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Second-harmonic generation of structured light by transition-metal dichalcogenide metasurfaces
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Structured light characterized by spatially inhomogeneous optical fields found rich applications in optical
communication, sensing, microscopy, manipulation, and quantum information. While generation of structured
light has been extensively studied in linear optics, the nonlinear optical process, particularly in two-dimensional
(2D) materials, is an emerging alternative for generating structured light at shorter wavelengths. In this work,
we theoretically demonstrate that radially and azimuthally polarized beams and vortex beams carrying orbital
angular momentum could be generated at second-harmonic frequencies by using 2D material-based metasurfaces
comprising the same transition-metal dichalcogenide meta-atoms. Manipulation of translations and orientations
of anisotropically nonlinear meta-atoms exhibiting a threefold rotation-symmetrical crystalline structure induces
strong nonlinear spin-orbital coupling, which enables simultaneous control of spatial phase and polarization in
second-harmonic generation. The nonlinear transition-metal dichalcogenide metasurface proposed is promising
for on-chip integration of nonlinear generation of structured light.
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I. INTRODUCTION

It is well known that plane waves have independent degrees
of freedom, including frequency, amplitude, polarization, and
phase. Fundamentally different from plane waves, structured
light has inhomogeneous and correlated amplitude, polar-
ization, and phase. As additional degrees of freedom, the
spatially inhomogeneous fields occur at the subwavelength
scales of nano-optics due to the strong spin-orbital coupling
when polarized photons interact with inhomogeneous me-
dia [1]. Structured light, including Hermite-Gaussian and
Bessel beams [2,3], Laguerre-Gaussian beams [3,4] with heli-
cal phase front carrying orbital angular momentum (OAM),
and radially and azimuthally polarized vector beams [5,6],
brings novel functions to optical nanodevices and advances
important applications in optical and quantum manipula-
tion, microscopy, imaging, sensing, and communications [7].
For example, the radial polarized beam has been applied
to high-resolution imaging attributed to its tighter focusing
spot [8]. It can also be used in trapping nanoparticles since
the beam exerts a larger longitudinal force on the particles [9].
Moreover, single-molecule localization microscopy [10] and
a particle exchanger [11] employ the azimuthal polarized
beam. Additionally, recent studies show potential applica-
tions of structured light in optical communications to gain
communication channels through “mode-division multiplex-
ing” [12,13].
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One of tools to generate structured light is based on bulk
materials and volumetric structures [14–18]. However, the
diffraction effect often makes on-chip integration of these bulk
devices impossible. Alternatively, a metasurface [19–21] that
is a planar structure locally modifying the spatial pattern of
light in reflection or transmission offers inspiring solutions
to tackle the problem. It not only opens new paradigms for
generating structured light at fundamental and high harmon-
ics [22–24] but also deepens the physical understanding of
linear and nonlinear spin-orbit interaction of light at sub-
wavelength scales [25–34]. Metasurfaces based on van der
Waals materials have been reported for controlling light
in linear optics [35,36]. Most previous works on nonlinear
generation of structured light are based on geometric config-
uration of the meta-atoms (like split resonant rings, U-shaped
resonators, etc.). Very recently, the nonlinear generation of
structured light by two-dimensional (2D) materials and plas-
monic nanostructure hybridized metasurfaces were reported
in [37,38].

In this work, we propose a 2D material-based meta-
surface platform to generate structured light at second
harmonics. The meta-atoms of the metasurface are the
transition-metal dichalcogenide (TMDC) flakes exhibiting
anisotropic second-order susceptibility and threefold rotation-
symmetrical crystalline structure. The TMDC monolayer has
strong second-harmonic generation (SHG) due to the ab-
sence of inversion symmetry. The WS2 adopted in this work
has a magnitude of the effective bulk quadratic nonlinear
susceptibility comparable to that of GaAs (a medium with
strong bulk SHG) in the visible regime [39]. Using iden-
tical meta-atoms with tailored translations and orientations,

