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Berry-phase-like effect of thermo-phonon transport in optomechanics
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We investigate thermo-phonon transport and its nontrivial Berry-phase-like effect in an optomechanical system
with a squeezed vacuum injection. By taking the cumulant generation function approach the exact expressions of
the thermo-phonon flux and optomechanical Berry phase are derived analytically. Further, the quantum master
equation approach is invoked to verify the analytical results of the transport properties. It is shown that the
steady-state thermo-phonon flux can be modulated by varying optically the nonequilibrium characteristics of
the system via the squeezed vacuum. In particular, an adiabatic modulation of squeezing parameters induces
an optomechanical Berry-phase-like effect and as a result provides an additional geometric phonon response
across the macroscopic mechanical motion near the quantum regime, which can also be seen as a consequence
of the asymmetric jumping probability between transition associated with phonon absorption and emission in a
thermal bath. The present method and results are general and can be straightforwardly extended to any multimode
oscillator systems and therefore pave the way to the thermal noise energy harvesting and rectification in coupled
oscillator systems with inertial terms.
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I. INTRODUCTION

Recently, cavity optomechanical systems have emerged as
an unique platform for exploring theoretically and experi-
mentally the quantum effect in macroscopic motions, i.e.,
the ground-state cooling [1–5], mechanical coherence and
continuous-variable (CV) entanglement [6–15], phonon las-
ing or mechanical squeezing [16,17], nonclassical state prepa-
ration [18,19], nonlinear quantum optomechanical effects
[20–25], and so on. These fascinating quantum phenomena
in macroscopic systems originate from significant interac-
tions between light and mechanical oscillators via radiation
pressure, which effectively counters the dissipation imposed
by the environment [26]. Potential application of cavity op-
tomechanics includes weak-force sensing and measurements
[27–29], quantum wavelength conversion [30,31], quantum
illumination [32], nonreciprocal energy transfer [33], and op-
tomechanical transistor [34].

In addition, the intriguing thermodynamic aspect of cavity
optomechanical systems has attracted extensive attention in
the study of optomechanical quantum heat engines [35–41]
and pump cooling [42], nonreciprocal optomechanical heat
transport [43–45] and irreversible entropy production of
quantum systems [46,47]. Despite these efforts, quantization
of heat and phonon transfers in nonequilibrium optome-
chanical systems coupled to zero-temperature or nonthermal
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environments remains unexplored, the clarification of which
helps one identify general features of transports in nonequi-
librium context [48–53] and design micro-nanoscale thermal
rectifiers and logic gates [54–61]. In particular, when a cyclic
two-parameter modulation of the driven optomechanical sys-
tem is established, how to calculate nontrivial Berry phase
of the quantum system is a very interesting problem, which
would enable flexible dynamical control of nonequilibrium
heat noise flow [62–67] and therefore has much application
in phononics and optomechanics [26,52].

For this purpose, in this paper, we aim to study the uni-
versal Berry-phase in a CV optomechanical system, which
can induce an additional geometric thermo-phonon pumping.
We describe the system dynamics by converting the quantum
Langevin equation into a c-number Langevin equation includ-
ing commutator relations of the fluctuation operators [68,69].
And then we solve the Fokker-Planck (FP) equation [70–72]
corresponding to the c-number Langevin equation and derive
the general expressions of the steady-state thermo-phonon
flux and the optomechanical Berry curvature by using the
cumulant generating function (CGF) approach. We confirm
further the existence of geometric thermo-phonon pumping
by modulating slowly the phase of the squeezed vacuum and
find that an additional geometric phonon response can be
realized when the system works near the quantum region. The
CGF approach is numerically tested for the exact results of
the quantum master equation (QME) and is giving correct
predictions for the geometric phonon transport in the weakly
coupling regime. The results attained here pave the way to the
thermal noise energy harvesting and rectification in a quantum
optomechanical system by means of all-optical regulation.
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FIG. 1. (a) Schematic illustration of an optomechanical system
with squeezed vacuum injection. (b) Level diagram of the linearized
Hamiltonian (1). |m, n〉 denotes the state of m photons and n phonons
in the displaced frame. The blue (black) lines with double arrows
denote the transitions between the states due to the coupling with the
thermal (vacuum) bath. Black ring with an arrow denotes an optimal
route of energy transfers from the mechanical mode to the optical
mode via the optomechanical coupling channels (red dashed lines
with double arrows). In the nonequilibrium steady state, the quan-
tum state, i.e., |m, n〉, does not change any more and a steady-state
thermo-phonon flux Jp flows from the thermal bath into the system.

II. THE MODEL

We consider a standard optomechanical system sketched in
Fig. 1(a), where a movable mechanical oscillator is coupled
to a cavity field with frequency ωc and decay rate κ . The
optical cavity is driven by a strong input laser with frequency
ωd and injected by a squeezed vacuum field with central
frequency ωs = ωc. The total Hamiltonian of the system in
the frame rotating at the driving frequency ωd reads (setting
h̄ = 1) [26], Ht = (ωc − ωd )â†â + ωmb̂†b̂ − G0â†â(b̂† + b̂) +
i�(â† − â), where â and b̂ are the annihilation operators be-
longing to the cavity field and the oscillator (with mass m,
frequency ωm and decay rate γm), respectively; and satisfy
the commutator relation [â, â†] = 1 and [b̂, b̂†] = 1, respec-
tively. � is the driving amplitude of the cavity mode with

|�| =
√

2Pd κ
h̄ωd

; G0 = (ωc/L0)
√

h̄/(2mωm) is the single-photon

optomechanical coupling strength. Pd is the power of laser and
L0 is the cavity length.

For strong driving, we can decompose each operator into a
sum of the steady-state value and a small fluctuating part, i.e.,
Ô = Os + δÔ (O = a, b). Then, the linearized Hamiltonian is
given by

HL = �δâ†δâ + ωmδb̂†δb̂ − G1(δâ† + δâ)(δb̂† + δb̂), (1)

where � = ωc − ωd − G0(bs + b∗
s ) and G1 = G0as are the

effective cavity detuning and optomechanical coupling, re-
spectively; as = �/(κ + i�) and bs = iG0|as|2/(γm + iωm).
In the present system, we always focus on the weak optome-
chanical coupling regime, which ensures that the nonlinear
effects in the system is marginal. In this case, the quantum
fluctuation dynamics of the system can be described by the
Heisenberg-Langevin equations of motion

δ ˙̂b = (−iωm − γm)δb̂ + iG1(δâ† + δâ) +
√

2γmb̂in(t ),

δ ˙̂a = (−i� − κ )δâ + iG1(δb̂† + δb̂) +
√

2κ âin(t ). (2)

The correlation of the thermal noise is 〈b̂in(t )b̂†
in(t ′)〉 = (nt +

1)δ(t − t ′), where nt = exp( h̄ωm
kBT − 1)−1 with kB being the

Boltzmann constant and T the temperature. The nonzero

Markovian correlations of the squeezed vacuum [73–75]
are 〈âin(t )âin(t ′)〉 = Msδ(t − t ′), and 〈âin(t )â†

in(t ′)〉 = (Ns +
1)δ(t − t ′), where Ms = (1/2) sinh(2r)eiθ and Ns = sinh2(r)
in the case of pure squeezing and r and θ are the strength and
the phase of the squeezing, respectively.

