dependent Hamiltonian with anharmonic potential. In
our proposal, both are realized through modulating the field in
an optical cavity, in a special setting with significant quartic
optomechanical coupling proposed in Ref. [46]. This allows
harnessing the advanced control and interrogation tools of
quantum optomechanics for the study of dynamical tunneling.

We have shown that the classical phase space for the
nonlinear oscillator describing the membrane can undergo
significant qualitative changes when the parameters of its
Hamiltonian are varied within experimentally accessible
ranges. Moving to quantum mechanics, we then found exem-
plary Floquet states of this system and simulated dynamical
tunneling. As a central result, we give an overview of ac-
cessible variations of the effective Planck’s constant h̄eff as
a function of the design parameters of an optomechani-
cal experiment, and thus demonstrate that the platform is a
promising candidate to investigate the quantum to classical
transition in a quantum-chaotic system. Owing to the diver-
sity of quantum optomechanical device architectures [7,9],
the platform discussed here can complement alternative ones
such as Bose-Einstein condensates, which are challenged by
practical difficulties in realizing a clean one-dimensional set-
ting [67] but in turn offer interesting prospects when dealing
with many-body physics [69–73].

While the creation of a driven anharmonic potential for
the membrane in the cavity discussed here could be realized
with a classical light field in the cavity, which trivially follows
the drive laser modulation, nonclassical states of light in an
optical cavity, coupled to a quantum oscillator, are at the heart
of optomechanics. An interesting extension of the present
work would thus be to consider the dynamics of quantum fluc-
tuations around the mean, and explore their possible coupling
to dynamical tunneling of the intracavity nonlinear oscillator.
We sketch the initial step in this direction in Appendix A 2,
but defer a detailed treatment to future work.
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APPENDIX A: CAVITY FIELD DYNAMICS

The Hamiltonian (1) in principle describes a highly non-
trivial system, where the quantum dynamics of a mechanical
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object couples to that of a light field. This coupling is, of
course, at the heart of optomechanics. For our present pur-
poses we only require one of the simplest scenarios, where
the two-way coupling usually sought is in fact negligible, and
we merely use the cavity as a tool for one-way manipulations
of the oscillator. This setting is discussed in Appendix A 1.
In Appendix A 2 we highlight how one could go beyond this
regime in order to furnish interesting two-way coupling be-
tween a system exhibiting dynamical tunneling and a quantum
light field, as alluded to in the conclusion.

1. Classical driven field

The evolution equation for the cavity field follows from the
total Hamiltonian (5) as Heisenberg equation for the photon
operator â(t ). If we assume the field to be dominated by its
mean, we can replace â(t ) → α(t ), where α(t ) = 〈â(t )〉 is just
a complex number, and obtain

α̇(t ) = −i(δc + g(4)x4)α − γc

2
α + ζ (t ). (A1)

Here we have considered decay of the cavity field at rate γc

and neglected other noise sources.
Focusing on the scenario of a bad cavity, where γc exceeds

all other relevant energy scales, i.e., γc > {ωm, g(4)〈x̂〉4}, we
can neglect all terms not involving either the external laser
drive ζ (t ) or the decay rate and find the formal solution

α(t ) = α(0)e−γct/2 +
∫ t

0
ds ζ (s)e−γc (t−s)/2. (A2)

Using δ(t ) = limε→0e−t/2ε/2ε; t � 0, we reach

α(t ) ≈ α(0)e−γct/2 + 2

γc

∫ t

0
dsζ (s)δ(t − s) ≈ 2

γc
ζ (t ),

(A3)
so that the cavity field simply follows the external driving
amplitude. This is referred to as adiabatic elimination of the
cavity modes [74–76].

When we consider the periodically driven laser power
P�(t ) = P0 + PA cos(	t ), the cavity field takes the form

|α(t )|2 = |α0|2 + |A|2 cos(	t ), (A4)

with the help of ζ (t ) = √
2P�(t )γc/h̄ω�, where

|α0|2 = 8P0

h̄ω�γc
and |A|2 = 8PA

h̄ω�γc
. (A5)

We can hence also write ε = PA/P0. In this simplified picture
the intracavity field is thus just periodically modulated, with
frequency 	 directly controlled by the external drive laser. We
shall assume the simple picture (A4) throughout this article.