2469-9926/2020/102(4)/043508(7) 043508-1 ©2020 American Physical Society

https://orcid.org/0000-0002-2823-3856
https://orcid.org/0000-0002-7431-8121
https://orcid.org/0000-0002-3846-3110
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.043508&domain=pdf&date_stamp=2020-10-12
https://doi.org/10.1103/PhysRevA.102.043508


LING LING MENG et al. PHYSICAL REVIEW A 102, 043508 (2020)

FIG. 1. (a) Side and top views of the TMDC monolayer at the
xoy plane. The incident plane wave propagates along the −z direc-
tion. The polarization angle with respect to the armchair direction
(i.e., the x axis) is denoted as φ. (b) Polar plot for the second-
harmonic intensity of the parallel component. (c) Polar plot for
the second-harmonic intensity of the perpendicular component. In
(b) and (c), the EFIE-SHG results (second-harmonic generation by
the electrical field integral equation) agree well with the analyti-
cal solutions: I‖,2ω ∝ cos2(3φ) and I⊥,2ω ∝ sin2(3φ). The threefold
rotation-symmetrical crystalline structure generates a characteristic
sixfold polar pattern for the second-harmonic intensities.

the metasurfaces could generate radially and azimuthally
polarized beams and vortex beams carrying OAM at second-
harmonic frequencies. Different from [37,38], we make use
of all-TMDC flakes to generate various structured light,
which allows for ultrathin metasurface designs. This merit
can satisfy the requirements for ultracompact sources of
structured light in many evolutionary applications [13]. In
addition, the TMDC-based metasurface is compatible with
a complementary-metal-oxide-semiconductor fabrication pro-
cess [40,41]. Therefore, the metasurface composed of TMDC
flakes may become a competitive platform for generation of
structured light at second harmonics.

II. THEORY AND DISCUSSION

A. Second-harmonic generation of the TMDC monolayer

The 2D TMDCs are semiconducting materials, which ren-
ders them particularly suitable to be employed in nanoscale
light management in optical and optoelectronic devices. They
have noncentrosymmetric atomic lattices and thus allow even-
order nonlinear optical processes. The crystalline structures
of the TMDC with an odd number of layers belong to the
D3h space group, showing the threefold rotational symmetry
and quadratically nonlinear susceptibility tensor with a single
nonzero element [39,42,43]:

χ (2) ≡ χ (2)
xxx = −χ (2)

xyy = −χ (2)
yyx = −χ (2)

yxy, (1)

where x is the armchair direction and y is the zigzag direction
[see the inset in Fig. 1(a), top view]. It was experimentally
reported that the TMDC monolayer has the maximum strength

of SHG at normal incidence [43]; therefore, the design in this
work will focus only on the monolayer structure.

Figure 1(a) presents the configuration of the TMDC
monolayer flattened on a transparent and thin sub-
strate (aluminum oxide or silicon oxide film), illumi-
nated by a normal-incidence wave propagating along
the −z direction. If the wave has a linear polar-
ization vector êω, then the generated second-harmonic
wave E(2ω) polarized at a given direction ê2ω can be
expressed as

E(2ω) · ê2ω = Cê2ω · χ (2) : êωêω, (2)

where ω is the fundamental frequency, 2ω is the second-
harmonic frequency, and C is a certain constant related to
the local-field factors determined by the local medium. If the
analyzer (ê2ω) points to the direction of fundamental polariza-
tion, the component parallel to the analyzer of the generated
second-harmonic electric field (E field) can be expressed as
(provided in Appendix A)

E‖(2ω) = Cχ (2) cos(3φ), (3)

where φ is the angle between the incident wave polariza-
tion and the x axis (the armchair direction is aligned with
the x axis). The number 3 is a critical characterizer for the
anisotropic nonlinear susceptibility with threefold rotational
symmetry. Similarly, the component perpendicular to the ana-
lyzer can be derived as

E⊥(2ω) = −Cχ (2) sin(3φ). (4)

Note that, the right-hand rule is applied throughout. The above
perpendicular component satisfies Ê‖ × Ê⊥ = ẑ.