The quantities of interest to us here are the total amount of
heat Qh and the corresponding thermal phonon flux, flowing
from the thermal bath into the optomechanical system in a
given time duration τ , in a nonequilibrium steady state with
m photons and n phonons in the displaced frame, shown in
Fig. 1(b). From a quantum dynamics point of view, when the
system works in the steady state near the quantum regime,
its quantum state, i.e., |m, n〉, still has certain probability of
transiting to its adjacent states and then jumps back to |m, n〉
by the coupling with thermal or vacuum baths as well as
optomechanical interactions, i.e., |m, n〉 → |m + 1, n − 1〉 →
|m, n − 1〉 → |m, n〉 marked by the black ring in Fig. 1(b).
Physically, it is these transitions between quantum states of
the optomechanical sub-system that mediate the energy trans-
fer between the two sources on the energy scale of mechanical
quantum. Further, our main concern is that the control pa-
rameters of the system are cyclically regulated, so that the
transition probabilities between the quantum states are con-
trolled dynamically and the geometric contribution of the
thermo-phonon transport may be generated by a nontrivial
Berry phase [62,65,76], similar to that in quantum mechanics
[77,78]. It is noted that the study of Berry phase and Hannay
angle in optomechanical system without the noises has been
discussed in detail [79].

Here in order to reveal the main characteristics of noise
flow in the open oscillator system, we focus on the heat
transfer (Qh) induced by the noise acting on the momentum
of the mechanical oscillator, which can be defined as [65,80]

Qh(τ ) = h̄ωm

∫ τ

0
[ξ̂p(t ) − γm p̂(t )] p̂(t )dt, (3)

where ξ̂p(t ) = i(b̂†
in − b̂in)/

√
2 is the thermal noise related

to the momentum of the oscillator p̂ = i(b̂† − b̂)/
√

2. The
heat Qh can be identified as Qh = h̄ωmNp0, with Np0(τ ) =∫ τ

0 [ξ̂p(t ) − γm p̂(t )] p̂(t )dt being the number of the thermo-
phonon. It is a fluctuating quantity and can be written as
Np0(τ ) = −γm p2

sτ + ∫ τ

0 [ξ̂p(t ) − γmδ p̂(t )]δ p̂(t )dt in terms of
the steady state value ps = (bs − b∗

s )/(
√

2i) and the corre-

sponding fluctuation δ p̂ = (δb̂ − δb̂
†
)/(

√
2i). Obviously, the

second term of Np0 is a little complicated but its average is
always determined by the first and second moments of Eq. (2).
Then, we can study the steady-state average thermo-phonon
flux, i.e., Jp = limτ→∞ 〈Np0(τ )〉/τ , and its Berry-phase-like
effect by solving the quantum operator equation (2). It is
noted that the second moments of Eq. (2) should include the
incommutability of the operators, which embodies the char-
acteristics of the system in the quantum regime. Therefore,
before solving the operator equation (2), we first convert it
to a c-number Langevin equation, whose first and second
moments should be identical with Eq. (2). This demands a
unique relationship between the operators and the c-number
Langevin equations, which can be attained by defining a cor-
respondence between products of c-numbers and operators
[68]. Considering the incommutability between operators in
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Eq. (2), we choose the antinormal ordering δb̂, δâ, δb̂†, δâ†

and then derive two c-number Langevin equations for the
c-number variables A and B such that the equations for their
first and second moments are identical. In terms of the chosen
ordering and according to Eq. (2), we have

Ḃ = (−iωm − γm)B + iG1(A∗ + A) + FB(t ),

Ȧ = (−i� − κ )A + iG1(B∗ + B) + FA(t ). (4)

The functions FA and FB in Eq. (4) are again the typical
Langevin noise with the expectation values

〈Fk (t )〉 = 0,

〈Fk (t )Fl (t
′)〉 = 〈2Dkl〉δ(t − t ′), (5)

where Fk and Fl can be either FA or FB. The diffusion co-
efficients Dkl should be determined by the requirement that
the evolution equation for the second moments is identical
to the corresponding operator equation. Using Eqs. (2),
(4), and the commutator relation of the fluctuation op-
erators, the nonzero c-number diffusion coefficients Dkl

can be calculated with chosen ordering δb̂, δâ, δb̂†, δâ†,
i.e., 2DAA = 2κMs, 2DBA = −iG1/2, 2DAA∗ = 2κ (Ns + 1),
and 2DBB∗ = 2γm(nt + 1). For the convenience of calcu-
lation, we define the dimensionless amplitude and phase
fluctuations of the cavity field as X = (A + A∗)/

√
2 and

Y = i(A∗ − A)/
√

2. The corresponding noise functions are,
Fx(t ) = (FA + F ∗

A )/
√

2 and Fy(t ) = (FA − F ∗
A )/

√
2i, respec-

tively. Similarly, the position and momentum fluctuations
of the mechanical oscillator are, q = (B + B∗)/

√
2 and

p = (B − B∗)/
√

2i, respectively. The corresponding ther-
mal noise terms read, ξq(t ) = (FB + F ∗

B )/
√

2 and ξp(t ) =
i(F ∗

B − FB)/
√

2, respectively. Further, by introducing the vec-
tors of continuous-variable quadratures x = (q, X )T and y =
(p,Y )T , and the corresponding vectors of noises fx(t ) =
(ξq(t ), Fx (t ))T and fy(t ) = (ξp(t ), Fy(t ))T , the linearized c-
number Langevin equation (4) can be written in the following
matrix form:

ẋ = −K1x + �1y + fx(t ),

ẏ = −K1y − �2x + fy(t ), (6)

where the coefficient matrices K1 = (γm, 0; 0, κ ), �1 =
(ωm, 0; 0,�) and �2 = (ωm,−G; −G,�) with G = 2G1.
The nonvanishing c-number correlation functions for these
noises are given as

〈ξq,p(t )ξq,p(t ′)〉 = 2γm(nt + 1)δ(t − t ′),

〈Fx,y(t )Fx,y(t ′)〉 = 2κN+,−δ(t − t ′),

〈ξq(t )Fy(t ′)〉 = −G/4δ(t − t ′),

〈ξp(t )Fx(t ′)〉 = −G/4δ(t − t ′),

〈Fx(t )Fy(t ′)〉 = 2κMI
s δ(t − t ′), (7)

where N± = Ns + 1 ± MR
s , MR

s = (Ms + M∗
s )/2 and MI

s =
(Ms − M∗

s )/(2i).

III. SECOND MOMENT AT FIXED TIME DURATION
AND STEADY-STATE DISTRIBUTION

To study the thermo-phonon transport in a nonequilibrium
steady state and the Berry-phase-like effect of the thermo-
phonon transfer in the optomechanical system, we need
evaluate second moments at a fixed time duration τ . By using
the finite time Fourier transform [70]

h(ωn) = 1

τ

∫ τ

0
h(t )e−iωnt dt,

h(t ) =
n=∞∑

n=−∞
h(ωn)eiωnt , (8)

where ωn = 2πn/τ , one can write Eq. (6) in the Fourier
basis as

x(ωn) = H[�1 fy(ωn) + K fx(ωn)] − H

τ
(K�Xτ + �1�Yτ ),

y(ωn) = M fy(ωn) − N fx(ωn) + 1

τ
(N�Xτ − M�Yτ ), (9)

where K = K1 + I × iωn, H = (K2 + �1�2)−1, M =
K−1(I − �2H�1), N = K−1�2HK ; �Xτ = x(τ ) − x(0)
and �Yτ = y(τ ) − y(0); I is the identity matrix.