2. Quantum dynamics

Consider the cavity field which fluctuates about its mean α

at an amplitude δâ, such that δâ � α. By linearizing the light
field as â(t ) = α(t ) + δâ(t ), the coupled equations of motion
for the Hamiltonian (5) are

δ ˙̂a(t ) = −i(δc + g(4)x̂4)δâ − γc

2
δâ + √

γc δâ�(t ), (A6)

˙̂x(t ) = p̂

m
, (A7)

˙̂p(t ) = −mω2
mx̂ − 4h̄g(4){|α(t )|2 + [α∗(t )δâ + α(t )δâ†]}x̂3,

(A8)

where δâ�(t ) is the operator describing the quantum fluctua-
tions of the drive laser and follows 〈δâ�(t )δâ†

� (t ′)〉 = δ(t − t ′).
The set of equation (A6)–(A8) makes apparent that quantum
fluctuations of the light and mechanical motion and hence
dynamical tunneling are coupled, and thus might exhibit in-
teresting interplay.

APPENDIX B: EFFECTIVE RESCALED HAMILTONIAN

The Schrödinger equation following from the Hamilto-
nian (6) assuming the mean light amplitude (7) is

ih̄
∂�(x, t )

∂t
=

[
− h̄2

2m

∂2

∂x2
+ 1

2
mω2

mx2 + h̄g(4)|α0|2x4

+ h̄g(4)|A|2 cos(	t )x4

]
�(x, t ). (B1)

After defining a timescale τ = 	−1 and a length scale L =
(σ

√
8g(4)|α0|2/ωm)−1 for the problem, we define the corre-

sponding dimensionless time and space coordinates:

x̃ = x

L and t̃ = t

τ
. (B2)

After conversion to these units, Eq. (B1) takes the form

i
16σ 4g(4)|α0|2

	

∂�

∂ t̃
=

[
− 1

2

(
16σ 4g(4)|α0|2

	

)2
∂2

∂ x̃2
+ ω2

m

	2

x̃2

2

+ ω2
m

	2

(
1 + |A|2

|α0|2
cos(t̃ )

)
x̃4

4

]
�.

(B3)

We also define a wave function �̃ that is normalized in the
new units

∫ ∞
−∞ |�̃(x̃)|2dx̃ = 1 and then obtain

ih̄eff
∂�̃

∂ t̃
=

[
− h̄2

eff

2

∂2

∂ x̃2
+ κ

x̃2

2
+ κ[1 + ε cos(t̃ )]

x̃4

4

]
�̃,

(B4)

FIG. 10. Tunability of the effective Planck’s constant h̄eff as a
function of (a) the input laser power P0 and cavity decay-rate γc,
and (b) the oscillator mass m and frequency ωm. Constant parameters
in (a) m = 1 pg, ωm/2π = 10 kHz, g(4)/2π = 1 kHz nm−4, laser
wavelength = 1064 nm, see (C2). Constant parameters in (b) P0 =
0.5 mW, g(4)/2π = 1 kHz nm−4, laser wavelength = 1064 nm, while
modulation frequency 	 and γc are kept at a fix ratio with ωm,
see (C3).
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with κ and ε as given in Eq. (9), h̄eff given in Eq. (10) and the
term in square brackets the effective Hamiltonian given in (8).

Using Eq. (A5) and the oscillator width σ , the expression
of h̄eff, κ and ε in terms of the system parameters is

h̄eff = 32h̄g(4)P0

m2ω2
m	ω�γc

, (B5)

κ = ω2
m

	2
and ε = PA

P0
. (B6)

APPENDIX C: PHASE SPACE TUNING

We have shown in Sec. V over which range the effective
Planck’s constant h̄eff can be tuned through changing some
variable parameters of the setup. Here in Figs. 10(a) and 10(b)
we additionally illustrate the variation of h̄eff with the laser
parameters {γc, P0} and oscillator parameters {ωm, m}, respec-
tively.

For Fig. 9(b) we begin with (B5) and then insert our choice
γc = 10ωm from Sec. V, to reach

h̄eff =
(

h̄g(4)P0

5π4m2ω�

)
1

(	/2π )(ωm/2π )3
, (C1)

where the parameters 	 and ωm are treated as variables and
the remaining ones as constant. When we insert 	 from (B6)
into (B5), the expression used in Fig. 10(a) is

h̄eff =
(

16h̄g(4)

πm2ω2
mω�	

)
P0

(γc/2π )
. (C2)

For the figure, P0 and γc are varied and other parameters held
constant. For Fig. 9(a) we again fix γc = 10ωm in Eq. (C2) to
obtain

h̄eff =
(

h̄g(4)√κ

5π4m2ω�

)
P0

(ωm/2π )4
, (C3)

which is also used in Fig. 10(b).
We see from Figs. 9 and 10 that besides the easily tunable

parameters like the laser power P0, its modulation frequency
	, and cavity decay-rate γc, the less flexible parameters of the
mechanical oscillator also play a crucial role in deciding the
accessible range of h̄eff.
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