B. Electric-field integral equation for TMDC monolayers

We use the electrical-field integral equation (EFIE) with
the impedance boundary condition to calculate the surface
current on the TMDC monolayer at the fundamental fre-
quency [44,45]. In our theoretical model, it is reasonable to
ignore substrate effects because its relative permittivity is
small enough that it does not affect the polarization of the
induced surface current at fundamental frequency, and the
nonlinear response from the substrate is sufficiently weak
compared to the TMDC monolayer in the visible regime [46]
(e.g., hexagonal boron nitride, which is usually used as the
substrate in experiments). The integral equation can be ex-
pressed as

Lω(r, r′) · Js,ω(r′) − 1

σs
{Js,ω(r)} = −Einc(r), (5)

where integration is implied over repeated variables. Here Js,ω

is the surface electric current, σs is the surface conductivity at
the fundamental frequency, and Einc is the incident electric
field. More explicitly, the operator L represents

Lω(r, r′) = iωμ

∫
S

(
Ī + ∇∇

k2

)
eik|r−r′ |

4π |r − r′| , (6)

where Ī is the identity matrix, μ is the permeability of air, k is
the wave number in air at the fundamental frequency, and S is
the surface of the monolayer.
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After a geometrical discretization of the TMDC flake with
triangular patches, the surface current can be expanded with
Rao-Wilton-Glisson (RWG) basis functions (two adjacent tri-
angles straddled as one edge basis function). Let {�n(r)} be a
RWG basis function, so that the surface current Js,ω(r) can be
written as Js,ω(r) = ∑

n Jω,n�n(r) for N coefficients {Jω,n}.
Testing the integral equation with the same basis functions
(Galerkin’s method), Eq. (5) can be converted into a represen-
tation of the matrix-vector product:[

Lω − 1

σs
G

]
· Jω = g, (7)

where

[Lω]mn = 〈�m(r),Lω(r, r′)�n(r′)〉, (8)

[G]mn = 〈�m(r),�n(r′)〉, (9)

[Jω]n = Jω,n, [g]n = 〈�m(r),−Einc(r)〉. (10)

Here, 〈·, ·〉 denotes the unconjugated inner product 〈 f , g〉 =∫
f (r)g(r)dr, and G is also called the Gram matrix for the

RWG basis.
For the convenience of numerical computation, the E field

at fundamental frequency E(ω) is calculated at the center of
each triangular patch. Then the surface currents at second-
harmonic frequency is calculated by

Js,2ω · ê2ω = ê2ω · σ (2)
s : E(ω)E(ω). (11)

The σ (2)
s is the component of second-harmonic surface con-

ductivity tensor:

σ (2)
s = −iε0(2ω)χ (2), (12)

where χ (2) is the second-harmonic susceptibility in Eq. (1).
The scattered electric field at second harmonics is calcul-
ated by

Esca (2ω) = L2ω{Js,2ω}. (13)

Note that Js,2ω is discretized on each triangular patch numer-
ically, while L2ω is established on the edge basis of RWG.
Therefore, the Gram matrix G in (9) is applied to convert Js,2ω

to the edge-basis expansion before the calculation of Eq. (13).
The surface conductivity and the second-order surface sus-

ceptibility χ (2) of the TMDC monolayer can be found in [39],
where the WS2 material is adopted in our calculation. The
dimension of the TMDC monolayer is 2 × 2 μm2 under the
plane-wave illumination with a wavelength of 800 nm. Then
we apply Eq. (2) to obtain the E field at the second-harmonic
frequency. By rotating the monolayer and keeping the incident
wave polarized along the x direction, the far-field second-
harmonic intensities as a function of φ are calculated for
both the parallel component and the perpendicular component
(here we choose the analyzer ê2ω to be the same as êω, i.e., the
x direction). Equations (3) and (4) result in the intensities of
the parallel part I‖,2ω ∝ cos2(3φ) and the perpendicular part
I⊥,2ω ∝ sin2(3φ). Figures 1(b) and 1(c) show the results cal-
culated by the EFIE solver, which are in consistence with the
analytical expressions and the experimental data as well [42],
validating the accuracy of the model.