By using the above expressions of the vectors x(ωn)
and y(ωn) in the frequency domain, the quadratures of the
continuous-variable quantum system, i.e., p, Y , q, and X , are

p(ωn) = − N11ξq(ωn) + M11ξp(ωn) − N12Fx(ωn)

+ M12Fy(ωn) + 1

τ
qT

5 �U (τ ), (10)

Y (ωn) = − N21ξq(ωn) + M21ξp(ωn) − N22Fx(ωn)

+ M11Fy(ωn) + 1

τ
qT

6 �U (τ ), (11)

q(ωn) = (HK )11ξq(ωn) + (H�1)11ξp(ωn) + (HK )12Fx(ωn)

+ (H�1)12Fy(ωn) − 1

τ
qT

7 �U (τ ), (12)

X (ωn) = (HK )21ξq(ωn) + (H�1)21ξp(ωn) + (HK )22Fx(ωn)

+ (H�1)22Fy(ωn) − 1

τ
qT

8 �U (τ ), (13)

where

qT
5 = [N11, N12,−M11,−N12], (14)

qT
6 = [N21, N22,−M21, M22], (15)

qT
7 = [(HK )11, (HK )12, (H�1)11, (H�1)12], (16)

qT
8 = [(HK )21, (HK )22, (H�1)21, (H�1)22], (17)

and �U (τ ) = (�X T
τ ,�Y T

τ )T ; Ni j with i, j = 1, 2, 3, 4 de-
notes the element of the ith row and the jth column of matrix
N and so on.

In order to calculate the value of �U , a specific expression
for row vector U T (τ ) = (xT (τ ), yT (τ )) is needed. By using
Fourier series representation for x(t ) and y(t ), the value at
time τ can be obtained from the Fourier series by setting
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t = τ − ε, ε > 0 and taking the limit ε → 0. Therefore we
calculate U T (τ ) as

U T (τ ) = lim
ε→0

n=∞∑
n=−∞

e−iωnε[xT (ωn), yT (ωn)]. (18)

Here we have used ωn = 2πn/τ . In the large time limit
τ → ∞, the above given summation can be converted into
integration over ω. Substituting Eq. (9) into Eq. (18), we have
[70,72]

lim
ε→0

∫ ∞

−∞

dω

2π
e−iωε

[
�X T

τ KT + �Y T
τ �T

1

]HT

τ
→ 0, (19)

lim
ε→0

∫ ∞

−∞

dω

2π
e−iωε

[
�X T

τ

NT

τ
− �Y T

τ

MT

τ

]
→ 0, (20)

because all the poles of the integrand lie in the upper half of
the complex ω plane. Therefore U (τ ) becomes

U T (τ ) = lim
ε→0

n=∞∑
n=−∞

e−iωnε
[
ξq(ωn)qT

1 + Fx(ωn)qT
2

+ ξp(ωn)qT
3 + Fy(ωn)qT

4

]
, (21)

where

qT
1 = [(HK )11, (HK )21,−N11,−N21], (22)

qT
2 = [(HK )12, (HK )22,−N12,−N22], (23)

qT
3 = [(H�1)11, (H�1)21, M11, M21], (24)

qT
4 = [(H�1)12, (H�1)22, M12, M22]. (25)

Consequently, using the c-number correlation functions for
the noises ξq,p(t ) and Fx,y(t ), we can easily find out the mean
〈U (τ )〉 = 0 and the correlations of U (τ )

〈U (τ )U T (τ )〉 =
∫ ∞

−∞

dω

2π
{〈ξqξ

∗
q 〉q1q†

1 + 〈FxF ∗
x 〉q2q†

2

+〈ξpξ
∗
p 〉q3q†

3 + 〈FyF ∗
y 〉q4q†

4 + 〈ξqF ∗
y 〉q1q†

4

+〈Fyξ
∗
q 〉q4q†

1 + 〈ξpF ∗
x 〉q3q†

2 + 〈Fxξ
∗
p 〉q2q†

3

+〈FxF ∗
y 〉q2q†

4 + 〈FyF ∗
x 〉q4q†

2}. (26)

Here we write ξ ∗
q,p(ωn) = ξq,p(−ωn) and F ∗

x,y(ωn) =
Fx,y(−ωn). In the present model, U is a linear function
of Gaussian noises, thus the steady state distribution can be
written in terms of the mean and the correlations of U (τ ) as

P(U, τ → ∞|U0) = Pss(U ) = e− 1
2 U T v−1U√

(2π )4 det v
(27)

with the matrix element vi j = 〈Ui(τ )U T
j (τ )〉.

IV. STEADY-STATE THERMO-PHONON FLUX

Now we evaluate the fluctuating term in Np0(τ ),
i.e., N̂p1(τ ) = ∫ τ

0 [ξ̂p(t ) − γmδ p̂(t )]δ p̂(t )dt , using c-number
quadrature p(t ) in Eq. (6), which depends on the initial
conditions of the system U0 = U (t = 0) with U T = (xT , yT )
and the noise trajectory {ξp(t ) : 0 � t � τ } in any particular

realization. To achieve this goal, we introduce the proba-
bility distribution of Np(τ ) = ∫ τ

0 [ξp(t ) − γm p(t )]p(t )dt with
〈Np〉 ≡ 〈N̂p1〉, P(Np, τ ), and the corresponding characteris-
tic function for the thermo-phonon counting field λ, Z (λ) =
〈e−λNp〉, where 〈· · ·〉 denotes an average over initial configu-
rations as well as over different paths [70,72]. In general, for
a given initial configuration U0 and a given final configura-
tion U in time τ , the characteristic function can be written
as Z (λ,U, τ |U0) = 〈e−λNp〉U0,U , which satisfies a FP type of
equation [70]:

[∂τ − Lλ]Z (λ,U, τ |U0) = 0 (28)

with the initial condition Z (λ,U, τ |U0) = δ(U − U0), where
Lλ is the FP operator and reads

Lλ =
[
∂He

∂q

∂

∂ p
− ∂He

∂ p

∂

∂q

]
+

[
∂He

∂X

∂

∂Y
− ∂He

∂Y

∂

∂X

]

+ γm

(
∂

∂q
q + ∂

∂ p
p

)
+ κ

(
∂

∂X
X + ∂

∂Y
Y

)

+ 2λγm(nt + 1)
∂

∂ p
p + κN+

∂

∂X 2
+ κN−

∂

∂Y 2

+ γm(nt + 1)

(
λ2 p2 + ∂

∂q2
+ ∂

∂ p2

)

+ λ[γm p2 − γm(nt + 1)] + κMI
s

(
∂2

∂X∂Y
+ ∂2

∂Y ∂X

)

+ G

8

(
∂2

∂q∂Y
+ ∂2

∂Y ∂q

)
+ G

8

(
∂2

∂ p∂X
+ ∂2

∂X∂ p

)
,

(29)

with He = ωm
2 (p2 + q2) + �

2 (X 2 + Y 2) − GXq is the effec-
tive Hamiltonian of the coupled optomechanical system.

The formal solution of the above differential equation can
be expressed in the eigenbases of the FP operator Lλ and the
large τ behavior is dominated by the term having the largest
eigenvalue μ(λ) of the operator Lλ, i.e., Z (λ,U, τ |U0) =
e(τ/τγ )μ(λ)�(U0, λ)�(U, λ), where τγ = 1/γm is the viscous
relaxation time of the system [72]. �(U0, λ) and �(U, λ) are,
respectively, the left and right eigenfunctions corresponding to
the largest eigenvalue, which satisfy the orthonormality con-
dition

∫
dU�(U, λ)�(U, λ) = 1. It is noted that for λ = 0,

Z (0,U, τ |U0) = P(U, τ |U0) is the joint distribution of U at
time τ starting from U0. Consequently, in the large time limit,
a unique nonequilibrium steady state can be calculated from
Z (0,U, τ → ∞|U0) = Pss(U ) = �(U ) [see Eq. (27)], which
implies that μ = 0 and �(U0, 0) = 1.

Using the restricted characteristic function in
the large τ limit and the steady-state distribution
Pss, we have Z (λ) = g(λ)e(τ/τγ )μ(λ) with g(λ) =∫

dU0�(U0, 0)�(U0, λ)
∫

dU�(U, λ). For large τ the
prefactor g(λ) can usually be ignored [70,72]. Then, the
eigenvalue μ(λ) can be used to describe the cummulant
generating function (CGF) of the optomechanical system,
which is given by G(λ) = limτ→∞ ln Z (λ)/τ and contains
information about the first-order cumulant of thermo-phonon
current fluctuations, such as, J1(τ ) = limτ→∞〈Np〉/τ =
−∂G(λ)/∂λ|λ=0 [65,70]. Consequently, the total average
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thermo-phonon flux Jp = limτ→∞ 〈Np0(τ )〉/τ becomes

Jp = −γm p2
s − τ−1

γ ∂λμ(λ)|λ=0. (30)

In general, the largest eigenvalue and the corresponding
eigenfunctions are difficult to attain by solving the FP equa-
tion. Nevertheless, these functions can still be evaluated by
a technique developed in Ref. [70]. In the following, we
derive the largest eigenvalue and corresponding eigenvectors
of the Fokker-Planck equation. By using the above finite
time Fourier transform, we now write Np(τ ) = ∫ τ

0 [ξp(t ) −
γm p(t )]p(t )dt as

Np(τ ) = 1

2
τ

n=∞∑
n=−∞

[ξp(ωn)p(−ωn) + ξp(−ωn)p(ωn)

− 2γm p(ωn)p(−ωn)]. (31)

Substituting p(ωn) from Eq. (10) into the above equation, we
get

Np(τ ) = 1

2
τ

n=∞∑
n=−∞

{
[ξp(ωn)B− + ξp(−ωn)A+ − 2γmA+B−]

+
[
ξp(ωn)

q†
5

τ
�U + ξp(−ωn)

qT
5

τ
�U −2γmA+

q†
5

τ
�U

− 2γmB−
qT

5

τ
�U − 2γm

�U T q5q†
5�U

τ 2

]}
, (32)

where A+ = −N11ξq(ωn) + M11ξp(ωn) − N12Fx(ωn) + M12

Fy(ωn) and B− = M∗
11ξp(−ωn) − N∗

11ξq(−ωn) − N∗
12Fx

(−ωn) + M∗
12Fy(−ωn). Further, the restricted characteristic

function for Np can be written as [70,72]

Z (λ,U, τ |U0) = 〈e−λNpδ(U − U (τ ))〉|U,U0

=
∫

d4σ

(2π )4
eiσ T U 〈eE (τ )〉|U,U0 , (33)

where we replace the δ-function by the integral represen-
tations δ(U − U (τ )) = ∫

d4σ/(2π )4eiσ T (U−U (τ )) with σ T =
(σ1, σ2, σ3, σ4). Also E (τ ) = −λNp(τ ) − iσ T U (τ ), which
can be written as by using Eqs. (21) and (32),

E (τ ) =
n=∞∑
n=1

[
−λτζ T

n ϒnζ
∗
n + ζ T

n βn + βT
−nζ

∗
n + 2γm

τ
| fn|2

]

− λτ

2
ζ T

0 ϒ0ζ
∗
0 + ζ T

0 β0 + γm

τ
| f0|2, (34)

where fn = qT
5 �U and the row vector ζ T

n =
(ξq(ωn), Fx (ωn), ξp(ωn), Fy(ωn)). The matrix ϒn is

ϒn

2γm
=

⎛
⎜⎜⎝

−|N11|2 −N11N∗
12 N11ϒ11 N11M∗

12

−N∗
11N12 −|N12|2 N12ϒ11 N12M∗

12

N∗
11ϒ

∗
11 N∗

12ϒ
∗
11 ϒ33 −M∗

12ϒ
∗
11

N∗
11M12 N∗

12M12 −M12ϒ11 −|M12|2

⎞
⎟⎟⎠

(35)

with ϒ33 = M∗
11/(2γm) − M11ϒ11 and ϒ11 = [M∗

11 − 1/(2γm)].
The column vector βn is given by

βn = λ

⎛
⎜⎜⎜⎝

CT
11�U

CT
21�U

CT
31�U

CT
41�U

⎞
⎟⎟⎟⎠ − ie−iωnε

⎛
⎜⎜⎜⎝

qT
1 σ

qT
2 σ

qT
3 σ

qT
4 σ

⎞
⎟⎟⎟⎠, (36)

where CT
11 = −2γmN11q†

5, CT
21 = −2γmN12q†

5, CT
31 =

[2γmM11 − 1]q†
5, and CT

41 = 2γmM12q†
5. Therefore, we can

evaluate the average (〈eE (τ )〉U,U0 ) with respect to the joint
Gaussian distribution of thermal and vacuum noises, ζn,

〈eE (τ )〉U,U0 =
〈
exp

[
− λτ

2
ζ T

0 ϒ0ζ
∗
0 + ζ T

0 β0 + γm

τ
| f0|2

]〉

×
n=∞∏
n=1

〈
exp

[
− λτζ T

n ϒnζ
∗
n + ζ T

n βn + βT
−nζ

∗
n

+ 2γm

τ
| fn|2

]〉
, (37)

In the above Eq. (37), for n � 1, the Gaussian distribution is
[70]

P(ζn) = exp
(−ζ T

n D−1ζ ∗
n

)
π4detD

, (38)

and for n = 0, the noise ζ0 has the following Gaussian distri-
bution:

P(ζ0) = exp
(− 1

2ζ T
0 D−1ζ0

)
√

(2π )4detD
, (39)

where D is the 4×4 noise matrix

D = 1

τ

⎛
⎜⎝

2γm(nt + 1) 0 0 −G/4
0 2κN+ −G/4 2κMI

s
0 −G/4 2γm(nt + 1) 0

−G/4 2κMI
s 0 2κN−

⎞
⎟⎠.