FIG. 2. (a) and (b) Rotated single TMDC flake with the local
coordinates of (x′, y′), where x′ is the armchair direction. (a) Incident
plane wave has a fixed polarization along the x axis. (b) Incident
plane wave is left-circularly polarized. (c) Normalized radiation pat-
tern of a single TMDC flake rotating 10◦ to achieve polarization
pointing to the direction of 30◦ at second harmonics. The inci-
dent fundamental pump is an x-polarized plane wave propagating
along the −z direction. (i)–(iii) correspond to side lengths of 35 nm
(0.044λ), 70 nm (0.088λ), and 140 nm (0.175λ) at fundamental
frequency with wavelength λ of 800 nm; (iv)–(vi) correspond to the
side lengths of 35, 70, and 140 nm at second-harmonic frequency.
The color bar indicates the intensity of the normalized radiation
pattern.

C. Generation of radially and azimuthally polarized beams

Figure 2(a) sets the global coordinate system as (x, y) and
(x′, y′) as the local coordinate system of the TMDC flake,
where x′ is the armchair direction. The center of the square
flake is placed at the position where the polar angle is α, and
the polarization angle between x′ and x is φ. According to
the theory discussed above and coordinate transformation, the
nonlinear conversion relation between the second-harmonic
electric field and the incident fundamental E field can be
linked by a Jones matrix (provided in Appendix B), i.e.,

[
Ex,2ω

Ey,2ω

]
= Cχ (2) · R ·

⎡
⎢⎣

Ex,ωEx,ω

Ex,ωEy,ω

Ey,ωEy,ω

⎤
⎥⎦, (14)

with

R =
[cos(3φ) 2 sin(3φ) − cos(3φ)

sin(3φ) −2 cos(3φ) − sin(3φ)

]
, (15)

where 3φ is a geometric phaselike or Pancharatnam-Berry
phaselike factor [47,48] due to the anisotropic nonlinearity
of the TMDC material showing threefold rotational symmetry
for its crystalline structure. Assume the incident wave is po-
larized along the x direction, i.e., Ey,ω = 0, and let Ex,ω = 1;
then the parallel component of the SHG is E‖(2ω) = Ex,2ω =
cos(3φ), and the perpendicular component is E⊥(2ω) =
Ey,2ω = sin(3φ). Therefore, the resultant polarization will
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FIG. 3. (a) Design of a TMDC metasurface for generating the
radially polarized beam (top view). (b) Schematic illustration of
a TMDC metasurface for generating the radially polarized beam.
(c) Second-harmonic E field of the radially polarized beam at the
plane of z = −400 nm. (d) Second-harmonic E field of the az-
imuthally polarized beam at the plane of z = −200 nm. In (c) and (d),
the color bar and arrows indicate the normalized intensity and the di-
rection of polarization for the electric field on the plane, respectively.

point to the radial direction in the global system if

tan(α) = Ey,2ω

Ex,2ω

= tan(3φ). (16)

Figure 2(c) shows the normalized radiation pattern of a
single TMDC flake rotating 10◦ to achieve the polarization
pointing to 30◦ at the second-harmonic frequency for three
side lengths of the flake under the normal-incidence plane
wave polarized along the x axis at fundamental frequency. It
can be found that in the subwavelength regime, the flake can
be regarded as a dipole both at the fundamental frequency and
at the second-harmonic frequency, with polarization pointing
to the x axis and 30◦, respectively. Increasing the size of the
flake will be advantageous since it will increase the intensity
of generated fields. However, if the dimension of the flake is
too large, the radiation pattern at second harmonics will not
be a dipole anymore [Fig. 2(c), diagram (vi)]. In the following
discussion, the side length of the flake as a meta-atom is set as
35 nm to demonstrate the design approach.