(40)

Using Eqs. (37)–(39) and complex Gaussian integration [70],
we get

〈eE (τ )〉U,U0 = exp

(
−1

2

n=∞∑
n=−∞

ln[det (I + λτDϒn)]

)

× exp

(
n=∞∑

n=−∞

[
1

2
βT

−n�βn + λγm

τ
| fn|2

])
(41)

with � = (D−1 + λτϒn)−1. In the large time limit τ → ∞,
we may replace all the summations over n by integration over
ω. Then, Eq. (41) can be written as

〈eE (τ )〉U,U0 ≈ exp

[
τ

τγ

μ(λ)

]
exp

(
−1

2
σ T H1σ + i�U T H2σ

+ 1

2
�U T H3�U

)
, (42)
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where

μ(λ) = − τγ

4π

∫ ∞

−∞
dω ln[det(I + λτDϒn)], (43)

H1(λ) = τ

2π

∫ ∞

−∞
dωρT (D−1 + λτϒn)−1φ, (44)

H2(λ) = lim
ε→0

−τ

2π

∫ ∞

−∞
dωe−iωεa†

1(D−1 + λτϒn)−1φ, (45)

H3(λ) = τ

2π

∫ ∞

−∞
dω

[
aT

1 (D−1 + λτϒn)−1a2 + λγmq5q†
5

τ

]
(46)

with ρT = (q∗
1, q∗

2, q∗
3, q∗

4 ) and aT
1 = λ(d11, d12, d13, d14) with

d11 = 2γmN∗
11q5, d12 = −2γmN∗

12q5, d13 = [2γmM∗
11 − 1]q5,

d14 = 2γmM∗
12q5; and

φ =

⎛
⎜⎜⎜⎝

qT
1

qT
2

qT
3

qT
4

⎞
⎟⎟⎟⎠, a2 = λ

⎛
⎜⎜⎜⎝

CT
11

CT
21

CT
31

CT
41

⎞
⎟⎟⎟⎠. (47)

Finally, substituting the expression for 〈eE (τ )〉U,U0 from
Eq. (42) into Eq. (33) and performing the Gaussian integration
over σ , the restricted characteristic function for Np becomes

Z (λ,U, τ |U0) ≈ exp

[
τ

τγ

μ(λ)

]
exp

(
1
2�U T H3�U

)
√

(2π )4 det H1(λ)
exp

×
[
−1

2
(U T + �U T H2)H−1

1

(
U + HT

2 �U
)]

.

(48)

It is noted that the initial and the final variables in Eq. (48)
must factorize in terms of the large τ behavior of the restricted
characteristic function Z (λ,U, τ |U0). Thus, we have(

H3 − H2H−1
1 HT

2 − H−1
1 HT

2

)
+ (

H3 − H2H−1
1 HT

2 − H2H−1
1

)T = 0. (49)

Using Eq. (49), the restricted characteristic function for Np is
expressed as

Z (λ,U, τ |U0) ≈ exp

[
τ

τγ

μ(λ)

]
exp

[
−1

2
U T

0 R2(λ)U0

]

× exp
[− 1

2U T R1(λ)U
]

√
(2π )4 det H1(λ)

, (50)

where R1(λ) = H−1
1 (λ) + H−1

1 (λ)HT
2 (λ) and R2(λ) =

−H−1
1 (λ)HT

2 (λ). Comparing restricted characteristic function
Z (λ,U, τ |U0) = e(τ/τγ )μ(λ)�(U0, λ)�(U, λ) and (50), the
right and left eigenvectors of the Fokker-Planck operator Lλ,
�(U, λ) and �(U0, λ) can be identified:

�(U, λ) = exp
[− 1

2U T R1(λ)U
]

√
(2π )4 det H1(λ)

, (51)

�(U0, λ) = exp

[
− 1

2
U T

0 R2(λ)U0

]
, (52)

which correspond to the eigenvalue μ(λ) and satisfy the
orthonormality condition

∫
dU�(U, λ)�(U, λ) = 1. Using

FIG. 2. The contour of (a) Jp and (b) neff
ph vs �/ωm and r, where

the black line denotes the transition of Jp from positive to neg-
ative. Jp as a function of (c) θ and (d) Pd with different r’s or
T ’s. (e) Jp as a function of �/ωm. The red dash lines depict the
analytical results [Eq. (53)] from CGF, while the blue lines with
circles mark the simulation results from the exact QME approach.
Feasible experimental parameters are [6] λd = 810 nm, L = 1 mm,
m = 50 ng, ωm = 2π × 10 MHz, κ = 0.2ωm, γm = 10−4ωm. (a) and
(b) θ = π/2, Pd = 0.1 mW and T = 0.02 K; (c) � = ωm, Pd = 0.1
mW and T = 0.1 K; (d) � = ωm, θ = π/2 and r = 1.5. (e) r = 0.5,
θ = π/2, and T = 0.03 K.

Eqs. (30) and (43), the thermo-phonon flux Jp can be written
as

Jp = −γm p2
s + 1

4π

∫ ∞

−∞
dω[Tr(D0ϒn(ω))], (53)

which describes a general formula of the thermo-phonon
transfer between the two-mode subsystem and its bath. Here
D0 = Dτ .

Figure 2(a) show the flux Jp as a function of the normalized
detuning �/ωm and the squeezing strength r. It is found from
Fig. 2(a) that the maximum of Jp appears at the optimal detun-
ing � = ωm with different r’s, which originates from the most
efficient energy transfer from the mechanical to the optical
mode marked by the black ring in Fig. 1(b) when the beam
splitter interaction between them, i.e., δâ†δb̂ + δâδb̂† in HL

is in resonance. The maximum can help identify the optimal
cooling of a mechanical motion, which appears identically at
� ≈ ωm and is evaluated by counting the effective phonon
numbers of the vibration fluctuations, i.e., neff

ph = (v11 + v33 −
1)/2 with vi j being the second moments in Eq. (27), shown in
Fig. 2(b). It is noted that the flux Jp → 0 as � � ωm because
G1 becomes very small, which acts as a coupling channel for
the energy transfer. Furthermore, the increasing noise corre-
lation enhances the effective temperature of the optical mode
and therefore changes the nonequilibrium characteristics of
the system, so that the flux switches from positive to nega-
tive. The energy transfer from the squeezed vacuum bath to
the mechanical thermal bath can be seen as a result of the
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transfer of squeezing from light to mechanical oscillator,
which is best under the condition of optomechanical cooling
[73]. Figure 2(c) displays a periodic variation of Jp with θ and
Fig. 2(d) shows that an increase of Pd or T leads to an increase
of Jp, due to the increment of G1 or thermal noise strength. In
Fig. 2(e), we evaluate the steady-state flux with the method
of QME (see Appendix) and shows that the analytical result
[Eq. (53)] from CGF are well fitted with the exact results from
QME when G1 is weak, i.e., the driving power is relatively
small or the detuning � is relatively large.

V. OPTOMECHANICAL BERRY-PHASE-LIKE EFFECT

We now assume that the optomechanical system is al-
ready at its steady state. And then, a cyclic time-dependent
modulation is imposed adiabatically on the system. In this
case, the CGF will gain an additional term, resulting in a
geometric thermo-phonon transport originating from the non-
trivial curvature in the parameter space of the system [76,81],
which can be studied in terms of the instantaneous eigen-
value μ(λ, t ) and the left and right eigenvectors (�(U, λ, t )
and �(U, λ, t )) as well as the steady-state values, i.e., ps(t ).
Following Refs. [65,76,81], the CGF for adiabatically driven
system is composed of two parts, the dynamical part and
the additional geometric one: G(λ) = Gdyn + Ggeom, where the
dynamical contribution

Gdyn = −τ−1
γ T −1

p

∫ Tp

0
dtμ(λ, t ), (54)

which survives whenever the system’s parameters are static
or experience single or multiple modulations. Here, Tp is the
modulation period. The geometric contribution of the thermo-
phonon transport Ggeom is [65]

Ggeom = − 1

Tp

∫ Tp

0
dt

∫ ∞

−∞
dU�(U, λ, t )�̇(U, λ, t ), (55)

which is called as the optomechanical Berry-phase like and
generated when at least two parameters are modulated tempo-
rally. In the present optomechanical model, we can modulate
simultaneously the parameters MI

s and MR
s related to the

injected vacuum noise [73,75]. In the case of periodically
driving pairs (u1(t ), u2(t )), the geometric contribution Ggeom,
can be expressed as

Ggeom = − 1

Tp

[ ∮
Pudu1 +

∮
Qudu2

]
, (56)

where

Pu =
∫ ∞

−∞
dU�(U, λ, u1, u2, t )

∂�

∂u1
, (57)

Qu =
∫ ∞

−∞
dU�(U, λ, u1, u2, t )

∂�

∂u2
. (58)

Using Eqs. (51) and (52) as well as the multidimensional
integration integration

∫
dz[zT Gnz] exp

[
−1

2
zT Lnz

]
=

√
(2π )N

det Ln
Tr

[
GnL−1

n

]
, (59)

where z = [z1, z2, . . . , zN ]T , Gn and Ln are nonsingular matri-
ces, we get

Pu = −1

2
Tr

[
∂R1(λ)

∂u1
H1(λ)

]
− 1

2
Tr

[
H−1

1 (λ)
∂H1(λ)

∂u1

]
,

Qu = −1

2
Tr

[
∂R1(λ)

∂u2
H1(λ)

]
− 1

2
Tr

[
H−1

1 (λ)
∂H1(λ)

∂u2

]
. (60)

Further, using Stokes theorem, we have

Ggeom = 1

Tp

∫∫
u1u2

du1du2�u1u2 (λ), (61)

where the subscript u1u2 denotes the integral area enclosed by
the modulation contour of (u1(t ), u2(t )) and

�u1u2 (λ) = 1

2
Tr

[
∂H1(λ)

∂u2

∂R2(λ)

∂u1
− ∂H1(λ)

∂u1

∂R2(λ)

∂u2

]
(62)

is the so-called Berry curvature, which is an analog of a Berry
phase in quantum mechanics and generated when at least two
parameters are modulated temporally, i.e., periodically driven
pairs (u1(t ), u2(t )) [62]. Obviously, this quantity in the op-
tomechanical continuous-variable system has a form similar
to the Berry curvature in quantum mechanics and therefore
can be identified with Berry curvature [65], which is indepen-
dent of the modulation rate and a purely geometric property.
It is noted that the functions H1(λ) and R2(λ) in the above
curvature are no longer the right and left eigenvectors of the
Fokker-Planck operator, different from the curvature for con-
tinuous function space of an overdamped coupled oscillator
system [65]. Even so, we see that the right and left eigen-
vectors of the Fokker-Planck operator [Eqs. (51) and (52)]
are always associated with the functions H1(λ) and R2(λ),
respectively.

It is noted that Eq. (6) can describe directly the dynamical
behavior of a classical coupled oscillator system in contact
with different dissipative sources with large classical fluctua-
tions. Therefore, the curvature obtained here can be applied
not only to the current quantum optomechanical system,
but also to the underdamped coupled oscillator system with
nonzero inertia. In particular, we can straightforwardly ex-
tend the present method to study the thermal noise energy
harvesting and rectification of multimode coupled quantum
systems or classical oscillator chains with inertial terms by
increasing properly the dimensions of the relevant matrices in
Eq. (6). Consequently, the curvature in Eq. (62) is universal,
whose form remains unchanged except for the increment of
the dimensions of the matrices H1(λ) and R2(λ) in multimode
oscillator subsystems.

According to the first cumulant of thermo-phonon fluctua-
tions, in the presence of the modulation the average flux be-
comes Jp = Jdyn + Jgeom, with Jdyn = T −1

p

∫ Tp

0 dt[−γm p2
s (t ) −

τ−1
γ ∂μ(λ, t )/∂λ|λ=0] being the dynamical thermo-phonon

flux and Jgeom = T −1
p

∫∫
u1u2

du1du2∂�u1u2 (λ)/∂λ|λ=0 be-
ing the geometric flux induced by the optomechanical
Berry-phase-like effect of Ggeom. Furthere, consider a
specific modulation setup that the phase changes tem-
porally, i.e., θ (t ) = θ0 + 2πt/Tp, the real part MR

s (t ) =
(1/2) sinh(2r) cos θ (t ) and the imaginary part MI

s (t ) =
(1/2) sinh(2r) sin θ (t ) change periodically. In this case, using

043512-7



NIE, LI, LI, CHEN, LAN, AND ZHU PHYSICAL REVIEW A 102, 043512 (2020)

FIG. 3. (a) Jdyn as a function of �/ωm with r = 2.0 and T =0.02.
(Inset) Contour of the transition point of Jdyn vs r and �/ωm. (b)
F (R, θ ) as a function of θ and (c) Jgeom as a function of 1/Tp at
Jdyn � 0 with r = 2.0, T = 0.02 K, and �/ωm = 0.16688, where the
red ring is the modulation trajectory. (d) Ng as a function of r when
Jdyn = 0. The exact results of QME are well fitted by the analytical
results in Eqs. (63) and (65) evaluated by the CGF approach. Other
parameters are the same as those in Fig. 2(a).

the dynamical CGF Gdyn, the flux Jdyn reads

Jdyn = −γm p2
s + 1

4π

∫ ∞

−∞
dω[Tr(D1ϒn(ω))], (63)

which is independent of time due to the periodicity of
M (

s I, R)(t ). Here, D1 is obtained by making MR,I
s = 0 in ma-

trix D0. In particular, using (u1(t ), u2(t )) = (MI
s (t ), MR

s (t ))
and Eq. (62), we have

∂�MR
s MI

s

∂λ

∣∣∣∣
λ=0

= 1

2
Tr

[(
∂HT

20

∂MR
s

∂H10

∂MI
s

− ∂HT
20

∂MI
s

∂H10

∂MR
s

)
H−1

10

]