In order to achieve the radial polarization, which is cylin-
drically symmetric, each square flake is centered on a circle’s
circumference. Figures 3(a) and 3(b) illustrate a schematic
pattern of the proposed metasurface. It is important to make
lateral dimensions of the flake smaller than the wavelength
to suppress high-order diffraction (only specular reflection
is allowed). The wavelength of incident E field is 800 nm,
and the radius R of the circle is 100 nm. The meta-atoms
are placed at the cylindrical coordinates of (R, 2πn/N ),
where n = 0, 1, . . . , N − 1 and N = 12. The corresponding
angles of rotation for each flake should be 2πn/(3N ) from
Eq. (16). However, this orientation configuration results in

FIG. 4. Phase distributions of the second-harmonic Eρ compo-
nent for the OAM modes of (a) l = 1, (b) l = 2, and (c) l = 3.
Fourier decomposition of the second-harmonic Eρ component for the
OAM modes of (d) l = 1, (e) l = 2, and (f) l = 3.

a wholly asymmetric metasurface structure and thus lowers
the performance of the radially polarized beam generated
(see Appendix B, Fig. 5). Exploring the threefold rotational
symmetry of the nonlinear response, for instance, instead of
rotating 10◦ centered at (R, 30◦), the flake is rotated by 130◦.
The 120◦ incremental rotation does not change the polariza-
tion state of SHG. Similarly, for those flakes that break the
symmetry, the rotating angle is added by 2π/3 or 4π/3. Fig-
ure 3(c) shows the transverse E-field distribution at the plane
of z = −400 nm with x and y ranging from −0.8 to 0.8 μm.
A radially polarized beam with a polarization singularity can
be clearly seen at the second-harmonic frequency.

FIG. 5. (a) Schematic illustration of the metasurface with orig-
inal rotating angles. (b) Schematic illustration of the metasurface
with modified rotating angles. (c) Radial polarization generated by
the structure in (a) on the plane of z = −400 nm with x and y
ranging from −0.8 to 0.8 μm. (d) Radial polarization generated by
the structure in (b) on the same plane described in (c).
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Figure 3(d) shows the azimuthally polarized beam gener-
ated at second harmonics by rotating each flake by (2πn/N +
π/2)/3. In the same fashion, the rotating angle is adjusted by
adding 2π/3 or 4π/3 when needed (see Appendix B). One
can see the vortexlike polarization structure with a singularity
at the beam center (the E field is plotted on the plane of
z = −200 nm with x and y ranging from −1.0 to 1.0 μm).

D. Generation of orbital angular momentum

As shown in Fig. 2(b), when the vertically incident plane
wave with the left-circular polarization (LCP) illuminates the
flake, the radial component at second harmonics has the fol-
lowing form (provided in Appendix C):

Eρ,2ω = Cχ (2)ei3φ−iα = Cχ (2)eilα, (17)

where l is the topological charge of the OAM beam to be gen-
erated and the constants related to the incident intensity and
surface susceptibilities of the TMDC flake are omitted here.
The nonlinear spin-orbital interaction can be seen from the
supposition of the geometric phase factors, originating from
the relation between the circular polarization and rotations of
two coordinate frames of (x′, y′) and (x, y), which are equiva-
lent to the translations and orientations of the anisotropically
nonlinear meta-atoms. We choose to focus on Eρ because
{eilα} is the set of eigenstates for the Helmholtz equation in
the cylindrical coordinates.

From Eq. (17), the rotating angle of each flake is φ = (l +
1)α/3, where α = 2πn/N , n = 0, 1, . . . , N − 1 and N = 12.
To achieve the l = 1 mode, φ = 2α/3; for l = 2, φ = α, and
for l = 3, φ = 4α/3. The threefold rotational symmetry is
also explored here to modify the design. Figures 4(a)–4(c)
show the phase distributions for the OAM modes with l =
1, 2, 3 on a plane of z = −200 nm (x and y range from −1.25
to 1.25 μm), with the corresponding Fourier decompositions
depicted in Figs. 4(d)–4(f), respectively. When the topological
charge l = 1, 2, the desired vortex mode is dominant, and the
purity of the vortex beam is high. However, regarding the case
of l = 3, the amplitude of the l = 1 mode is comparable to
that of the l = 3 mode. The emergence of the l = 1 mode is
due to the mutual coupling between each flake and the rotating
angle 2πn/9, which is double πn/9, the rotating angle for
l = 1. For higher-order OAM modes with l > 3, the mutual
coupling and the threefold rotational symmetry of the TMDC
crystals give rise to more quasidegenerate modes.