×1

2
Tr

[(
∂H10

∂MR
s

H−1
10

∂H10

∂
MI

s

− ∂H10

∂MI
s

H−1
10

∂H10

∂MR
s

)
H−1

10 HT
20

]
, (64)

where H20 = limε→0
∫ ∞
−∞ − dω

2π
e−iωεa′†

1 D0φ with a′
1 = a1/λ

and H10 = ∫ ∞
−∞

dω
2π

ρT D0φ. The integral function [Eq. (64)]
can also be seen as a function of the squeezing strength r
and phase θ , i.e., F (R, θ ) ≡ ∂�MI

s MR
s
(λ)/∂λ|λ=0 with R =

(1/2) sinh(2r). Then, the geometric flux induced by the op-
tomechanical Berry-phase-like effect can be written as

Jgeom = T −1
p

∫ R

0

∫ θ0+2π

θ0

F (R, θ )RdRdθ. (65)

Figure 3(a) shows the dynamical flux Jdyn and its transition
point from positive to negative values as a function of �/ωm

and r. We can see that the analytical result [Eq. (63)] from the
CGF approach are well fitted by one numerical simulation in
terms of the QME approach (see Appendix). We also focus

FIG. 4. A schematic representation of the level transitions and
the squeezing modulation with the time-dependent phase θ (t ) (inset).

on the generation of Jgeom as Jdyn � 0 due to the adiabatic
manipulation of θ , which leads to nonzero values of F (R, θ ),
portrayed in Fig. 3(b). Figure 3(c) shows that in the adia-
batic limit the analytical result, i.e., Jgeom = 2.2163 × 1/Tp

with r = 2.0 in Eq. (65), is consistent with the numerical
computation. In the simulation the geometric thermo-phonon
per cycle Ng already reaches the adiabatic limit when Tp �
τγ = 159.15 μs with γm = 2π × 1000 Hz, i.e., Tp > 1000 μs.
Figure 3(d) shows that Ng increases with the increase of r,
which plays the role of modulation amplitude of the noise. In
particular, we see from Fig. 3(d) that Ng can be less than 1,
which means that the geometric phonon response across the
macroscopic mechanical motion near the quantum regime can
be achieved.

From the thermodynamic point of view, this geometric
pumping in the optomechanical system induced by the Berry-
phase-like effect results from the dynamical engineering of
the effective squeezed heat bath for the mechanical oscillator.
The underlying physical mechanism can also be understood
from the transition in optical and mechanical states near the
quantum regime. We first assume that the system is in an
equilibrium steady state, i.e., |m, n〉 in Fig. 1(b), without
net energy exchange from the thermal bath to the system.
In Fig. 4, according to the coupling in the system we list
all transition paths in a cycle, where we simply divide the
dynamical process into four stages marked with nodes 1,
2, 3 and 4, with 1 denoting the beginning state |m, n〉;
and 2, 3 and 4 being nine adjacent intermediate states. The
probability of a complete cyclic transition path, i.e., the
path marked with red arrows in Fig. 4, can be calculated
as ρ12

m,n→m+1,nρ
23
m+1,n→m+1,n−1ρ

34
m+1,n−1→m,n−1ρ

41
m,n−1→m,n with

ρ12
m,n→m+1,n denoting the transition probability from |m, n〉 to

|m + 1, n〉 during 1 → 2 and so on. The path will lead to that
ρ41

m,n−1→m,n − ρ23
m+1,n→m+1,n−1 phonons are absorbed from the

thermal bath. In addition to the paths that absorb phonons,
there are also paths that emit phonons or do not exchange
phonons with thermal bath. The equilibrium state ensures that
the total absorbed phonons equals that of emission in the long
time limit so that on average a net flux vanish.

Now we consider a cyclic regulation of the system. As
shown in Fig. 3(b), the time-dependent reference phase θ (t )
results in periodic changes of the vacuum noise environ-
ment in photon-number squeezed state and phase squeezed
state, denoted by the nodes 1, 3 and 2, 4 in inset of Fig. 4,
respectively. Correspondingly, the transition probabilities of
sub-stages illustrated in Fig. 4 are controlled optically by the
vacuum noise fluctuation. For example, for the red arrows’
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in Fig. 4, the probability ρ12
m,n→m+1,n may increase com-

pared to the case without the modulation because it is
more likely to gain photons from the optical bath enhanced
by the photon-number fluctuation during 1 → 2. As a re-
sult, the probability of the phonon loss to the thermal bath
ρ23

m+1,n→m+1,n−1 in the following stage will be raised due to
a larger dwelling probability in |m + 1, n〉. In contrast, the
probability ρ34

m+1,n−1→m,n−1 in the third stage may decrease
because the loss of photons to the enhanced optical bath
is suppressed and hence the probability of the phonon gain
ρ41

m,n−1→m,n in the forth stage will fall. Then, in the presence
of the noise modulation, the number of phonon exchange
ρ41

m,n−1→m,n − ρ23
m+1,n→m+1,n−1 reduces so that fewer phonons

are absorbed from the thermal bath. Similarly, the transition
probabilities of all the other possible cyclic paths can be
changed by the modulation of the photon number and there-
fore the number of phonon exchange between the system and
the thermal bath may rise or lower so that the absorption of
phonons no longer offset the emission. That is, the optome-
chanical Berry-phase-like effect results from the fact that the
transitions associated with the absorption of phonons from the
thermal bath cannot compensate for the transitions associated
with the emission of phonons to the thermal bath so that on
average, the net energy transfer between the system and the
thermal bath appears. The results suggest that the geometric
flux induced by the Berry-phase-like effect provides a useful
perspective for demonstrating the characteristics of a macro-
scopic mechanical motion near the quantum regime.

Noted that in order to observe experimentally the energy
transfers, a system working in the good-cavity regime with
κ  ωm is advantageous. This is because the relative large
coherence time ensures that the energy levels of the quantum
system are sideband resolvable so that the transitions between
different quantum states are distinguishable and the net energy
transfer can be generated easily. In the opposite direction,
i.e., κ � ωm, the transitions between different quantum states
will be indistinguishable and the net energy transfer is still
missing. Further, the geometric thermo-phonon pumping in
the quantum regime demands that the modulation strength
of the parameter should be relatively small so that only the
quantum states adjacent to the initial state |m, n〉 are excited.
Moreover, when the coupled oscillator system described by
the analogous dynamical equation, i.e., Eq. (6), works in a
classical regime with a large thermal noise strength (i.e., very
high temperature of the mechanical oscillator), the geometric
pumping number Ng will be much larger than 1 due to the large
thermal fluctuations. We also stress that the dynamical control
of the system can also be realized by using other periodically
driven pairs (u1(t ), u2(t )) in Eq. (62), i.e., two-color pump or
amplitude modulated pump laser and the modulation of other
optical parameters. Henceforth, an experimental verification
of the characteristics of the energy rectification in a quantum
optomechanical system is expected to be feasible using well-
designed all-optical schemes [46].