III. CONCLUSION

In conclusion, the proposed TMDC metasurface con-
verts fundamental plane waves to versatile structured light at
second-harmonic frequencies. The generated structured light
includes radially and azimuthally polarized beams (by linearly
polarized plane waves) and vortex beams carrying different
orders of OAM modes (by circularly polarized plane waves).
The anisotropically nonlinear susceptibility with a threefold
rotation-symmetrical crystalline structure makes the TMDC
meta-atoms more flexible in the control of spatial structures
of light at short wavelengths, which extends the spectral
bandwidth of operations in optical communication or other
light manipulation. The translations and orientations of each

anisotropically nonlinear meta-atom produce a geometric
phase at the second harmonics, which can be understood as a
characterizer of nonlinear spin-orbital interaction. Moreover,
the monolayer and multilayered TMDCs can both be pat-
terned on flat and curved substrates and be on chip integrated
with other plasmonic and photonic nanostructures, which have
a bright outlook in applications for next-generation optical
and optoelectronic devices.
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APPENDIX A: THREEFOLD ROTATIONAL
SYMMETRY OF SHG

In this Appendix, we provide the derivation of the threefold
rotational symmetry of the second-harmonic generation for
the TMDC monolayer. The TMDC monolayer flake is illu-
minated by a normal-incidence plane wave propagating along
the −z direction with a linear polarization vector êω, as shown
in Fig. 1(a). The êω can be decomposed to Ex,ω = cos(φ) and
Ey,ω = sin(φ), where φ is the angle between the incident wave
polarization and the x axis. According to Eqs. (1) and (2), the
components along x and y can be expressed as

Ex,2ω = Cχ (2)
xxx cos(φ) cos(φ) + Cχ (2)

xyy sin(φ) sin(φ)

= Cχ (2)[cos2(φ) − sin2(φ)] (A1)

and

Ey,2ω = Cχ (2)
yyx sin(φ) cos(φ) + Cχ (2)

yxy cos(φ) sin(φ)

= −2Cχ (2) sin(φ) cos(φ). (A2)

If we choose the analyzer ê2ω pointing to the fundamental po-
larization vector, then the component parallel to the analyzer
at the second-harmonic frequency is

E‖(2ω) = Ex,2ω cos(φ) + Ey,2ω sin(φ)

= Cχ (2)[cos3(φ) − sin2(φ) cos(φ)

− 2 sin(φ) cos(φ) sin(φ)] = Cχ (2) cos(3φ). (A3)

In the same fashion, the perpendicular component can be
derived as

E⊥(2ω) = −Ex,2ω sin(φ) + Ey,2ω cos(φ) = −Cχ (2) sin(3φ).

(A4)

APPENDIX B: DERIVATION FOR RADIAL AND
AZIMUTHAL POLARIZATION

this Appendix, we present the derivation for the Jones ma-
trix in Eq. (14). As shown in Fig. 2(a), the global coordinate
system is (x, y), while the local system is (x′, y′). The center
of the TMDC flake is positioned at the polar angle α, and the
angle between x′ and x is φ. Assuming Ex,ω and Ey,ω are the
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TABLE I. Rotating angles for radial polarization.

α 0◦ 30◦ 60◦ 90◦ 120◦ 150◦ 180◦ 210◦ 240◦ 270◦ 300◦ 330◦

φ 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ 100◦ 110◦

φ′ 0◦ 130◦ 140◦ 270◦ 40◦ 50◦ 180◦ 310◦ 320◦ 90◦ 220◦ 230◦

two components of the incident wave at the fundamental fre-
quency, then Ex′,ω = Ex,ω cos(φ) + Ey,ω sin(φ), and Ey′,ω =
−Ex,ω sin(φ) + Ey,ω cos(φ). According to Eqs. (1) and (2),
Ex′,2ω and Ey′,2ω can be expressed as

Ex′,2ω = Cχ (2){[cos2(φ) − sin2(φ)]Ex,ωEx,ω

+ 4 sin(φ) cos(φ)Ex,ωEy,ω + [sin2(φ)