VI. CONCLUSIONS

In summary, we have derived the general expression of the
optomechanical Berry curvature and phase and studied in de-
tail its impact on the thermo-phonon transport in a two-mode
quantum optomechanical system. We find that the optome-

chanical Berry-phase-like-induced energy transfer is realized
through the geometric phonon exchange, which is verified by
the numerical results of the QME computation. The methods
and results can be straightforwardly extended to the study of
energy transport of multimode coupled oscillator systems and
thereby open a new perspective for the energy rectifications
in optomechanical systems with large mass oscillator and en-
tropy production or the understanding of fluctuation theorem
[46,72,82,83] of an out-of-equilibrium CV quantum system
[26]. Our work can also be utilized to study the nonreciprocal
energy transfer of other micro/nanoscale non-Hermitian sys-
tems with gain environment [84,85] as well as the quantum
coherence control of flow in a hybrid optomechanical device
with atomic ensembles or spins and other nonlinear optical
media [86–89].
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APPENDIX: QUANTUM MASTER EQUATION
(QME) APPROACH

In this section, we use the quantum master equation to
evaluate the thermo-phonon flux in the system. With the lin-
earized Hamiltonian, the quantum master equation describing
the evolution of the density matrix of the coupled oscillator
system reads [68]

ρ̇ = i[ρ,�δâ†δâ + ωmδb̂†δb̂ − G1(δâ† + δâ)(δb̂† + δb̂)]

+ γmnt (2δb̂†ρδb̂ − δb̂δb̂†ρ − ρδb̂δb̂†)

+ γm(nt + 1)(2δb̂ρδb̂† − δb̂†δb̂ρ − ρδb̂†δb̂)

+ κNs(2δâ†ρδâ − δâδâ†ρ − ρδâδâ†)

+ κ (Ns + 1)(2δâρδâ† − δâ†δâρ − ρδâ†δâ)

+ κMs(2δâρδâ − δâδâρ − ρδâδâ)

+ κM∗
s (2δâ†ρδâ† − δâ†δâ†ρ − ρδâ†δâ†). (A1)

It is noted that the present optomechanical Hamiltonian is
linear, so it does not mix moments with different orders. As
a result, in order to calculate thermo-phonon flux, it is not
necessary to calculate all the matrix elements of the density
operator ρ, but only to determine the time evolution of all the
independent second-order moments, such as 〈δa†δa〉, 〈δb̂†δb̂〉,
〈δâ†δb̂〉, 〈δâδb̂〉, 〈δâ2〉, 〈δb̂2〉 and their Hermitian conjugates
[90]. The differential equations are given by

d

dt
〈δâ†δâ〉 = iG1(〈δâ†δb̂〉 − 〈δâ†δb̂〉∗ + 〈δâδb̂〉∗ − 〈δâδb̂〉)

−2κ〈δâ†δâ〉 + 2κNs, (A2)

d

dt
〈δb̂†δb̂〉 = iG1(−〈δâ†δb̂〉 + 〈δâ†δb̂〉∗ + 〈δâδb̂〉∗ − 〈δâδb̂〉)

−2γm〈δb̂†δb̂〉 + 2γmnt , (A3)
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d

dt
〈δâ†δb̂〉 = iG1(〈δâ†δâ〉 − 〈δb̂†δb̂〉∗ + 〈δâ2〉∗ − 〈δb̂2〉)

+[i(� − ωm) − (κ + γm)]〈δâ†δb̂〉, (A4)

d

dt
〈δâδb̂〉 = iG1(〈δâ†δâ〉 + 〈δb̂†δb̂〉∗ + 〈δâ2〉∗ + 〈δb̂2〉 + 1)

−[i(� + ωm) + (κ + γm)]〈δâδb̂〉, (A5)

d

dt
〈δâ2〉 = 2iG1(〈δâδb̂〉 + 〈δâ†δb̂〉)

−2(i� + κ )〈δâ2〉 − 2κM∗
s , (A6)

d

dt
〈δb̂2〉 = 2iG1(〈δâδb̂〉 + 〈δâ†δb̂〉) − 2(iωm + γm)〈δb̂2〉.

(A7)

In the above calculation, the cutoff of the density matrix is
not necessary and therefore the solutions of the linear sys-
tem of equations are exact. Correspondingly, we can evaluate
the thermo-phonon flux using above exact solutions for the
second-order moments. For the present quantum oscillator
model, the thermo-phonon flux operator Ĵp1 in terms of the
expression of Np0(τ ) can be expressed as

Ĵp1(t ) = [ξ̂p(t ) − γmδ p̂(t )]δ p̂(t ). (A8)

Moreover, using Eq. (2), the above thermo-phonon flux oper-
ator can be written as

Ĵp1(t ) = 1
2 [(ωmδq̂ − GδX̂ +δ ˙̂p)δ p̂ + δ p̂(ωmδq̂−GδX̂ +δ ˙̂p)]

(A9)

by defining the dimensionless quadrature operators of the
cavity mode

δX̂ = δâ + δâ†

√
2

, (A10)

δŶ = δâ − δâ†

√
2i

, (A11)

and the position and momentum fluctuation operators of the
mechanical oscillator

δq̂ = (δb̂ + δb̂†)√
2

, (A12)

δ p̂ = (δb̂ − δb̂†)√
2i

. (A13)

Then, using the quantum master equation [Eq. (A1)], the
quantum average of the thermo-phonon flux can be expressed

as

Jp1(t ) = 1
2 〈ωm(δq̂δ p̂ + δ p̂δq̂) − 2GδX̂δ p̂〉. (A14)

Further, using Eqs. (A10), (A12), and (A13), the average flux
becomes

Jp1(t ) = ωm

2

( 〈δb̂2〉 − 〈δb̂2〉∗
i

)
− G1

( 〈δâδb̂〉 − 〈δâδb̂〉∗
i

+ 〈δâ†δb̂〉 − 〈δâ†δb̂〉∗
i

)
,

(A15)
where we have used G = 2G1. In the regimes of weak op-
tomechanical coupling and red detuning, the system finally
reaches a steady state and the derivatives in Eqs. (A2)–(A7)
all become zero. Furthermore, all independent second-order
moments, i.e., 〈δâ†δâ〉, 〈δb̂†δb̂〉, 〈δâ†δb̂〉, 〈δâδb̂〉, 〈δâ2〉, 〈δb̂2〉,
and their Hermitian conjugates in Eqs. (A2)–(A7) can be
solved analytically, so that theflux Jp1 can be obtained analyti-
cally. However, the explicit expressions are quite cumbersome
and will not be given here. The numerical results of the total
thermalphonon flux (Jp) are shown in Fig. 2(e) of the main text
in comparison with the analytical results. In addition, when
a cyclic time-dependent modulation is imposed adiabatically
on the system, the second moments in Eqs. (A2)–(A7) change
slowly with time and therefore the thermo-phonon flux Jp1 in
Eq. (A15) is time-dependent and should be evaluated numeri-
cally. Finally, the total average thermo-phonon flux including
the part related to ps in a cycle of Tp after the system reaches
steady state is

Jp = T −1
p

∫ Tp

0

[−γm p2
s (t ) + Jp1(t )

]
dt . (A16)

In numerical simulation, we consider the temporal change of
the phase of squeezing, i.e., θ (t ) = θ0 + 2πt/Tp. Correspond-
ingly, the real part MR

s (t ) = (1/2) sinh(2r) cos θ (t ) and the
imaginary part MI

s (t ) = (1/2) sinh(2r) sin θ (t ) change peri-
odically. In this case, the first moment ps does not depend on
time and the flux is simplified as

Jp = −γm p2
s + T −1

p

∫ Tp

0
Jp1(t )dt . (A17)

In the main text, we can compare the analytical results of
the thermo-phonon flux from the CGF approach with the
numerical simulation of the above QME.
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