− cos2(φ)]Ey,ωEy,ω} (B1)

and

Ey′,2ω = Cχ2{2 sin(φ) cos(φ)Ex,ωEx,ω

+ 2[sin2(φ) − cos2(φ)]Ex,ωEy,ω

− 2 sin(φ) cos(φ)Ey,ωEy,ω}. (B2)

By vector decomposition, Ex,2ω and Ey,2ω in the global system
can be derived as

Ex,2ω = Ex′,2ω cos(φ) − Ey′,2ω sin(φ)

= Cχ2[cos(3φ)Ex,ωEx,ω + 2 sin(3φ)Ex,ωEy,ω

− cos(3φ)Ey,ωEy,ω] (B3)

and

Ey,2ω = Ex′,2ω sin(φ) + Ey′,2ω cos(φ)

= Cχ2[sin(3φ)Ex,ωEx,ω − 2 cos(3φ)Ex,ωEy,ω

− sin(3φ)Ey,ωEy,ω]. (B4)

Equation (14) gives a compact form for the nonlinear conver-
sion relation.

As mentioned in Sec. II C, the original configuration of
the orientation results in a wholly asymmetric metasurface
structure [see Fig. 5(a)] and thus affects the performance of
the radial polarization, as shown in Fig. 5(c). Figures 5(b)
and 5(d) show the modified design and the generated radial
polarization.

The polar angle α, rotating angle φ, and modified rotating
angle φ′ for radial polarization and azimuthal polarization are
given in Tables I and II, respectively.

APPENDIX C: DERIVATION FOR ORBITAL
ANGULAR MOMENTUM

In this Appendix, we provide the derivation in the gen-
eration of the orbital angular momentum. The left-circular

TABLE II. Rotating angles for azimuthal polarization.

α 0◦ 30◦ 60◦ 90◦ 120◦ 150◦ 180◦ 210◦ 240◦ 270◦ 300◦ 330◦

φ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ 100◦ 110◦ 120◦ 130◦ 140◦

φ′ 150◦ 40◦ 50◦ 180◦ 310◦ 320◦ 90◦ 220◦ 230◦ 0◦ 130◦ 140◦

polarization (LCP) is normalized as

|L〉 = 1√
2

(1
i

)
. (C1)

With the LCP illumination, the electric field along x′ and y′ at
the fundamental frequency can be expressed as

Ex′,ω = 1√
2

[cos(φ) + i sin(φ)] = 1√
2

eiφ (C2)

and

Ey′,ω = 1√
2

[− sin(φ) + i cos(φ)] = i√
2

eiφ. (C3)

Then the second-harmonic components along x′ and y′ are
obtained by Eqs. (1) and (2) (here the parameters Cχ (2) are
omitted):

Ex′,2ω = 1

2
ei2φ − −1

2
ei2φ = ei2φ (C4)

and

Ey′,2ω = − i

2
ei2φ + −i

2
ei2φ = −iei2φ. (C5)

Returning to the global system, Ex,2ω and Ey,2ω have the fol-
lowing expressions:

Ex,2ω = Ex′,2ω cos(φ) − Ey′,2ω sin(φ)

= ei2φ cos(φ) + iei2φ sin(φ) = ei3φ (C6)

and

Ey,2ω = Ex′,2ω sin(φ) + Ey′,2ω cos(φ)

= ei2φ sin(φ) − iei2φ cos(φ) = −iei3φ. (C7)

As mentioned in Sec. II D, Eρ is chosen to demonstrate the
generation of orbital angular momentum since eilα is the set
of eigenstates for the Helmholtz equation in the cylindrical
coordinates. For a flake centered with polar angle α, Eρ,2ω is
expressed as

Eρ,2ω = Ex,2ω cos(α) + Ey,2ω sin(α)

= ei3φ cos(α) − iei3φ sin(α) = ei3φ−iα. (C8)

By choosing the proper φ, the relation eilα = ei3φ−iα can be
established, which indicates the interactions between spin
angular momentum at the fundamental frequency and orbital
angular momentum at the second-harmonic frequency.
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